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Abstract

Background: Organisms of the genus Clostridium are Gram-positive endospore formers of great importance to the
carbon cycle, human normo- and pathophysiology, but also in biofuel and biorefinery applications. Exposure of
Clostridium organisms to chemical and in particular toxic metabolite stress is ubiquitous in both natural (such as in
the human microbiome) and engineered environments, engaging both the general stress response as well as spe-
cialized programs. Yet, despite its fundamental and applied significance, it remains largely unexplored at the sys-
tems level.

Results: We generated a total of 96 individual sets of microarray data examining the transcriptional changes in C.
acetobutylicum, a model Clostridium organism, in response to three levels of chemical stress from the native
metabolites, butanol and butyrate. We identified 164 significantly differentially expressed transcriptional regulators
and detailed the cellular programs associated with general and stressor-specific responses, many previously unex-
plored. Pattern-based, comparative genomic analyses enabled us, for the first time, to construct a detailed picture
of the genetic circuitry underlying the stress response. Notably, a list of the regulons and DNA binding motifs of
the stress-related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR; the SOS
response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR. Moreover, several transcriptional regu-
lators controlling stress-responsive amino acid and purine metabolism and their regulons were also identified, in-
cluding ArgR (arginine biosynthesis and catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine
metabolism repressor) and PurR (purine metabolism repressor).
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Conclusions: Using an exceptionally large set of temporal transcriptional data and regulon analyses, we
successfully built a STRING-based stress response network model integrating important players for the general and
specialized metabolite stress response in C. acetobutylicum. Since the majority of the transcription factors and their
target genes are highly conserved in other organisms of the Clostridium genus, this network would be largely ap-
plicable to other Clostridium organisms. The network informs the molecular basis of Clostridium responses to toxic
metabolites in natural ecosystems and the microbiome, and will facilitate the construction of genome-scale models
with added regulatory-network dimensions to guide the development of tolerant strains.

Keywords: Gene expression, Protein-protein interaction, Transcriptional regulatory network (TRN), Transcription
factor (TF), TF binding site (TFBS), Transcriptional regulator (TR)

Background
Clostridium organisms are endospore-forming anaerobic
firmicutes important in pathogenesis, human physiology
(with their notable role in the human gut microbiome [1]),
the carbon cycle and biotechnological applications [2,3]. C.
acetobutylicum is the first sequenced Clostridium and has
evolved into a model organism for the genus. It can utilize
a wide variety of substrates to produce metabolites useful
as industrial chemicals and biofuels [4]. Most of these me-
tabolites, and notably butyrate and butanol, are toxic to the
cells greatly impacting their metabolism and survival [5].
Several studies have been published in the last few years
aiming to understand the transcriptional and translational
basis of metabolite stress response, yet the regulatory net-
work beneath these responses remains incompletely under-
stood at the systems level [6-14]. What transpires from the
data of these studies is that the metabolite stress response
includes virtually all annotated genes of the core stress pro-
gram (the so-called heat-shock protein (HSP) response) but
also many other large programs, including amino-acid and
nucleic-acid biosynthetic pathways. Such programs are ap-
parently underlying the adaptive response of the cells to
these toxic metabolites. This adaptive response includes
changes in membrane composition, such as increasing the
fatty acid tail length and percentage of saturated fatty acids,
which is known as homeoviscous adaptation in response to
the fluidizing effects of organic solvents and acids [15-17].
Many bacterial genome sequences have been completed
and successfully annotated, but most lack information on
the regulatory front of gene expression [18]. Understanding
the complex regulatory circuitry comprised of transcription
factors (TFs) and their corresponding DNA targets, includ-
ing the motifs or transcription factor binding sites (TEBSs),
is a fundamental requirement for understanding the com-
plexity of responses in natural habitats and microbiomes,
but also for building systems-level molecular models. Inte-
grated use of detailed experimental data and in silico ana-
lyses is necessary for reconstructing transcriptional
regulatory networks (TRNs) [19], which improve our un-
derstanding of complex phenotypes and facilitate the devel-
opment of novel strains using synthetic biology.

In this study, we applied a comparative-genomics,
pattern-based approach to analyze a deep set of temporal
transcriptional data to infer the transcriptional regulatory
interactions underlying the metabolite stress response in C.
acetobutylicum (Figure 1). Using Regulatory Sequence Ana-
lysis Tools (RSAT) [20], footprint-discovery [21] analysis
(i.e., phylogenetic footprinting) was carried out, where the
comparative analysis of the genomic context of C. acetobu-
tylicum genes was successfully accomplished. Overrepre-
sented oligonucleotides (words) or spaced pairs thereof
(dyads) were detected and assembled into Position Weight
Matrices (PWMs) [20,21]. These matrices were compared
against the PWMs of known TF binding DNA motifs from
three public resources: RegPrecise [22], RegTransbase [23]
and PRODORIC databases [24] with the tool Tomtom
[25]. The results, together with OMA (Orthologous
MAtrix) orthology inference in C. acetobutylicum for the
genes available from RegPrecise [22,26], enabled the predic-
tion of many TF binding sites (TFBSs) and functional as-
signment of select TFs and their target genes (TGs) in C.
acetobutylicum (Figure 1). Together, results from these ana-
lyses enabled the construction of the stress response net-
work involving the regulatory connections of key TFs and
TGs engaged during stress.

