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Abstract

phenotype is still not well understood.

microenvironment.

Background: Recent cancer studies revealed, the interaction between pancreatic cancer cells and pancreatic
stellate cells is of importance in the cancer progression. The activation of stellate cells is mediated by some growth
factors and cytokines secreted by the cancer cells. In turn, the activated stellate cells will synthesize and secrete
multiple growth factors to continuously stimulate the growth of surrounding cancer cells through paracrine
pathways. The mechanism behind the evolution of stellate cells from quiescent state to a cancer-associated

Results: To systematically investigate the interaction between cancer cells and stellate cells, we constructed a
multicellular discrete value model, which is composed of several intracellular and intercellular signaling pathways
that are frequently mutated in the pancreatic cancer, to study the cell cycle progression and angiogenesis. We,
then, introduced and applied a formal verification technique, Symbolic Model Checking, to automatically analyze
the cells’ proliferation, angiogenesis and apoptosis in the proposed signal transduction model of tumor

Conclusions: Our studies predicted some important temporal logic properties and dynamic behaviors in the
pancreatic cancer cells and stellate cells. The verification technique identified several signaling components,
including the RAS, RAGE, AKT, IKK, DVL, RB and PTEN, whose mutation or loss of function can promote cell growth
and inhibit apoptosis, some of which have been confirmed by existing experiments. Our formal studies
demonstrated that, the bidirectional interaction between cancer cells and stellate cells could significantly increase
cell proliferation, inhibit apoptosis, induce tumor angiogenesis, and promote cancer metastasis.

Tumor microenvironment signaling pathway, discrete value model, model checking, formal verification

Background

Pancreatic ductal adenocarcinoma (PDAC) is a form of
cancer in the pancreatic duct, which is the fourth lead-
ing cause of cancer death in the United States, and it
has an extremely poor prognosis. The pathological study
of PDAC has revealed a number of genetic mutations
[1], including the KRAS, CDKN2A, and TP53 genes. A
recent global genomic analysis [2] has identified around
ten cellular signaling pathways that are frequently
altered in pancreatic cancers, including the pathways of
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Hedgehog, Wnt, Notch, KRAS, apoptosis, TGF-B, cJUN,
and G1/S phase transition. In addition, a number of
growth factors and cytokines, for example, the Insulin-
like growth factor (IGF), Insulin, Hedgehog (Hh), trans-
forming growth factor (TGF-B), and the Advanced Gly-
cation End products (AGEs) are overexpressed in the
microenvironment of pancreatic cancer cells, leading to
uncontrolled cancer cell proliferation, unorganized
angiogenesis and evasion of apoptosis.

Recent experimental studies in pancreatic cancer [3-5]
revealed, the interaction between pancreatic cancer cells
(PCCs) and pancreatic stellate cells (PSCs, stromal cells
of the pancreas) can stimulate cancer progression and
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tumor angiogenesis (formation of new blood vessels).
Pancreatic cancer cells can recruit and activate PSCs to
produce and maintain a growth-permissive environment
for cancer progression and drug resistance. The activa-
tion of PSCs is mediated by several growth factors and
cytokines, and many of which are secreted by the pan-
creatic cancer cells. In turn, the activated PSCs will
synthesize and secrete multiple cytokines and growth
factors, including Hedgehog and Wnt, through the para-
crine and autocrine feedback loops to continuously
stimulate cancer cells’ growth. These bidirectional inter-
actions [4] will promote cancer progression and unorga-
nized angiogenesis. Besides, PSCs can also secrete a
large amount of extracellular matrix (ECM) proteins,
which are important components of the fibrous tissue
along with stromal cells. Thus, the tumor microenviron-
ment of pancreatic cancer cells and the bidirectional
interaction with stellate cells can significantly increase
cell proliferation, inhibit apoptosis, induce tumor angio-
genesis, and promote cancer metastasis. The mechanism
behind the evolution of PSCs from quiescent state to a
cancer-associated myofibroblast-like phenotype is still
not very clear. Several findings [4,5] have indicated that
the pro-angiogenic factor VEGF is of considerable
importance in the stellate cell’s activation and angiogen-
esis. To systematically understand the tumor microen-
vironment and the bidirectional interaction between
cancer cells and stellate cells, it is imperative to investi-
gate the intracellular and intercellular signaling path-
ways that regulate the cell cycle progression and
angiogenesis.

Our previous work [6-9] developed Statistical Model
Checking and Symbolic Model Checking techniques to
study the intracellular signaling pathways in a single
cell. Since the pathways implicated in the tumor micro-
environment are highly interconnected, to the best of
the author’s knowledge, no computational multicellular
model has been developed to study the interaction
between pancreatic cancer cells and stellate cells due to
the complexity of networks. In this work, we construct a
novel in silico discrete value model of multicellular sig-
naling pathways, which are frequently mutated [2] in
pancreatic cancers, to study the interaction between
PSCs and PCCs. Our 3-cell model is composed of two
types of cells: two pancreatic cancer cells (PCCs) and
one stellate cell (PSC), which are regulated by the
Hedgehog, Wnt, AGE, Rb-E2F, P53, RAS, PI3K, VEGF
and IGF signaling pathways. Since the mechanism
behind the interaction between PCCs and PSCs is not
well understood, our model and analysis will provide
some insights into the study of tumor microenviron-
ment and the evolution of stellate cell from a quiescent
state to an active state.
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In order to formally and automatically analyze the
complex network, we introduce a powerful verification
technique, called Model Checking [10], which deter-
mines whether or not a model (state-transition system)
satisfies a desired property expressed in a temporal
logic formula. Let M be a state-transition system or a
model, Sy be a set of starting states, and Y be a tem-
poral logic formula. The Model Checking problem is to
verify that, for all states s € Sy, the model M satisfies
¥ - denoted by M,s E . Model Checker performs an
exhaustive search of the state space of the model to
verify or falsify the proposed temporal logic formula.
Model Checking has been successfully applied to verify
hardware systems and digital circuits design. In this
work, finally, we apply the Symbolic Model Checking
technique to analyze the complex intercellular network
of pancreatic cancer cells and stellate cells. A number
of important temporal logic and dynamic properties,
which specify certain behaviors of regulatory compo-
nents abstracted from the in vitro or in vivo experi-
ments in the literature, are proposed to investigate
the multicellular signaling pathways in the tumor
microenvironment.