First, we identify the common and distinct cellular re-
sponses to butanol and butyrate stress based on our
comprehensive set of temporal transcriptional data. For
the common stress responses, facilitated by target-gene
predictions for the core HSP TFs, HrcA and CtsR, we
expand the list of Class I, III & IV stress genes. For the
specialized stress responses, we identify the genes and
biological processes that display distinct expression pat-
terns for each metabolite. This, coupled by a genome-
scale analysis of transcriptional regulators (TRs) differ-
entially expressed under the two stressors, led us to
focus on core TFs that apparently orchestrate these
stress responses. We analyzed the TFBSs and regulons
of these TFs and examined the interconnectivity of their
regulons thus arriving at a comprehensive picture of the
transcriptional network that underlies the responses to
two metabolite stresses.
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Figure 1 Workflow for prediction of transcriptional regulatory interactions to reconstruct the metabolite stress response network in

Results and discussion

Overview: systems analysis identifies common and
distinct cellular responses to butanol and butyrate stress
We use microarray analysis to examine the response of C.
acetobutylicum to butanol and butyrate stress at mid-
exponential phase (Aggo ~ 1.0) of pH-controlled batch cul-
tures up to 75 min post stress with 15 min intervals (0, 15,
30, 45, 60 and 75 min). For each metabolite, cultures were
stressed with three different concentrations: 30 mM (low),
60 mM (medium) and 90 mM (high) of butanol, or with
30 mM (low), 40 mM (medium) and 50 mM (high) of bu-
tyrate. These stressor concentrations were selected based
on previous studies [6,7,10] to obtain weak, moderate and
strong stress responses. As described in the Methods sec-
tion, we used a reference design to collect the data. Nor-
malized microarray data were analyzed using significance
analysis of microarrays [27] (SAM) to identify differentially
expressed genes. We collected data from two biological
replicates, with dye swaps for each of the 6 time points for
each of the six stress conditions (butanol, butyrate; low,
medium and high stress). Thus, we generated a total of 96
individual sets of stress data for each metabolite. These data
constitute an extensive microarray data ensemble capturing
the response of C. acetobutylicum to these two metabolites.
The design of the microarrays based on the Agilent tech-
nology and the associated methods have been extensively
validated [5,28]. This microarray technology offers extraor-
dinary accuracy with many probes for each gene and mul-
tiple copies of each probe. Nevertheless, the expression
data for a select subset of the genes (CAP0102, CAC1405,

CAC3190, CAC0766 and CAC1391; see Methods section
for details) were further validated using Q-RT-PCR from a
third biological replicate.

Consistent with an earlier, lower resolution microarray
study [6,7,10], our data show that butanol and butyrate
stress responses of C. acetobutylicum include not only up-
regulation of heat shock protein (HSP) genes, but also the
differential expression of more than 1,000 genes related to
many distinct physiological functions and cellular programs
(Additional file 1). Under butanol stress, 1,118 genes were
differentially expressed (535 up, 575 down, 8 bimodal);
whereas there are 1,390 differentially expressed genes for
butyrate stress (710 up, 675 down, 5 bimodal). The union
of the two includes 1,984 genes, for which K-means cluster-
ing results are shown for the butanol and butyrate stress
(Additional file 2: Figure S1A and B), respectively.

Comparative analysis of the butanol (BuOH) versus
butyrate (BA) stress responses is essential for under-
standing the general (that is, the common) stress re-
sponse as well as the specialized, stressor-dependent
responses. Using FIVA (Functional Information Viewer
and Analyzer) [29], we identified the statistically signifi-
cant differentially expressed functional categories based
on annotated pathways (KEGG database [30]) and Gene
Ontology (GO) annotations (from UniProtKB [31]) for
the C. acetobutylicum genome. Each gene was assigned
into one of four differentially expressed groups (up-regu-
lation, down-regulation, bimodal and non-significant)
for each stressor individually or in combination (e.g.,
BuOH-up/BA-up, BuOH-down/BA-down, BuOH-up/
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BA-down etc.). Then, the GO categories and the KEGG  The common & general stress response: expanding the
pathway classifications for each gene were utilized in list of Class I, Ill & IV genes

FIVA to identify the significant functional categories Consistent with previous findings [7,32,33], heat shock
enriched for each differentially expressed group. In  protein (HSP) genes (e.g., grpE, dnak-J, groES-EL, htpG)
Figure 2, the Venn diagrams display the most significant  and other general stress genes were upregulated under
similarities and differences between the butanol and bu-  both stresses (Figure 2). The general stress genes are
tyrate stresses. classified into four different categories based on the
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Figure 2 Venn diagrams of selected genes and pathways, which were differentially upregulated or downregulated (with a fold change
of >1.5 for at least 5 time points per stress experiment) in response to the butanol and butyrate stresses. This list is not all inclusive; a
complete list of differentially expressed genes is available in the Additional file 1. The genes and pathways that are both upregulated and
downregulated (e.g., some genes are under bimodal regulation at a given stress, and some genes are up-regulated in one stress but down-
regulated in another stress) are indicated with blue font.
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Bacillus subtilis model as Class [, II, III and IV [7,10,34].
Class I stress genes are under the control of HrcA
(Figure 3A), and include groES, groEL, grpE, dnak, dnaJ
and htpG. Class III stress genes (Figure 3B) are under
the regulation of CtsR (Class Three Stress Protein Regu-
lator) and include clpP, clpE, clpX and the clpC operon.
The operon information used in this study is based on
the predicted transcriptional units by Paredes et al. [35].
The HrcA and CtsR regulons are described in detail in
the following sections. Class II stress genes in B. subtilis
are defined as those under the regulation of the stress-
specific sigma factor, o°. As there is no known ortholog
for ¢® in C. acetobutylicum (or any other sequenced
Clostridium organism [36]), Class II stress genes are
considered absent in C. acetobutylicum. Nevertheless,
based on the conservation of the ¢® regulated Class II
stress proteins and using OMA analysis, we identified 33
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proteins in C. acetobutylicum that are homologous to
the B. subtilis Class II HSPs (Additional file 2: Figure
S2). Among them, the only genes that were differentially
upregulated (i.e, CAC3187-CAC3192) belong to Class
III in C. acetobutylicum, and the rest show weak differ-
ential expression, thus further supporting the absence of
Class II HSP regulation in C. acetobutylicum. Class IV
stress genes are defined as the stress related genes that
are not under the control of HrcA, ¢® or CtsR. 72 genes
that were overexpressed under both butanol and butyr-
ate stress (SAM analysis; fold change > 1.5 at 0.05 FDR),
but that they were not identified as Class I or III genes,
were thus identified as Class IV stress genes in C. aceto-
butylicum (Additional file 2: Figure S3). This is a much
larger list than previously identified in this organism
[7,10] or any Clostridium. This large Class IV set in-
cludes genes from carbohydrate metabolism, histidine
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Figure 3 The expression of predicted target genes for HrcA (A) and CtsR (B). The putative regulon structure is shown for HrcA (C) and CtsR
(D) (see text for details). Genes in each listed operon are shown by arrows; TF genes are in black, chaperone proteins are in light grey; potential
novel genes for a regulon in C. acetobutylicum are in dark grey; presence of TF binding sites are indicated by black circles. The sequence logos
(which represent sequence conservation) for HrcA and CtsR binding motifs in C. acetobutylicum are shown in (C) and (D), were created with 6
and 5 binding sites respectively, using WebLogo [37,38]. Gene expression data are displayed as in fold change compared to no-stress control cul-
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metabolism, the sol-locus genes (CAP0162-CAP0165),
genes related to biosynthesis of membrane and cell-wall
components, and stress responsive transcriptional regu-
lators/factors (TRs, TFs).

The two HSP regulons: the core of the stress response
We used a pattern-based approach combined with expres-
sion and functional profiling to infer potential TEBSs in the
C. acetobutylicum genome, thereby predicting transcrip-
tional regulations and reconstructing stress response net-
work (Figure 1; see Methods for details). Successful
identification of TFBSs for many C. acetobutylicum genes
suggests good similarity of binding motifs between Clos-
tridium organisms and other Gram® bacteria. Among
them, HrcA and CtsR are the two TFs orchestrating the
core HSP response.

The HrcA regulon

Parts of the HrcA and CtsR regulons in C. acetobutylicum
have been examined previously. Notably, it was shown that
the dnaK] and groESL operons are HrcA dependent
[10,39], whereas hsp18 is not [10]. Our sequence analysis
indicates that phylogenetically conserved HrcA binding
sites are present upstream of four operons: hrcA-grpE-
dnaK-dnaJ (CAC1280-CAC1283), groESL (CAC2704-
CAC2703), CAC2705 and htpG (CAC3315) (Figure 3A &
C), with the first two corroborated by Bahl et al. [39]. All
these operons, except for CAC2705, were highly overex-
pressed during the time course of all the tested butanol and
butyrate stresses in this study, which is consistent with pre-
vious reports. Although its HrcA binding site is the same as
for its adjacent groESL operon, CAC2705 shows signifi-
cantly weaker overexpression than the other genes [7], thus
suggesting that it is regulated by an additional TF. The
function of the membrane protein CAC2705 or any of its
orthologs is unknown. Overall, the function of HrcA in C.
acetobutylicum is likely similar to that in many other well
studied organisms, which is to maintain low basal levels of
expression of the dnak, dnaj, groESL and htpG operons in
the absence of stress [40]. Upon exposure to stress, these
operons are no longer repressed and instead get strongly
upregulated. The underlying regulatory mechanism is ap-
parently complex because when /rcA transcription is up-
regulated, it should lead to the synthesis of more HrcA
repressor protein and therefore the repression of these op-
erons should get stronger. But this is in contrast to the fact
that these operons get upregulated at the same time as hrcA
is upregulated. In B. subtilis, complex post-transcriptional
regulations of the /ircA operon, based on mRNA processing
and stability, ensures the production of the operon’s pro-
teins in the amounts needed by the cell [41]. Additionally,
HrcA is activated by the free GroESL protein complex
under normal conditions, but during stress, titration of
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GroESL by unfolded proteins constrains HrcA activation,
thus ensuring additional post-translational control [42].

The CtsR regulon

Phylogenetic footprinting analysis of the C. acetobutyli-
cum genome revealed the presence of CtsR operator
sites upstream of ctsR-yacH-yacl-clpC (CAC3192-
CAC3189) and hsp18 (CAC3714) [7,10]. By obtaining
the C. acetobutylicum orthologs for all the target genes
of CtsR regulons in RegPrecise, we found additional pu-
tative target genes in C. acetobutylicum, including the
operon of sms-disA (CAC3188-CAC3187) and hrcA-
grpE-dnaK-dna] (CAC1280-CAC1283) (Figure 3B & D),
whose TFBSs are less similar to CtsR DNA motifs (via
Matrix Scan, see Methods section) than those of ctsR
and &sp18 operons. Their gene expression patterns align
well with ctsR and hsp18 (Figure 3B). The presence of
CtsR binding site upstream of /rcA operon confirms the
presence of secondary control of the dnaK operon by
Homuth et. al. (1999) [41], leading to a cross regulation
of CtsR and HrcA, which has been observed in other
gram positive organisms [43]. sms (CAC3188) codes for
an ortholog for the DNA repair protein RadA in B. sub-
tilis str. 168, which may play a role in the repair of en-
dogenous alkylation damage [44]. DisA (CAC3187)
likely participates in a DNA-damage check-point that is
active prior to asymmetric division when DNA is dam-
aged, like in B. subtilis [45]. DisA in B. subtilis forms
globular foci that rapidly scan along the chromosomes
during sporulation, searching for lesions. When a lesion
is present, DisA pauses at the lesion site. This triggers a
cellular response that culminates in a temporary block
in sporulation initiation [45]. CtsR, although a repressor
of HSPs, was observed to have higher expression of its
transcripts during the onset of stress, similar to HrcA.
Repression of CtsR under stress is overcome by its in-
activation through phosphorylation of arginine residues
by Yacl. Yacl under normal conditions is bound to ClpC,
but is activated under stress by YacH [46].