Methods

Multicellular model of signaling pathways

Several signaling pathways, including KRAS, Hedgehog,
Wnt, Apoptosis, TGF-B, and G1/S phase transition,
have been identified as genetically altered in 100% of
pancreatic cancers by the global genomic analysis [2].
In addition, many growth factors and cytokines, for
example, insulin growth factor (IGF)/Insulin, Hedge-
hog, WNT and AGEs, can stimulate the growth of can-
cer cell and secretion of VEGF (a vascular endothelial
growth factor), which can promote the evolution of
pancreatic stellate cell from quiescent state to active
state, and also induce angiogenesis. An extensive litera-
ture search was performed to help us construct a mul-
ticellular model of signaling pathways, which are
composed of the Hedgehog, AGE, WNT-B-Catenin,
HIF-1, RAS-ERK, RB-E2F, NFxB, PI3K-P53, IGF, and
VEGF pathways in the pancreatic stellate cell and can-
cer cells. Figure 1 depicts the intercellular model
of some signaling pathways implicated in the PCCs and
PSCs, some of which have been discussed in our pre-
vious single-cell models [6-9]. Our aim is to study the
signaling components that regulate the proliferation,
apoptosis, and angiogenesis in the pancreatic cancer
cells and stellate cells, and bidirectional interactions in
the tumor microenvironment using Model Checking
technique. In the next sections, we use the symbol —
to denote activation (or promotion), while - denote
inhibition (or repression).
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Figure 1 Multicellular model of signaling pathways in the tumor microenvironment. Schematic overview of intercellular and intracellular
signal transduction in the pancreatic cancer cells and stellate cell. This model is composed of two pancreatic cancer cells (module A and C) and
one stellate cell (module B). The suffix (g, b, ¢) in each node represents the cell (A, B, ) that a molecule belongs to. Blue nodes represent tumor-
suppressor proteins, red nodes represent oncoproteins or lipids, arrows represent activation, and circle-headed arrows represent deactivation.
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Intracellular signaling pathways

The paracrine Hedgehog (Hh) signaling is critical for the
development of epithelial cells [1,2]. In particular, Hh
ligands secreted by the epithelial tumor cells can acti-
vate Hh signal transduction in the surrounding stromal
cells to stimulates the cell proliferation and contributes
to tumorigenesis.

Hedgehog pathway: Hh 4 PTCH 4 SMO — GLI
— {Hh, CyclinD, ...}. The Hedgehog (Hh) ligand and its
receptor Smoothened (SMO) are continuously activated
or overexpressed in later-stage pancreatic carcinomas
[11], while tumor suppressor protein patched (PTCH) is
frequently mutated or loss-of-function, leading to a con-
stitutive activation of Hh pathway. In the quiescent cell
without Hh, SMO’s activity is inhibited by forming a
complex with PTCH. Once Hh binds to PTCH, SMO
will be released to activate the GLI (glioma-associated
oncogene homologue) to be an active form of transcrip-
tion factor. The Hh signaling pathway alone is sufficient
to drive pancreatic neoplasia [12], and it is known that
the activation of the Hh-GLI pathway is associated with
tumor proliferation and pancreatic cancer-related fibro-
blasts [13].

Wnt signaling pathway regulates the processes of
angiogenesis and inflammation, and several proteins are
genetically altered in most of pancreatic cancers accord-
ing to the global genomic analysis [2].

Wnt pathway: Wnt — FZD — DVL - GSK3B H
B-Catenin — TCF — {HIF1, CyclinD, ...}. The canoni-
cal WNT pathway is activated by the interaction of Wnt
and Frizzled (FZD), leading to the disassembly of Axin-
APC-GSK3B complex. Later, the 3-Catenin is translocated
to the nucleus to activate the TCF-LEF transcription fac-
tors [14], promoting the transcription of Cyclin D and
HIF-1. However, when the Wnt ligand is absent, 3-Cate-
nin is localized in the cytoplasm whose activity will be
inhibited by forming a complex with the Axin, APC, and
GSK3B [15]. The loss-of-function or continuous activation
of some regulatory components in Wnt pathway [16] is
responsible for the abnormal vascular development and
unorganized angiogenesis.

Recent pancreatic cancer study [17] revealed, the over-
expression of the Advanced Glycation End products
(AGEs), for example, HMGB1 and its receptor RAGE, is
associated with the pancreatic cancer cell’s survival. Our
previous stochastic and deterministic simulations
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predicted a dose-dependent p53 and Cyclin E response
curve to increasing HMGBI1 stimulus in a single cancer
cell [6]. AGE pathway regulates the processes of inflam-
mation and angiogenesis.

AGE-RAS-NFxB pathway: (1) AGE — RAGE —
NFxB-pathway; (2) AGE — RAGE — RAS-ERK-path-
way. The Advanced Glycation End products (AGE), e.g.,
HMGB]I, released by stressed or dying cells, can activate
two key signaling pathways [6,7], the RAS pathway: RAS
— RAF — MEK — ERK — CyclinD, which regulates
the cell cycle progression through G1 phase; and the
NFxB pathway: IKK - IkB 4 NFxB — {IGF, HIF-1,
Hh, Wnt, AGE, ...}. In the resting cell, NFxB is located
in the cytoplasm, bound to and inhibited by the tumor
suppressor I[xB. Once activated by AGE, the IxB kinase
(IKK) will phosphorylate and deactivate IxB, leading to
the translocation of NFxB into the nucleus to promote
the transcription of several genes, including Cyclin D, its
inhibitors A20 and IxB (frequently mutated or loss of
function) [18,19], and AGEs [20]. The overexpression of
NExB can also stimulate the secretion of VEGF through
activating the HIF-1 pathway.

The cell cycle progression is strictly regulated by tens
of signaling pathways, and one of the hallmarks is the
G1-S phase transition regulated by the RB-E2F-Cyclin E
pathway. The global genomic analysis [2] identified sev-
eral frequently altered regulatory components in this
pathway, for example, INK4a and ARF (encoded by
CDKN2A) mutations occur in 90% of pancreatic cancers
[1].

G1/S phase transition pathway: {ERK, TCF, GL], ...}
— CyclinD 4 RB 4 E2F — CyclinE. Some upstream
components of the signaling pathway, for example, ERK,
TCF and GLI, can activate Cyclin D-CDK4/6 complex
which regulates cell cycle progression. In the normal
cell, the unphosphorylated RB (a tumor suppressor pro-
tein) inhibits E2F’s transcription activity by forming RB-
E2F complexes. E2F will be activated once its inhibitor
RB is phosphorylated and inhibited by Cyclin D. E2F
can promote the transcription of Cyclin E [21] and
CDK2 complex, which regulates the cell cycle progres-
sion from G1 to S phase.

Drug resistance presents a challenge to the treatment
of pancreatic cancer. Tumor microenvironment and
angiogenesis are two important factors contributing to
the drug resistance and cancer development. The envir-
onment surrounding a solid tumor is often hypoxic (low
oxygen), so that angiogenesis is necessary to provide
oxygen and nutrition to support the tumor’s growth.
The vascular endothelial growth factor (VEGF), a pro-
angiogenetic factor whose secretion is mediated by the
HIF-1 pathway, can induce angiogenesis. In hypoxic
conditions, HIF-1 will be activated and stabilized to reg-
ulate the transcription of VEGF [14]. Moreover, it has
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been reported that the Wnt and NFxB pathways could
also upregulate the expression of HIF-1 and VEGF in
the cancer cell.

Intercellualr paracrine signaling pathways

New blood vessels formation (angiogenesis) is one of the
key processes in the pancreatic cancer metastasis, and
this process is regulated by several pro-angiogenic fac-
tors, for example, VEGF, PDGF and HGF. Xu et al’s
study [5] revealed that the interaction between pancrea-
tic cancer cells (PCCs) and pancreatic stellate cells
(PSCs) can stimulate cancer progression and angiogen-
esis. The activation of PSCs could be mediated by IGF
(insulin-like growth factor) and VEGF, which are pro-
duced and secreted by pancreatic cancer cells. In turn,
the activated PSCs will synthesize and secrete multiple
cytokines and growth factors, including Hh, Wnt, AGE,
VEGE, etc,, to stimulate the growth of neighboring can-
cer cells and promote angiogenesis through paracrine
signaling pathways. In order to systematically investigate
the tumor microenvironment, a simple model, which is
composed of two PCCs and one PSC, was constructed
to investigate the intracellular and intercellular signaling
pathways that regulate the cell cycle progression and
angiogenesis. In our model, the cells share similar intra-
cellular signaling pathways that were discussed in the
last section, and the bidirectional interactions is
mediated by VEGF, IGF, WNT, AGE and Hedgehog
pathways.

VEGEF-PI3K-NFxB pathway: (1) VEGF — VEGFR
— PI3K — PIP3 — AKT — MDM2 — P53 —
Apoptosis; (2) VEGF — NFxB-pathway — {Hh, Wnt,
AGE, HIF1, IGF, ...}. VEGF secreted by the cancer cells
can bind to its receptor VEGFER on the surrounding stel-
late cells to activate the PI3K pathway, which will initi-
ate a series of reactions including the phosphorylation
of PIP2, AKT, and MDM?2, and repression of P53’s tran-
scription activity in the nucleus [22]. The tumor-sup-
pressor protein P53, also called the “guardian of the
genome”, is mutated in more than 50% of pancreatic
adenocarcinomas [1]. It is known that P53 can activate
the transcription of oncoprotein MDM2 and tumor-sup-
pressor protein PTEN, which is an inhibitor of the AKT
pathway and can induce cell cycle arrest. VEGF can also
activate the NFxB pathway to promote the transcription
and secretion of Hh, Wnt, AGE, HIF1, IGF and VEGEF,
stimulating the growth of surrounding cancer cells
through paracrine feedback loops.

Insulin or Insulin-like growth factor (IGF) pathway
can stimulate the growth of pancreatic cancer cells and
stellate cells, and inhibit apoptosis through binding and
activating its receptor (IGF-1R).

IGF-RAS pathway: Insulin/IGF — IGFR — RAS —
RAF - MEK — ERK — CyclinD. The overexpressed
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growth factors, e.g., the Insulin-like growth factor (IGF)
and/or Insulin, can activate the RAS protein (K-RAS has
a high mutation frequency in pancreatic cancers [1]),
leading to the phosphorylation and activation of its
downstream proteins RAF, MEK, and ERK [23]. Active
ERKs enter the nucleus to phosphorylate the transcrip-
tion factors myc and promote the expression of the cell
cycle regulatory protein Cyclin D, enabling the cell cycle
progression through the G1 phase.

Discrete value model

The interaction between the pancreatic cancer cells and
stellate cells is regulated by tens of proteins and cross-
talk of different signaling pathways. The traditional
computational techniques, including the ordinary differ-
ential equation and stochastic simulation methods [6,7],
need calculate the reaction rate of each biochemical
reaction in the signal transduction. But many para-
meters are unknown or difficult to be estimated from
existing experiments. Our aim is to qualitatively investi-
gate the bidirectional interaction between PCC and PSC
in the tumor microenvironment and compare with the
experiment. In this work, we develop a discrete value
model to describe the expression levels of different sig-
naling components and dynamics of the signaling path-
ways without introducing any unknown parameters in
the biochemical reactions.

In a discrete value model, each node represents a pro-
tein or a lipid involved in the signaling pathway. The
expression level (state value) of each regulatory compo-
nent (node) in the pathway can take discrete values at
any specific time, for example {0, 1, 2, ..., n}, namely, 0
= “not expressed”, ..., n = “overexpressed”. Boolean Net-
work is a special case of discrete value model, which
can only take a Boolean value of either ON (1) or OFF
(0). The evolution (state update) of each node from time
t to ¢+1 is described by a discrete state transfer function,
which is dependent on the state of the neighboring
nodes. In this work, we assume each node can take a
value of {0, 1, 2} (it can be extended to # discrete
values). Similar to our previous work [8,9,24], the neigh-
boring nodes are classified as activators or inhibitors:
an activator node can promote or activate the expres-
sion of its downstream nodes, while the inhibitor node
will inhibit or repress the expression of its downstream
nodes. Since this work is the first attempt to investigate
the tumor microenvironment using a computational
method, for simplicity, in our discrete value model, we
assume all the nodes’ states are updated synchronously,
i.e., the state of each node evolves according to its
transfer function at any time step. This assumption
has worked well in others’ and our previous works on
Boolean modeling [8,9,25,26]. Since the biochemical
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processes in the cells may evolve at different rates, and
the synchronous model cannot capture all the informa-
tion in the cells, we will develop an asynchronous
model to investigate the signal transduction in our
future work.

The discrete state (update) transfer function for the
node X, which is regulated by both activators A; and
inhibitors Bj, in our model can be written as

2 ETIUR DR

1 if Zal(t)—zb(t)-l
D=1 X0 i Zm(t)—Zb(t)-

0 if ;ai(t)—]ij(t)<0,

where, a; and b; are the values of the activators A;
and inhibitors Bj of the node X,, respectively. The
values “0”, “17, and “2” denote the state of “inhibited”,

“active”, and “overexpressed” respectively. For example,
PIP3 is activated by PI3K but inhibited by PTEN. At
some time step ¢, if PI3K(¢) = 1, PTEN(¢) = 0, then, at
the next time step, PIP3(t + 1) = 1; if PI3K(¢) = 2,
PTEN(t) = 0, then, PIP3(¢ + 1) = 2; if PI3K(¢) = 1,
PTEN(?) = 1, then, PIP3(¢ + 1) = PIP3(s).

In our model, some node is regulated by the inhibitors
only. We assume, at time t, if all inhibitors of the node
X,(t) take the value 0, then, at the next time step,
Xu(t+1)={1, 2} (it can take either 1 or 2, stochastic
effect); but if at least one of its inhibitors is active or
overexpressed, then, X, (t+ 1) = 0. The state (update)
transfer function of these nodes will be written as

0 if Zb] t=>1

— J
Kot )2 i Xb©=-0
j

{1,2}

For example, the proteins RB and E2F, under normal
conditions, RB represses E2F’s transcription activity by
forming RB-E2F complexes. When RB is phosphorylated
by Cyclin D, E2F will be activated. So, RB(¢ + 1) = 0, if
CyclinD(f) = 1; else, RB(¢ + 1) = {1, 2}. This assumption
is similar to previous work [8,9,25], and consistent with
some clinical observation and experimental studies.
Many tumor suppressor proteins, including P53, PTEN,
INK4a, and ARF, are either mutated or lost in the early
or late stages of PDAC. So, they cannot inhibit their
downstream oncoproteins; while the oncoproteins, e.g.,
KRAS and NFkB, are continuously activated or overex-
pressed, leading to uncontrolled cell growth.

If some node is regulated by the activators only in our
model, for example, protein PTEN (frequently mutated
or loss of function) whose transcription is regulated by
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P53 only, we write the transfer functions for these
nodes as

2 if Yai()=2
X, t+1) =11 if Yam=1
0 if > ai(®)=0.

However, the output signals, including, Proliferate(a,
b, ¢), Apoptosis(a, b, c) and Angiogenesis(a, b, c), are
Boolean variables, which are activated by Cyclin E, P53
and VEGF respectively. In this work, if the correspond-
ing activator’s value is greater or equal to 1, the output
signal will take a Boolean value of 1 (True); else, it will
take a value of 0 (False).