Stressor-dependent stress responses

Overview

Many genes in the COG (Clusters of Orthologous Groups)
category of amino acid transport and metabolism displayed
different patterns of expression under the two stresses.
Some of these genes are involved in the biosynthesis of ar-
ginine, histidine and tryptophan, and these are discussed in
detail below. While some purine metabolism-related genes
(purB, purN-H, purD, CAC0353 and CAC1047, Figure 2)
were upregulated under both stresses, some of the other
genes (purE-C, purE guaA-B, add, purQ/L, holA,
CAC0650, CAC1854 and CAC2445) were upregulated
under butyrate stress, but downregulated under butanol
stress.
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Other sets of genes that display different expression pat-
terns under the two stresses are genes involved in ATP syn-
thesis genes, cobalamin biosynthesis, and ribosomal protein
genes. As shown in Figure 2, 5 genes (i.e., atpA, atpD, atpE,
atpF and atpH) (within the CAC2872-CAC2864 operon),
involved in ATP synthesis coupled to proton transport,
were upregulated under butyrate stress only. Nine genes in-
volved in polysaccharide catabolic processes (CAC0911-
CAC0917, CAC3469 and CAC1359) were upregulated
under butanol stress only, with a few genes among them
also upregulated by transient butanol pulse in chemostat
cells [32]. The majority of the genes involved in cobalamin
biosynthesis were down-regulated under butyrate stress but
not under butanol stress, which is consistent with a previ-
ous study [47]. They include 14 genes, cbiM, cbiG, cobT,
cbiB, cobB, cbiC, cbiD, cbil; cobl/cbil, cbiF/cobM, cbiH/
cobj, coblU, cobS and cobC, which are part of the CAC1365-
CAC1386 operon. This suggests a lowered need for cobala-
min for the strain under butyrate stress. Cobalamin is a
necessary cofactor for various reactions involving rear-
rangements including glycerol dehydratases for glycerol
metabolism and transmethylation for the formation of me-
thionine from homocysteine [47]. 27 out of 48 ribosomal
protein-encoding genes were downregulated under butyrate
stress. Among them, 18 were only downregulated under
butyrate stress but not so under butanol stress (Figure 2
and Additional file 2: Figure S4). These data suggest that
translation is suppressed during butyrate stress at all three
stressor levels (low, medium and high), consistent with the
previous studies [7].

Amino- and nucleic-acid biosynthesis

Arginine biosynthesis related genes (e.g., argF/I (CAC
0316), argG-argH (CAC0973-CAC0974), argB-argD
(CAC2389-CAC2388), argC-argl (CAC2390-CAC2391),
carB (CAC2644), carA (CAC2645) and CAC3619 (coding
for amino acid ABC transporter component)) exhibited
dose- and time-dependent expression for both butanol
and butyrate stresses (Figure 4A and Additional file 2:
Figure S6). For example, their expression was more
strongly upregulated at the low compared to high butyrate
stress. In addition, they show different expression patterns
from those reported by Alsaker et al. in 2010 [7] when
comparing the low and medium levels of butyrate stress
at 30, 45, and 60 min post stress. These differences can be
ascribed to the different experimental conditions used in
the two studies. In the 2010 study, Clostridial Growth
Medium (CGM) containing yeast extract was used with-
out pH control in static-flask cultures, whereas in the
current study, a defined medium was employed in agitated
bioreactors with pH controlled at 5.0. Based on the fact
that butyrate inhibition is pH dependent [7], and that pH-
dependent growth play a crucial role in the cellular adap-
tation [48], our assessment is that these difference are
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predominantly due to the impact of pH, but also perhaps
the presence of arginine or intermediates of its biosyn-
thesis in the complex CGM medium. In Escherichia coli,
and several other organisms, the arginine decarboxylase/
antiporter-dependent acid-resistance (AR) system 3 (AR3)
[49], is one of the four known AR systems protecting cells
from acid stress. But as already discussed [50], there are
no ortholog genes to these or the other AR systems in C.
acetobutylicum. Nevertheless arginine biosynthesis and
transport in combination with culture pH apparently play
an important role in carboxylic acid stress.

Nine genes involved in histidine biosynthesis (hisZ-hisG-
hisD-hisB-hisH-hisA-hisF-hisI-hisE (CAC0935-CAC0943)
displayed complex expression patterns post  stress
(Figure 4B). Interestingly, induction of genes for histidine
biosynthesis has recently been shown to contribute to acid
tolerance in Lactobacillus casei [51]. In addition, a histidine
decarboxylation pathway introduced in Lactococcus lactis
improved survival to acid stress [52].

Similarly, the tryptophan biosynthesis genes in the
CAC3163-CAC3157 operon (parB, pabA, trpD, trpC,
trpE trpB and trpA) show strong dose dependence on
butanol concentration (Additional file 2: Figure S6),
where low butanol stress leads to strong overexpression
at the early timepoints, but mostly to downregulation
for medium and high butanol stress. Under ethanol
stress, tryptophan genes were reported to be upregulated
and functionally tested in Saccharomyces cerevisiae [53].
For butyrate stress, there was upregulation for all 3
levels of stress, which is unlike the Alsaker et al. 2010
study, where a weak downregulation was found under
butyrate stress [7]. As discussed, these differences may
be related to the presence of yeast extract and the lack
of pH control in the 2010 study. Cysteine metabolism
genes also show a butyrate dose-dependent expression
(Figure 4C & Additional file 2: Figure S6).