The discrete value model in Figure 1 describes the
interactions of different signaling components in the
tumor microenvironment, which is composed of m =
96 nodes, including 3 control nodes (input signals: Hh,
AGE, Wnt), and 9 output nodes (Angiogenesis, Prolif-
eration, Apoptosis in 3 different cells). The structure
depicted in Figure 1 represents a “circuit layout” of the
cancer-stellate cells model instead of a “state transi-
tion” system. Each node in the model is a variable tak-
ing n possible discrete values (n = 2 for 9 output
boolean nodes and n = 3 for the other 87 nodes in this
model), so the number of possible configurations is 1™
(38729, around 1.6 x 10** possible states). When n
and m are large, the network will have an astronomical
amount of possible states. So, it is not realistic to use
traditional computational techniques, for example,
BooleaNet method [27] and stochastic simulation algo-
rithm [6,7], to analyze such a large network in a fast
and effective way. Given a large crosstalk model of
signaling pathways, one of our interests is to discover
and identify some key cellular components and signal
transduction sequences that will drive the system to a
pre-specified state (e.g., apoptosis, proliferation or
angiogenesis) [8,9,28] at or before a pre-specified time
point.

We propose to apply this multi-cellular computa-
tional model to investigate the cell-cell interactions of
cancer cells with their surrounding microenvironment,
in particular, with stellate cells; analyze the paracrine
signaling pathways regulating the angiogenesis; identify
important proteins that will drive different cells to the
“apoptosis”, “proliferation” and “angiogenesis” states;
simulate the temporal and dynamic behaviors of the
cancer cells and stellate cells in various conditions (i.e.,
drug interference, knockout, or overexpression). To
answer these questions, we will introduce the Model
Checking and temporal logic properties in the next
section.
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Model Checking
Model Checking is a powerful and automatic formal
verification technique for finite state transition systems
modeled by a Kripke structure [10], which is written as
a tuple M = (S, So, R, L), where, Sg C S is a set of initial
states, R € S x S is a transition relation between states,
and [ : S — 24P is a function that labels each state s
with the set of atomic propositions (AP = {p, g, 1, ...})
true in s. Given a Kripke structure M and a temporal
logic formula v expressing some desired property, the
Model Checking problem [10] is to find the set of all
states in S that satisfy ¥, i.e. to compute the set
Sy ={s€SIM,sF¢¥}. The model M satisfies  if
So € Sy, otherwise, the model checker will output a
counterexample (i.e., a sequence of transitions which
starts from a state in S;) that falsifies the formula .

In the model checking, Computation Tree Logic
(CTL) is developed to describe the properties of compu-
tation trees. The root of the computation tree corre-
sponds to an initial state and the other nodes on the
tree correspond to all possible sequences of state transi-
tions (paths) from the root [10]. A CTL formula is con-
structed from atomic propositions (AP), Boolean logic
connectives (i.e., | (or, V), & (and, A), ! (not, =), >
(implies)), temporal operators and path quantifiers. In
the CTL formula, four important temporal operators are
used to describe properties on a path [6-9]: Xp - p will
be true in the neXt state of the path; Fp - p will be true
at some state in the Future (eventually) on the path; Gp
- p is Globally true (always, at every state on the path);
p U q - p holds Until q holds. In a CTL formula, the
operators X, F, G, and U must be immediately preceded
by a path quantifier A - for All paths, or E - there Exists
a path. Previous work [10] has shown that any CTL for-
mula can be expressed in terms of -, Vv, EX, EU and
EG. In this work, we proposed CTL formulas to describe
the behaviors or properties of some regulatory compo-
nents in the signaling pathway. For example, the
formula AG(MDM2,4ive — AXP53nivied) Mmeans,
whenever an MDM2 activation event occurs, it will
always inhibit P53’s transcription activity in the next
time step.

CTL formulas can be divided into state formulas
and path formulas @ , and the syntax of the CTL logic
is defined as [10]:

¥ u= APy V Y| Y [EQ|AD

® = Xy [Fy| Gy |y U o

A path 1 in a Kripke structure M = (S, So, R, L) is an
infinite sequence of states, that is, 7 = $o, 51, ..., where
So is an initial state, s; € S and for every i = 0,
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Si. We use 71 to denote the suffix of 7 starting at state
Si. The semantics of CTL is defined as:

e M,sEp iff peL(s);

e M,s E =y iff M,s E Y does not hold;

e M,sF Yy Vo iff M,s E Y1 or M, s E vy

o M,sEXY iff Ml E

o M,sEFy iff there exists a k>0 such that
M, 7l E g

¢ M,sEGY iffforall k>0, M, 7" E v

e M,sFE Y Uy iff there exists a k> 0 such that
M, 7% E ¢, and for all 0 <j <k, M,/ E yy;

+ M,s E E® iff there exists a path 7 from s such that
M, ED;

e M,s E A® iff for every path 7 from s, M, 7 F & ;

where M, 7 = ® means, the path m in M satisfies the
path formula & . More details of CTL semantics can be
found in [10].

Symbolic Model Checking

Model Checking algorithm can automatically and
exhaustively search the state transition system to deter-
mine, whether or not, a given model M satisfies a
desired temporal logic formula ¢ . The original Model
Checking algorithm [10] represents the state transitions
explicitly. It verifies or falsifies a CTL formula ¢ by
recursively labeling the state graph with the sub-formu-
las of &, and then the graph is parsed to compute its
truth value in a state for each sub-formula according to
the CTL operators and the truth values of its sub-for-
mulas [10,24]. This algorithm could lead to a state
explosion problem.

To overcome the state explosion problem, the Symbolic
Model Checking algorithm [29] uses a Boolean function
to represent the transition relation between states impli-
citly. Moreover, the Boolean function is encoded by
means of an Ordered Binary Decision Diagram (OBDD)
[30] with a fixed variable ordering and shared sub-graphs.
OBDD is an efficient data structure for the representation
of Boolean functions. The first CTL model checker based
on OBDD:s is called the Symbolic Model Verifier (SMV)
[10,29], which is an open architecture for model check-
ing. SMV has been widely and successfully applied for
the verification of circuit design and hardware systems.
Symbolic Model Checking algorithm is reiterated in the
Figure 2. In this algorithm, we assume the concurrent
system’s behavior is determined by n boolean state
variables vi,v2,...,v,, and the transition relation is
written as  R(vi,vp, ..., vV, 0, ...,0,), where
v=(v,v2,...,vy) and V' = (v}, 0},...,V,) represent the
current state and next state respectively, and, fp and gfp
represent the least and greatest fixpoint respectively. The
interested readers can refer to [10,29,30] for details.

During model checking, a model or state transition
system (e.g., a signaling pathway) can be described
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using the SMV language, and a desired cellular beha-
vior or phenomenon can be translated into a CTL for-
mula. Then, SMV model checker will automatically
verify or falsify the CTL formula of this model. The
output of the verification could be either “true” (prop-
erty is satisfied) or a counterexample trace showing
why the property is false (not satisfied). The complexity
of the Symbolic Model Checking algorithm is O(| ¥ |
(IS| + IR|)), where | ¥ | is the size of the CTL formula,
|S| and |R| are the number of states and transitions
respectively [10].

In Figure 3, we provide part of SMV code to illustrate
the procedure to verify a discrete value model of multi-
cellular signaling pathways in the tumor microenviron-
ment. Similar to the single cell Boolean models [8,9], in
the SMV code, we use the keyword VAR to declare
variables first, for example, PI3Ka can take a discrete
value of {0, 1, 2}, and “Proliferateb: boolean” means
“Proliferate” in cell B takes a Boolean value (0/1). The
keyword ASSIGN is used to define the initial state (init)
and state transition (update rules, next) of each node.
For example, “init(PIP3a) = {0, 1}” means, the initial
value of PIP3 in cell A can be either 0 or 1 (with a
probability). The verification of CTL formula is encoded
using the “SPEC“ statement. For example, in Figure 3,
SPEC AG(AKTa = 2 — AF(Proliferateb)) means, over-
expressed AKT in the cancer cell A will finally promote
the stellate cell B’s proliferation for all paths. The SMV
code developed for this discrete value model of signaling
pathways is available at [31].

Results and discussion

The multicellular model of tumor microenvironment
illustrated in Figure 1 is composed of two pancreatic
cancer cells (PCCs, cell A & C) and one stellate cell
(PSC, cell B). The suffix a, b, ¢ in each node represent
the cell (A, B, C) that a molecule belongs to. For exam-
ple, “PI3Ka“ represents a “PI3K molecule” in the cancer
“cell A”. In this model, we use “Proliferate”, “Apoptosis”
and “Angiogenesis” to represent the fates of the cells,
whose initial values are set to be FALSE (0). While, the
other nodes, initially, can take a value of either 0 (inhib-
ited) or 1 (active) (a stochastic effect is introduced). We
apply SMV model checker to exhaustively and automati-
cally analyze some temporal and dynamic behaviors in
the signaling pathways. For simplicity, in this work, we
sometimes put (a4, b, ¢) behind the temporal logic for-
mulas to represent some regulatory components in the
cell A, B and C respectively.

In the cancer studies, we expect to predict the cancer
cell’s fate in various conditions (i.e., gene knockout,
drug interference, loss of function, overexpression),
identify key signaling components which play an
important role in the tumorigenesis, and explore
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Input: A model M =

where,

Check(EX((/(7))
Check(EU((f(7))
Check(EG((f(7))

(S, S0, R, L), and desired CTL formulas f, g

Check: Take a CTL formula as its argument and return the OBDD
for the set of states that satisfy a given temporal logic formula.

Output: A set of states of M, which satisfy the formula (property).
e if f is an atomic proposition v;: return Check(f) = v;;
e if - f: return Check(—f) = -Check(f);
e if fV g: return Check(f)V Check(g);
e if EXf: return Check(EX(Check(f)));
if E[fUg]: return Check(EU(Check(f), Check(g)));
e if EGf: return Check(EG(Check(f))).

) = 30'[6(V') A R(v, ¥')];
; (9(9)))) = lipZ(9)[g(v) V (f(0) A CheckEX(Z(2)))];
) = gfpZ(v)[f(v)) A CheckEX(Z(7))]

Figure 2 Symbolic Model Checking algorithm. Symbolic Model Checking algorithm uses a Boolean function to represent the transition
relation between states implicitly, and the Boolean function is encoded by means of an Ordered Binary Decision Diagram (OBDD).

temporal and dynamic properties in the tumor micro-
environment, in a fast and effective way. We first
investigate the fates of pancreatic cancer cells (A and
C) and stellate cell (B) in a predefined initial condition,
that is, all the growth factors are overexpressed in the
beginning.

Cell fate
Property 1: AF (Proliferate(a, b, c¢)); and AF (VEGF(q,
b c)=1).

Property 1 means, when the proteins Hh, Wnt, AGE
(input signals) surrounding the cancer cell A are all
overexpressed (i.e., initially HH(a) = 2, WNT(a) = 2,

MODULE MAIN

VAR  — Declare variables: discrete or boolean
— Cell A — Cell B
PI3Ka: {0, 1, 2}; PI3Kb: {0, 1, 2};
PIP3a: {0, 1, 2}; PIP3b: {0, 1, 2};
PTENa: {0, 1, 2}

PTENb: {0, 1, 2};

Proliferatea: boolca.n;

case
PI3Ka-PTENa > 1: 2;
PI3Ka-PTENa=1: 1;
PI3Ka-PTENa = 0 : PIP3a;
PI3Ka-PTENa < 0: 0;
esac;

— Property verification
SPEC AG} AKTa= }—> AF

Proliferateb) );
SPEC EG Ha =

Proliferateb: boolea.u;

ASSIGN
— Initialization
— Cell A —Cell B — Cell C
init(PI3Ka init(PI3Kb):={0, 1}; mlt(PISI(c) ={0, 1};
init(PIP3a init(PIP3b):={0, 1 init (PIP3c):={0, 1};
init(PTENa)- {0 1} init(PTEND):—{0, 1}: init(PTENc):={0, 1};
init(Apoptosisa):={FALSE}; init(Apoptosisb):={FALSE}; init(Apoptosisc):={FALSE};
— State update
— Cell A — Cell B —Cell C
next(PIP3a):= next(PIP3b):= next(PIP3c):=

case
PI3Kb-PTEND > 1: 2
PI3Kb-PTENb = 1: 1;
PI3BKb-PTEND = 0 : PIP3b;
PI3Kb-PTENb < 0: 0

& (WNTa = 1) & (AGEa = 1) — EF(Proliferatec) );

— Cell C
PI3Kc: {0, 1, 2};
PIP3c: {0, 1, 2};
PTEND: {0, 1, 2};

Proliferatec: boolean; ...

case

PI3Kc-PTENe > 1: 2;
PI3Ke-PTENc =1: 1;
PI3Kc-PTENce = 0 : PIP3c;
PI3Ke-PTENc < 0 : 03

by SPEC.

Figure 3 lllustration of SMV code for the discrete value model. SMV code can be divided into three parts: variable declaration which is
defined by the keyword VAR, initialization and state update which are defined by the keyword ASSIGN, and the property verification is encoded
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and AGE(a) = 2), the pancreatic cancer cells and stellate
cell will finally reach the “Proliferate” state, and VEGF
molecules in all three cells (A, B, C) will be in a state of
“active” or “overexpressed”, for all paths. These two
properties are verified to be true. That is, overexpression
of some growth factors will stimulate the synthesis and
secretion of VEGF from the cancer cell (A), which
might activate the stellate cell (B) by the paracrine sig-
naling pathways, promoting the growth of stellate cell B
and cancer cell C finally.

Property 2: a) AF (!Apoptosis(a, b, ¢) &P53(a, b, ¢) <
1); b) AF (Apoptosis(a, b, c)).

Property 2 a) tests, for all paths, whether or not, the
cancer cells (A, C) and stellate cell (B) will finally reach
“Apoptosis” state when Hh, Wnt, and AGE are overex-
pressed. SMV model checker verified that, all cells can-
not reach “Apoptosis” state and the tumor suppressor
P53’s expression is suppressed (taking a value of 0);
while the property b) is falsified (a counterexample trace
is provided by SMV). Property 1 and 2 can be summar-
ized as one property which is verified to be true using
the SMV model checker:

Property 3: AF (P53 < 1 & 'Apoptosis &Angiogenesis
&Proliferate)(a, b, c).