The branched-chain amino acids (BCAAs, i.e., valine,
leucine and isoleucine) are involved in the synthesis of
branched chain fatty acids through the formation of a-
keto acids. It has been suggested [7] that BCAAs are in-
corporated into membrane components to generate
more rigid membrane aiming to counteract the solvation
effect of toxicity solvents. Homeoviscous membrane
changes involving modifications of membrane fatty acid
composition to counteract the fluidizing effects of buta-
nol and other solvents have been extensively discussed
in the literature [15,16]. In Streptococcus murants, the
BCAA aminotransferase encoded by ilvE was shown to
protect against acid stress [54]. Thus, BCAAs may serve
in multiple roles in dealing with both solvent and acid
toxicity. The genes ilvC (CAC0091) and leuC-leuD-leuB-
ilvD-ilvB (CAC3173-CAC3169) are involved in valine,
leucine and isoleucine biosynthesis. Under butanol
stress (Additional file 2: Figure S6), expression of these
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BCAA genes is dose dependent displaying stronger up-
regulation at high butanol levels compared to low or
medium levels. These genes display a more complex pat-
tern under butyrate stress, with significant downregula-
tion under high stress.

Several genes involved in purine metabolism (Additional
file 2: Figure S5 and S6), including purE- purC (CAC1390-
CAC1391), purF-purM-purN-purH (CAC1392-CAC1395),
purD (CAC1396) and purQ/purL (CAC1655), displayed
distinct expression patterns for different butanol stress
levels: at low and medium levels of butanol, these genes
were weakly upregulated while at high level of butanol, they
were downregulated. The response of these genes to butyr-
ate stresses was strong in this study, and displayed different
kinetics and strengths compared to results from Alsaker
et al. [7]. Here, these genes show the strongest upregulation
at high butyrate stress level, which may suggest their

involvement in acid resistance. Insertional mutagenesis of
the Lactococcus lactis purine metabolism gene guaA led to
increased acid resistance [55]. Purine metabolism also
shares a large number of genes and pathway intermediates
with histidine metabolism, which, as already discussed,
were also found to be differentially expressed under stress.
It is noteworthy that metabolic pools (and, notably, purine
nucleotides) impact acid tolerance [55].

Differential expression of transcriptional regulators:
overview

Given that the two stressors elicit several common but
also many distinct responses per our discussion above,
we aimed next to identify the TFs that might orchestrate
these responses. The expression profile for the 164 sig-
nificantly differentially expressed TRs in C. acetobutyli-
cum is shown in Additional file 2: Figure S7. K-means
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clustering of these 164 TRs identified common and dis-
tinct expression patterns for TRs under the two metab-
olite stresses. Clusters containing TRs that are
upregulated (Additional file 2: Figure S7 A, F & I) and
downregulated (Additional file 2: Figure S7 C, D & E) at
the same time under both stresses can be linked to gen-
eral stress response, while clusters consisting of TRs
with distinct expression patterns for each stress
(Additional file 2: Figure S7 B, G, H & ]) are involved in
orchestrating the stressor-specific response.

Because a large fraction of the aforementioned 164 TRs
remain non-annotated (Additional file 3), we used phylo-
genetic footprinting and comparison with RegPrecise DNA
motifs (Figure 1), and thus many TFBSs were successfully
identified in C. acetobutylicum, and are shown in various
figures. Many such identified TEBSs correspond to a subset
of the core TFs in Bacillales. These include regulators that
control the metabolism of amino acids and nitrogen (ArgR,
CodY and CymR), carbohydrates (CcpA and CggR), biotin
cofactor (BirA), fatty acids (FapR) and nucleotides (NrdR
and PurR). These regulators also include TFs for metal
homeostasis (Fur, MntR and Zur), respiration (Rex), sporu-
lation (SpoOA), stress responses (CsoR, CtsR, HrcA, LexA
and PerR), as well as the chromosomal replication initiation
regulator DnaA [56]. Next, we focus on selected regulators
with target genes significantly differentially expressed, per
our discussion above, in butanol and/or butyrate stressed
C. acetobutylicum. We start with the three stress-related
regulators, which, unlike CtsR and HrcA, have not yet been
examined at the systems level in Clostridium. We then dis-
cuss transcriptional regulators of amino acid and purine
metabolism that appear to be part of the specialized metab-
olite stress response.

The core stress-associated transcription factors engaged
in the butanol and butyrate stress response