This property means, the cancer cell or stellate cell
will reach a state in which apoptosis is inhibited while
cell proliferation and angiogenesis are activated. This
property is consistent with [5]’s discovery, and explains
why the overexpressed growth factors and bidirectional
interaction between pancreatic cancer cells and stellate
cells can promote cancer progression and angiogenesis,
and inhibit the cell’s apoptosis.

Next, we will apply the SMV model checker to iden-
tify key regulatory components (the most frequently
mutated genes or driver genes, efc.) and signal transduc-
tion sequences that will drive the system to a pre-speci-
fied state (e.g., apoptosis, proliferation or angiogenesis)
in the tumor microenvironment of pancreatic cancer.
We assume the initial values for all nodes, except the
output signals, can take a value of either 0 or 1.

Identification of key oncoproteins
Property 4: AG{(RAS(a) = {1, 2}) —> AF(Proliferate(a))};

Property 5: AG{(RAS(a) = 2) > AF(VEGF = 2 &Pro-
liferate &Angiogenesis & !Apoptosis)(a, b)}.

K-RAS mutation occurs in more than 90% of pancrea-
tic cancers [1], especially in the precancerous stage.
Constitutively active RAS pathway can stimulate the
production of other key proteins during the tumorigen-
esis. Property 4 verified that, if the oncoprotein RAS in
the cancer cell A is active or overexpressed (taking a
value of 1 or 2), cell A will finally reach a “Proliferate”
state, for all paths. If RAS is mutated or overexpressed
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(with a value 2) in the cancer cell A, it will stimulate
the production and secretion of VEGF, which promotes
both cancer cell A and stellate cell B to eventually enter
the “Proliferate & Angiogenesis” state, while “Apoptosis”
is inhibited. The verified “Property 5” demonstrated
that, abating (or turning “off”) the signaling function of
RAS could provide a rational therapy for pancreatic can-
cer, and paracrine pathways play an important role in
mediating the PSC-PCC interaction in the tumor
microenvironment.

Using model checker, besides RAS protein, we can
propose similar properties to identify other key onco-
proteins whose constitutive activation or mutation in
the corresponding signaling pathways will influence the
cell’s fate. Several oncoproteins, including RAGE, DVL,
AKT, and IKK, were verified to play an important role
in the tumorigenesis. The following properties were
checked.

Property 6: AG{(RAGE(a) = 2) > AF(NFxB = 2
&Proliferate &Angiogenesis & !Apoptosis)(a, b)};

Property 7: AG{(DVL(a) = 2) - AF(NFxB = 2 &Pro-
liferate &Angiogenesis & !Apoptosis)(a, b)};

Property 8: AG{(AKT(a) = 2) > AF(VEGF = 2 &
Proliferate &Angiogenesis & !Apoptosis)(a, b)};

Property 9: AG{(IKK(a) = 2) — AF(HIF1 = 2 &Prolif-
erate &Angiogenesis & Apoptosis)(a, b)}.

Property 6 and 7 predicted that, overexpression of
RAGE or Dishevelled (DVL) will promote the expres-
sion of NF«kB in both types of cells. This is consistent
with Kang et al’s discovery [17], expression of the
receptor for advanced glycation endproducts (RAGE)
can limit apoptosis and promote pancreatic cancer
cell’s survival. The oncoprotein AKT and IKK’s expres-
sion is elevated in many cancers [32,33]. Our previous
work [6,7], using stochastic simulation and ordinary
differential equation methods, predicted a dose-depen-
dent P53, NFxB and CyclinE response curve to the
increase of AKT and IKK. Property 8 and 9, using SMV
model checker, revealed that, overexpression of AKT
and IKK can increase the production and secretion of
VEGF and HIF1 (Hypoxia-inducible factor 1), promote
the cancer cell and stellate cell to the “Proliferate &
Angiogenesis” state and inhibit “Apoptosis”. These
properties suggest some possible ways to inhibit tumor
growth and promote apoptosis through inhibiting AKT
and IKK pathways, e.g., using the AKT kinase inhibitor
(such as the drug GSK-690693) and IKK inhibitor (e.g.,
Manumycin A).

Identification of key tumor suppressors

The cell cycle progression is regulated by both oncopro-
teins and tumor suppressors. Next, we apply SMV
model checker to identify key tumor suppressors whose
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activation can promote apoptosis and inhibit prolifera-
tion. We analyzed the following properties:

Property 10: EG{(RB(a) = 2) - AF(ERK = 0 &Apop-
tosis & !Proliferate & !Angiogenesis)(a, b)};

Property 11: EG{(PTEN(a) = 2) - AF(CyclinD = 0
&Apoptosis & Proliferate & !Angiogenesis) (a, b)};

Property 10: AG{(RB(a) = 2) > AF(ERK = 0 &
Apoptosis & Proliferate & !Angiogenesis)(a, b)};

Property 11’: AG{(PTEN(a) = 2) — AF(CyclinD = 0
&Apoptosis & Proliferate & 'Angiogenesis) (a, b)}.

Property 10 and 11 were verified to be true, which
means, in the RB- or PTEN-treated cells, there EXISTS
a path, such that both cancer cell and stellate cell could
reach the “Apoptosis” state finally, and the oncoprotein
ERK and Cyclin D’s expression is repressed. It explained
why some single-gene targeted therapies had anti-tumor
effects in some pre-clinical studies. However, property
10’ and 11’ were falsified by the SMV model checker,
which means, targeting RB or PTEN in the cancer cell
can NOT, for ALL paths, eventually promote the cells
to enter a state that “Apoptosis” is ON and “Proliferate
& Angiogenesis” are OFF. These properties demonstrate
that, the crosstalk between different signaling pathways
may be responsible for the pancreatic cancer cell survi-
val even if some pathways are blocked by certain single-
gene targeted therapies.

Necessary checkpoint
Property 12: !E{(CyclinD < 1 &P53 > 1 &HIF1 < 1) U
('Apoptosis &Proliferate & Angiogenesis)}(a, b);

Property 12’: 'E{!(CyclinD >1 v P53 < 1 v HIF1 >1)
U (Apoptosis &Proliferate & Angiogenesis)}(a, b);

Property 13: 'E{VEGF(a) < 1 U (!Apoptosis &Prolifer-
ate &Angiogenesis)(D)}.

Here, we want to identify a necessary checkpoint that
the pancreatic cancer and stellate cell will go through
before they reach a predefined state. A possible check-
point encoded in the Property 12 and 12’ is verified to
be true. It is worth to note that, property 12 and 12’ are
equivalent. And in this property, the operator “U*“
means “until”. This formula means, there is no path in
which the state “!Apoptosis & Proliferate & Angiogen-
esis” (state S2) is satisfied without satisfying “CyclinD >
1 v P53 <1 Vv HIF1 > 1” (state S1) first. In other
words, S1 is a necessary checkpoint for S2. This prop-
erty demonstrated that, before reaching the cancerous
state, the tumor suppressor P53 should have lost func-
tions or been repressed, while oncoproteins Cyclin D or
HIF1 are overexpressed or continuously activated in the
cells. This property is consistent with existing experi-
mental results that P53 is frequently mutated and Cyclin
D is overexpressed in many pancreatic cancers [34].
Property 13 is false, which means, VEGF secreted by the
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cancer cell is not a checkpoint before the stellate cell
reaches proliferation state.

Finally, we apply the SMV model checker to analyze
some dynamic behaviors in the multicellular network.
Oscillation is an interesting phenomenon in the signal-
ing pathway, which has been studied in the single cell
models [6-9] due to the existence of negative feedback
loops.

Dynamic behaviors
Property 14: AG{(P53 > 1 > AF(MDM2 > 1)) &
(MDM2 > 1 — AF(P53 < 1))}(a, b, ¢);

Property 15: AG{HH(a) > 1 -> AG((P53 > 1 —> AF
(MDM2 > 1)) &(MDM2 > 1 — AF(P53 < 1)))(a, b, ¢)};

Property 16: AG{AGE(a) > 1 -> AG((P53 > 1>AF
(MDM2 > 1)) &(MDM2 > 1 — AF(P53 < 1)))(a, b, ¢)};

Property 17: AG{WNT(a) > 1 -> AG((P53 > 1 —> AF
(MDM2 > 1)) &(MDM2 > 1 — AF(P53 < 1)))(a, b, ¢)};

Property 18: AG{(HH > 1 v WNT > 1 Vv AGE > 1)
(a) - AG((P53 > 1 — AF(MDM2 > 1)) & (MDM2 >
1 - AF(P53 < 1)))(a, b, ¢)}.

Recent experimental study [35] in a single cell
observed a dynamic phenomenon of P53 and MDM2,
whose expression levels in the nucleus continuously
oscillated for more than 72 hours following y irradiation.
This phenomenon was studied in our previous statistical
model checking based on stochastic simulations [6,7]
and Boolean network models in a single cell in response
to HMGBI1 stimulus [8]. Property 14 demonstrates that,
this phenomenon also exists in the discrete value model
of cancer cells and stellate cells due to a self-contained
negative feedback loop. Moreover, our multi-cellular
model predicts that (Properties 15-18), the external sti-
mulus, for example, overexpression of Wnt, Hedgehog
and AGE molecules around the cancer cell, can also
induce the oscillation of P53 and MDM2’s expression
levels in the nucleus in the surrounding stellate and can-
cer cells. Properties 15-18 were verified by the SMV
model checker. Compared with [6,7], the oscillation
phenomenon is parameter-independent in our discrete
value model using the Symbolic Model Checking
method.

Conclusions

In this work, we developed a discrete value model of
multicellular signaling pathways to study the interac-
tions between pancreatic cancer cells and pancreatic
stellate cells. The model incorporates several signaling
pathways that are frequently mutated in the pancreatic
cancer. The powerful Symbolic Model Checking techni-
que is introduced and applied to analyze and validate
this model formally. Several interesting temporal logic
properties, which encode the cell fate, protein-protein
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interaction and dynamic behaviors of some regulatory
components, are proposed and verified. Compared with
our previous statistical model checking work based on
stochastic simulations [6,7] and Boolean network
method [8,9], the beauty of this technique lies in its
flexibility and universality. The signaling components in
the model can take any kind of discrete values (3 possi-
ble values in this work), and it is easy to be extended to
n possible values. Without introducing any unknown
parameters, the proposed technique has checked up to
1044 possible states of the multicellular network in tens
of minutes, which is not realistic in the traditional simu-
lation methods based on Gillespie’s stochastic simulation
algorithm and ordinary differential equations. Moreover,
the Statistical Model Checking algorithm [6,7] can only
verify that a property is true with a probability, and it
cannot output a counterexample if some property is not
satisfied.

This work identified several genes or proteins, includ-
ing RAS, RAGE, AKT, DVL, IKK, RB and PTEN, whose
mutation or loss of function could promote the cancer
cell and stellate cell’s proliferation and inhibit apoptosis,
leading to uncontrolled growth and unorganized angio-
genesis in the future. The verified properties also
explained, why certain single-gene targeted therapies, for
example, the RB- and PTEN-treatment, might not
always inhibit the growth of pancreatic cancer cells, due
to the crosstalk of different signaling pathways, even if
some pathway is blocked. These properties are either
consistent with existing experimental studies, or could
be verified or falsified by the future experiments.

We also investigated the dynamic behaviors in the
PCCs and PSCs. The expression levels of P53 and
MDM2 have been shown to oscillate in a single cell in
the previous experimental study and our stochastic simu-
lations [6,7]. This work verified that, in response to exter-
nal stimulus, the P53-MDM2 network oscillation also
exists in the discrete value model of multicellular signal-
ing pathways. Our work revealed, the bidirectional inter-
action would continuously stimulate the neighboring
cell’s growth through activating the paracrine signaling
pathways, in particular, VEGF pathway. Using Model
Checking technique and discrete value model, we can
only qualitatively compare with existing experimental dis-
coveries. But formal analysis of this multicellular model
still provides valuable information about the interactions
between pancreatic cancer cells and stellate cells.

Since the proposed model is only composed of the sig-
naling pathways that are frequently altered in the pancrea-
tic cancer, we are far from capturing all the information in
the tumor microenvirnoment, which is, in fact, regulated
by tens of signaling pathways and hundreds of proteins.
Experimental study [5] found that, the pancreatic stellate
cells could secrete a large amount of extracellular matrix
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(ECM) proteins, which are important components of the
fibrous tissue in the pancreatic cancer progression. Since
this work attempts to investigate the interaction between
PCCs and PSCs for the first time, we only consider the
Hedgehog, WNT, AGE, VEGF and IGF proteins secreted
by PCCs and PSCs, ECM was not incorporated into our
model. A larger network of multicellular signal transduc-
tion in the tumor microenvironment will be explored in
our future work. Moreover, in this work we assume all the
reactions occur synchronously, i.e., the state of each pro-
tein (node) is updated at the same time. The synchronous
model works well in this work, several interesting proper-
ties are consistent with existing experiment. However, bio-
chemical processes may evolve at different rates,
sometimes, the synchronous model cannot correctly
describe the temporal and dynamic behaviors in the cell.
We plan to apply Model Checking to study an asynchro-
nous model in the future work. With the help of Model
Checking, a comprehensive understanding of the signaling
networks and their crosstalk will help cancer researchers
to develop effective multi-gene targeted therapies for the
pancreatic cancer patients.

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution
HG proposed the project, performed the verification and wrote the
manuscript.

Acknowledgements
HG was supported by the new faculty start-up grant from the Saint Louis
University.

Declarations

Publication of this article was funded by the Saint Louis University.

This article has been published as part of BMC Systems Biology Volume 7
Supplement 3, 2013: Twelfth International Conference on Bioinformatics
(InCoB2013): Systems Biology. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcsystbiol/supplements/
7/S3.

Published: 16 October 2013

References

1. Bardeesy N, DePinho RA: Pancreatic cancer biology and genetics. Nature
Reviews Cancer 2002, 2(12):897-909.

2. Jones S, Zhang X, Parsons D, et al: Core signaling pathways in human
pancreatic cancers revealed by Global genomic analyses. Science 2008,
321:1801-1806.

3. Bachem MG, Zhou S, et al: Pancreatic stellate cells-role in pancreas
cancer. Langenbecks Arch Surg 2008, 393:891-900.

4. Vonlaufen A, Joshi S, et al: Pancreatic stellate cells: Partners in crime with
pancreatic cancer cells. Cancer Res 2008, 68:2085-2093.