LexA

LexA is well-known as the primary TF controlling the
SOS response, which is an inducible DNA repair system
that allows bacteria to survive sudden increases in DNA
damage [57]. Even though it has been well studied in
many bacteria, the LexA regulon has not been examined
in C. acetobutylicum so far. Therefore it was important
to examine which genes might be under LexA control in
C. acetobutylicun and whether these SOS response
genes are differentially regulated under butanol or butyr-
ate stress. Butyrate stress, in particular, may cause acid-
induced DNA damage, which is frequently compared to
oxidative stress [58]. RSAT footprint analysis led to the
identification of four genes/operons with highly con-
served cis-elements in their promoter regions that in-
clude LexA binding sites known as SOS boxes [59].
These are lexA (CACI1832), recA (CACI1815), uvrB-
uvrA-CAC0504-CAC0505-CAC0506-CACO507-uvrC-
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CACO0509-murB (CAC0502-CACO0510), and CAC3343-
CAC3344. In addition, the orthologs in C. acetobutyli-
cum for all target genes in LexA regulons from RegPre-
cise were collected using OMA search, and scanned for
LexA binding site in their operon leader sequences. The
operons with an identifiable LexA binding site (p-value
< le-3) were collected and the microarray data for their
gene members are shown in Figure 5. Hierarchical clus-
tering shows that lexA, recA and the uvrB operon are
clustered well. This is consistent with the possibility that
they are functionally correlated, like in other well stud-
ied bacteria [60,61]. Moreover, even though no ortholog
of CAC3343 was listed as under LexA control in
RegPrecise, our footprinting analysis together with ex-
pression data suggests that the CAC3343-CAC3344 op-
eron is also putatively controlled by LexA. CAC3343
encodes a putative DNA modification/repair radical
SAM protein and CAC3344 encodes a protein of un-
known function. In addition, the operon of sbcD-sbcC
(CAC2737-CAC2736; sbcD: DNA repair exonuclease;
sbcC: ATPase involved in DNA repair) is clustered
closely to recA, and its promoter region shows a poten-
tial LexA binding site (p-value < 1e-3). The UvrABC re-
pair system catalyzes the recognition and processing of
DNA lesions. A damage recognition complex composed
of 2 UvrA and 2 UvrB subunits scans DNA for abnor-
malities. Regulation of the UvrABC system by LexA is
well established in many bacteria, including E. coli and
B. subtilis [60,61], but has not been examined in Clos-
tridium. The more significant upregulation of wuvrB
under butyrate stress compared to butanol stress sug-
gests that DNA damage may be more prevalent under
butyrate stress. As discussed, butyrate stress affects the
cells similar to oxidative stress by damaging DNA,
proteins and lipids [58]. Therefore, we conclude that the
LexA regulon in C. acetobutylicum contains at least the
following genes/operons (Figure 5): lexA (CAC1832), recA
(CAC1815), uvrB-uvrA-CAC0504-CAC0505-CAC0506-
CACO0507-uvrC-CAC0509-murB (CAC0502-CAC0510), CA
C3343-CAC3344, and sbcD-sbcC (CAC2737-CAC2736).

Rex: the redox sensor

Rex (encoded by CAC2713) is a member for the Rex family,
which includes regulators that modulate transcription in re-
sponse to changes in cellular NADH/NAD + levels and
more generally the redox state [62]. It was previously dem-
onstrated that Rex is a redox-sensing transcriptional repres-
sor that regulates solventogenesis in C. acetobutylicum [63].
In our microarray experiments, rex was downregulated
under butyrate stress. Our footprinting analysis identified 6
operons with potential Rex binding sites in their promoter
regions: iydA (CAC0028), nirC-asrA-asrB-asrC (CAC1512-
CAC1515), crt-bed-etfB-etfA  (CAC2712-CAC2709), CA
C2713, CAC2873, and adhE2 (CAP0035), the fusion-
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protein aldehyde/alcohol dehydrogenase, which is highly
homologous to adhEl (CAP0162). In addition, based on
orthology to target genes in Rex regulons from RegPrecise
and identification of putative Rex binding sites (Matrix Scan
with the Rex-binding DNA motif in Clostridiales from
RegPrecise, p-value < le-3), the following operons were

found to be putative targets for Rex regulation in C. aceto-
butylicum as well: CAC0014-serA (CAC0014-CACO0015),
ldh (CAC0267), gapC (CAC0709), CAC0827, nadA-
nadB-nadC (CAC1025-CAC1023), CAC2229, CAC2872-
atpB-atpE-atpF-atpH-atpA-atpG-atpD-atpC ~ (CAC2872-
CAC2864), adhEl-ctfA-ctfB (CAP0162-CAPO164). The
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expression patterns for the genes in these operons are
shown in Figure 6A. It is noteworthy that adhE2 is highly
upregulated, together with adhEI-ctfa-ctfb. The latter is the
set of genes responsible for butanol production in this or-
ganism [5]. As discussed above, these genes are also part of
Class IV stress response genes.

PerR

PerR (encoded by CAC2634) represses the expression
of most of the genes involved in oxidative stress re-
sponse, such as rbr3A-rbr3B, dfx, rd, nror, fprAl and
fprA2, which code for reverse rubrerythrins, desulfo-
ferrodoxin, rubredoxin, NADH-rubredoxin oxidore-
ductase (NROR), and oxygen-reducing flavoproteins,
respectively [64,65]. PerR probably acts as a peroxide
sensor [65]. By facilitating reactive oxygen species
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(ROS) scavenging, PerR plays an important role in the
oxidative stress defense system in C. acetobutylicum,
which is an obligate anaerobe. Cells lacking this gene
exhibit enhanced aerotolerance and increased H,O, re-
sistance. Deletion of perR does not affect the intracel-
lular level of iron but increases two-fold that of zinc
[64]. Several direct targets of PerR were proposed pre-
viously by Hillmann et al., through performing a
genome-wide search for potential PerR binding sites
using Virtual Footprint software in combination with
global transcription analysis of the perR deletion
mutant against the wild type [65]. Our microarray data
for these genes are shown clustered in Figure 6B.
Apparently, the Alsaker et al. (2010) study showed
strong upregulation in these genes for the butyrate
stress, but this was not the case in our new study.
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Figure 6 Expression patterns of the predicted Rex (A) and PerR (B) regulons.
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This may suggest that our new fermentative and
culture conditions (with pH control) lead to less oxida-
tive stress and therefore these PerR-regulated genes
remained largely repressed or only mildly derepressed.