5. Xu Z Vonlaufen A, Phillips P, et al: Role of Pancreatic stellate cells in
pancreatic cancer metastasis. The American Journal of Pathology 2010,
177(5):2585-2596.

6. Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM: Analysis and
Verification of the HMGB1 Signaling Pathway. BMC Bioinformatics 2010,
11(Suppl 7):S10.

7. Gong H, Zuliani P, Komuravelli A, Faeder J, Clarke E: Computational
Modeling and Verification of Signaling Pathways in Cancer. Proceedings
of Algebraic and Numeric Biology, LNCS 2012, 6479.


http://www.biomedcentral.com/bmcsystbiol/supplements/7/S3
http://www.biomedcentral.com/bmcsystbiol/supplements/7/S3
http://www.ncbi.nlm.nih.gov/pubmed/12459728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18204855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18204855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20934972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20934972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210977?dopt=Abstract

Gong BMC Systems Biology 2013, 7(Suppl 3):S5
http://www.biomedcentral.com/1752-0509/7/53/S5

8. Gong H, Wang Q, Zuliani P, Lotze MT, Faeder JR, Clarke EM: Symbolic
model checking of the Signaling Pathway in pancreatic cancer.
Proceedings of the International Conference on Bioinformatics and
Computational Biology (BICoB) 2011.

9. Gong H, Zuliani P, Clarke E: Model Checking of a Diabetes-Cancer Model.
3rd International Symposium on Computational Models for Life Sciences 2011.

10. Clarke EM, Grumberg O, Peled DA: Model Checking MIT Press; 1999.

11. Thayer S, Di Magliano M, Heiser P, et al: Hedgehog is an early and late
mediator of pancreatic cancer tumorigenesis. Nature 2003, 425:851-856.

12. di Magliano M, Sekine S, Ermilov A, et al: Hedgehog/Ras interactions
regulate early stages of pancreatic cancer. Genes & Development 2006,
20:3161-3173.

13. Walter K, Omura N, Hong SM, Griffith M, Vincent A, Borges M, Goggins M:
Overexpression of Smoothened Activates the Sonic Hedgehog Signaling
Pathway in Pancreatic Cancer-Associated Fibroblasts. Clinical Cancer
Research 2010, 16(6):1781-1789.

14.  Vogelstein B, Kinzler K: Cancer genes and the pathways they control.
Nature Medicine 2004, 10:789-799.

15. Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu
Rev Cell Dev Biol 1998, 14:59-88.

16. Zeng G, Germinaro M, Micsenyi A, et al: Aberrant Wnt/beta-catenin
signaling in pancreatic adenocarcinoma. Neoplasia 2006, 8:279-289.

17. Kang R, Tang D, Schapiro NE, Livesey KM, et al: The receptor for advanced
glycation end products (RAGE) sustains autophagy and limits apoptosis,
promoting pancreatic tumor cell survival. Cell Death and Differentiation
2009, 17(4):666-676.

18.  van Beijnum JR, Buurman WA, Griffioen AW: Convergence and
amplification of toll-like receptor (TLR) and receptor for advanced
glycation end products (RAGE) signaling pathways via high mobility
group B1. Angiogenesis 2008, 11:91-99.

19.  Hoffmann A, Levchenko A, Scott M, Baltimore D: The IkB-NFk B Signaling
Module: Temporal Control and Selective Gene Activation. Science 2002,
298:1241-1245.

20. Kang R, Tang D, et al- The Receptor for Advanced Glycation End-products
(RAGE) Protects Pancreatic Tumor Cells Against Oxidative Injury.
Antioxidants and Redox Signaling 2011, 15(8):2175-2184.

21. Yao G, Lee TJ, Mori S, Nevins J, You L: A bistable Rb-E2F switch underlies
the restriction point. Nature Cell Biology 2008, 10:476-482.

22. Haupt Y, Maya R, Kasaz A, Oren M: Mdm2 promotes the rapid
degradation of p53. Nature 1997, 387:296-299.

23. Downward J: Targeting Ras Signalling Pathways in Cancer Therapy.
Nature Reviews 2002, 3:11-22.

24.  Gong H, Zuliani P, Clarke EM: Model checking of a synchronous diabetes-
cancer logical network. Current Bioinformatics 2013, 8:9-15.

25. Garg A, Cara AD, et al- Synchronous versus asynchronous modeling of
gene regulatory networks. Bioinformatics 2008, 24:1917-1925.

26. Mendoza L, Xenarios I: A method for the generation of standardized
qualitative dynamical systems of regulatory networks. Theoretial biology
and medical modeling 2006, 3:13.

27. Albert |, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for
life scientists. Source Code for Biology and Medicine 2008, 3:16.

28. Langmead CJ: Generalized Queries and Bayesian Statistical Model
Checking in Dynamic Bayesian Networks: Application to Personalized
Medicine. CSB 2009, 201-212.

29. McMillan KL: PhD thesis: Symbolic model checking-an approach to the state
explosion problem Carnegie Mellon University; 1992.

30. Bryant R: Graph-based algorithms for boolean function manipulation.
IEEE Tran on Computers 1986, 35(8):677-691.

31. SMV Code. [http://cs.slu.edu/~gong/PSCzip).

32. Altomare D, Wang H, Skele K, Rienzo AD, Klein-Szanto A, Godwin A, Testa J:
AKT and mTOR phosphorylation is frequently detected in ovarian cancer
and can be targeted to disrupt ovarian tumor cell growth. Oncogene
2004, 23:5853-7.

33, Eddy S, Guo S, et al Inducible IkBkinase/IkB kinase expression is induced
by CK2 and promotes aberrant Nuclear Factor-kB activation in breast
cancer cells. Cancer Research 2005, 65:11375-11383.

34, Chung DC, Brown SB, Graeme-Cook F, et al: Overexpression of Cyclin D1
Occurs Frequently in Human Pancreatic Endocrine Tumors. The Journal of
Clinical Endocrinology Metabolism 2000, 85:4373-4378.

Page 12 of 12

35. Geva-Zatorsky N, Rosenfeld N, ltzkovitz S, Milo R, Sigal A, Dekel E,
Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U: Oscillations and variability in
the p53 system. Mol Sys Biol 2006, 2:2006.0033.

doi:10.1186/1752-0509-7-53-S5
Cite this article as: Gong: Analysis of intercellular signal transduction in
the tumor microenvironment. BMC Systems Biology 2013 7(Suppl 3):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/14520413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14520413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23998122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23998122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9891778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21126167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21126167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18364697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18364697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9153395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9153395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18614585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18614585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014577?dopt=Abstract
http://cs.slu.edu/~gong/PSC.zip
http://www.ncbi.nlm.nih.gov/pubmed/15208673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15208673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16357145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16357145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16357145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11095482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11095482?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Multicellular model of signaling pathways
	Intracellular signaling pathways
	Intercellualr paracrine signaling pathways
	Discrete value model
	Model Checking
	Symbolic Model Checking

	Results and discussion
	Cell fate
	Identification of key oncoproteins
	Identification of key tumor suppressors
	Necessary checkpoint
	Dynamic behaviors

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Declarations
	References