Amino- and nucleic-acid transcriptional regulators en-
gaged in the metabolite stress responses

ArgR: the arginine repressor

The arginine repressor (ArgR) is known as a master regula-
tor of arginine biosynthesis and catabolism in bacteria in re-
sponse to intracellular arginine levels [66]. As several genes
related to arginine biosynthetic process show strong bi-
modal expression under both butanol and butyrate stress
(Additional file 2: Figure S6), it is of interest to explore the
potential involvement of ArgR. ArgR in C. acetobutylicum
is encoded by CAC2074, the 5 gene in the CAC2078-
CAC2073 operon. The ArgR in E.coli is known to autore-
gulate its own transcription [67]. However, it does not ap-
pear to be autoregulated in C. acetobutylicum, because the
promoter region of its operon does not have an identifiable
ArgR binding motif (shown in Figure 4A), based on Matrix
scan (p-value < 1e-3). Three operons with genes in arginine
biosynthetic activity have conserved cis-elements in their
promoter regions that align well with the known ArgR
motifs from RegPrecise (Figure 4A). These operons are
argG-argH (CAC0973-CAC0974; argG, argininosuccinate
synthase; argH, argininosuccinate lyase), argB-argD
(CAC2389-CAC2388; argD, N-acetylornithine aminotrans-
ferase; argB, acetylglutamate kinase), and argC-arg/
(CAC2390-CAC2391; argC, N-acetyl-gamma-glutamyl-
phosphate reductase; arg/, ornithine acetyltransferase).
Searching for orthologs of the target genes in ArgR regu-
logs from RegPrecise (a regulog is defined as a set of core-
gulated genes for which the regulatory sequence has been
conserved across multiple organisms [22]) and scanning
with the ArgR DNA-binding motif in Clostridiales, several
additional operons were identified as potentially also regu-
lated by ArgR. Among them, argF/I (CAC0316), carA
(CAC2645) and CAC3620-CAC3618 (amino acid ABC
transporter components) show a more similar expression
pattern to those of argGH, argBD and argCJ (Figure 4A)
than the other genes. Interestingly, this finding suggests
that CAC3620-CAC3618 encode a putative arginine trans-
port system, potentially controlling arginine uptake from
the environment, as proposed previously for an arginine-
responsive gene regulation [68]. Altogether, the ArgR regu-
lon in C. acetobutylicum likely includes at least 6 operons/
genes (Figure 4A). Furthermore, our de novo motif predic-
tion with MOTIFATOR [69] suggests an ArgR binding site
upstream of CAC0380. CAC0380 was previously annotated
as a periplasmic amino acid-binding protein, but now with
our prediction of ArgR binding site for this gene, we sus-
pect it is an arginine-binding protein with a possible role in
AR3 mechanism.
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HisR: histidine biosynthesis regulator

As discussed, histidine biosynthesis genes are dynamic-
ally upregulated under both butanol and butyrate stress
(Additional file 2: Figure S6). RSAT phylogenetic foot-
printing [20] analysis shows a well conserved motif up-
stream of the /isZ genes in organisms of the Clostridia
class. The C. acetobutylicum hisZ gene is in an operon of
10 genes (CAC0935-CAC0944), including hisZ, hisG, hisD,
hisB, hisH, hisA, hisF, hisl, hisE and tkt. Nine of them show
a dynamic upregulation under both butanol and butyrate
stress (Figure 4B). The cis-elements in the upstream region
of hisZ genes in Clostridia class (identified by phylogenetic
footprinting) bear high similarity to the DNA motif recog-
nized by HisR of Staphylococcaceae [22] (Additional file 2:
Figure S9). According to OMA [26,70], CAC2675 is an
ortholog of hisR, which is predicted to be present in several
other Gram™ organisms in RegPrecise. Based on its orthol-
ogy to the corresponding target genes assigned in HisR
regulogs in RegPrecise and identification of potential HisR-
binding site in its promoter region, 4isC (CAC3031) is also
a putative target gene for HisR. To sum, the HisR regulon
in C. acetobutylicum is proposed to include the hisZ-tkt op-
eron and hisC (CAC3031) (Figure 4B).

CymR: cysteine metabolism repressor

In B. subtilis, CymR is a master repressor of cysteine me-
tabolism. It controls the expression of genes involved either
in cysteine synthesis from sulfide (cysK), sulfonates (ssu), or
methionine (mccAB) or in cysteine uptake ((cyP) [71]. The
activity of CymR is positively regulated by CysK in response
to cysteine availability [72]. When cysteine is present, the
pool of O-acetylserine (OAS) is low, which leads to the for-
mation of a CymR-CysK complex and transcriptional re-
pression of the CymR regulon occurs. In the absence of
cysteine, the OAS pool is high and the CymR-CysK com-
plex is mostly dissociated, leading to a faster dissociation of
CymR from its DNA targets and the lifting of CymR-
dependent repression [71,72]. Proteins CAC2236 and
CACI1675 are the best BLAST hits for the B. subtilis CymR
[71] in C. acetobutylicum. Both proteins belong to the Rrf2
family, with winged helix-turn-helix transcription repressor
DNA-binding domain. RegPrecise database assigns
CACI1675 as iron-sulfur cluster assembly transcription fac-
tor IscR. Indeed, CAC2236 shows slightly higher sequence
similarity to CymR than CAC1675 (64.63% vs. 60.69%),
whereas CAC1675 has better sequence similarity to IscR in
E. coli than CAC2236 does (53.09% vs. 49.39%). Therefore
it is possible that CAC2236 functions as CymR in C. aceto-
butylicum, and CAC1675 as IscR. In C. acetobutylicum,
CAC2235, immediately downstream of CAC2236, codes
for a cysteine synthase (CysK). In addition, the STRING
network for CAC2236 further supports its involvement in
regulating cysteine metabolism [73]. On the other hand,
RSAT footprinting analysis indicates that CAC1675 has a
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promoter element conserved in Clostridia class that par-
tially aligns well with the CymR motif from Staphylococca-
ceae (Figure 4C). In fact, the IscR- and CymR-binding
DNA motifs share quite significant sequence similarities
(Figure 4C) [22]. Furthermore, both CAC2236 and CAC1675
have identifiable CymR-binding sites when searched with the
PWM built from TFBSs in Staphylococcaceae [22].

Seven operons with potential CymR-binding sites in
their promoter regions were identified based on
orthology to the CymR target genes in Bacillales and
Staphylococcaceae in RegPrecise, and with pattern
matched in promoter regions using Matrix Scan
(p-value < 1e-3). They include operons CAC0102-
CACO0110 (including genes such as cysC (CACO0103),
c¢ysD (CAC0109), cysN (CACO0110); protein CysC and
CysN are involved in hydrogen sulfide biosynthetic
process) and CACO0878-0880 (amino acid ABC trans-
porter system) (Figure 4C). Making use of the distinct
expression pattern of CAC0102-0110 and CAC0878-0880,
the other cysteine-metabolism related genes/operons with
similar expression pattern, i.e., cysK (CAC2235), operons of
CAC0929-0931 and CAC3325-3327, were further analyzed
for CymR-binding sites. Note that cysK and CAC0931 are
putatively involved in cysteine biosynthesis from serine
and in cysteine synthase activity respectively, whereas
CAC3325-CAC3327 encodes protein orthologous to L-
cystine-binding protein TcyABC transporter in Staphylo-
coccus carnosus. Indeed, cysK (CAC2235), CAC0929 and
CAC3325 have good match to the CymR-binding motif in
their promoter regions (for the latter two, the predicted
CymR-binding site is located more than 300 nts upstream
their translation start codons). We conclude that the CymR
regulon in C. acetobutylicum likely includes at least the
genes shown in Figure 4C.

PurR: repressor of purine metabolism

PurR (encoded by CAC3224) is a member of PurR
family, which serves as repressor of purine metabol-
ism [7]. CAC3224 is upregulated under butanol stress,
but not so under butyrate stress, which may explain
the upregulation of several purine metabolism related
genes when under butyrate stress. Interestingly, the
majority of C. acetobutylicum genes orthologous to
the PurR target genes in RegPrecise seem to contain
only half of the PurR-binding DNA motif in Bacil-
lales, which is a palindromic sequence comprised of
two inverted repeats.

Complexity of the metabolite stress response as captured
by the STRING-based stress response network (SRN)

The high-confidence functional interactions predicted by
STRING (Confidence Score > 0.700) were used as edges
to construct the butanol/butyrate stress response net-
work (SRN), which is shown in Additional file 2:
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Figure S8. Cross-interactions are prevalent between most
of the key regulons discussed above. Since the majority
of the transcription factors and their target genes are
highly conserved in a variety of organisms of the Clos-
tridium genus (Additional file 4: Table S4), this SRN is
likely largely applicable to the other Clostridium organ-
isms, In addition, the complexity observed in these two
core metabolite stresses may require additional layers of
regulation, such as differential mRNA degradation and
the regulation at transcriptional and post-transcriptional
levels by non-coding small RNAs (sRNAs). The role of
sRNA under metabolite stress has been investigated for
butanol and butyrate stress based on RNAseq data, and
quite a few stress-responsive sSRNAs have been identified
(Venkataramanan et al. 2013, BMC Genomics) [74]. Sev-
eral sRNAs were particularly up-regulated under both
the metabolite stresses. They include 6S RNA (regulating
availability of specific sigma factor and hence the expres-
sion of genes under their regulation), tmRNA (transfer-
messenger RNA, which recycles ribosomes and ensures
their availability during a change in the transcriptional
and translational machinery of the cells along with label-
ing aberrant protein for degradation), SRP (signal recogni-
tion particle RNA, which regulates the trans-translation of
the membrane bound proteins), so/B (the repressor of the
sol operon) and SAM riboswitch (regulating the expres-
sion of sulfur amino acid metabolism). Identifiable or
likely targets of these SRNAs would suggest that these and
other sRNAs are likely involved in regulating at least
some of the genes in the core regulons discussed in
this study.

Conclusions

Gene regulatory networks play essential roles in living or-
ganisms to respond to both external environmental and in-
ternal metabolism changes. Understanding the connections
and the activity levels of regulators is indispensible for the
gene regulatory network research. This study produced a
large set of high-resolution temporal transcriptional data.
Using phylogenetic footprinting analysis and orthology in-
ference, combined with pattern-based TFBS detection, the
regulatory interactions proposed from our study provide
important connections between transcription factors and
their target genes that are important for butanol and butyr-
ate stress response in C. acetobutylicum. Utilizing predicted
transcription factor activities in combination with transcrip-
tome data [75] can be a future direction for reconstructing
gene regulatory network of C. acetobutylicum. It is known
that the analysis of transcriptome data does not always per-
mit identifying the primary cause of a phenomenon ob-
served. There are various levels of regulations apart from
transcriptional ones, e.g., epigenetic regulation, translational
regulations, mRNA stabilities, post-translational modifica-
tions. It remains a grand challenge to integrate all these
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regulation layers together to reconstruct a holistic stress re-
sponse network. But promising systems biology methods
are in development to provide solutions to the problem.

Methods

Microarray experiments and data analyses

Strain and growth conditions

C. acetobutylicum ATCC 824 was grown in a defined
clostridial growth medium (40 g/L glucose) in Bio-
Flo°310 Fermentors (New Brunswick Scientific, Edison,
NJ) equipped with controllers for pH, temperature, and
agitation [12] to an ODggo of 1.0 and stressed with ap-
propriate concentrations of butanol (low - 30 mM, med
- 60 mM, high - 90 mM), or butyrate (low - 30 mM,
med - 40 mM, high - 48 mM). Samples were taken at 6
time points post-stress (0 min, 15 min, 30 min, 45 min,
60 min and 75 min) for RNA isolation. Samples from
non-stressed cultures (i.e., 0 mM butanol) were also col-
lected at the same 6 time points, for control. Experi-
ments were carried out in triplicates (2 replicates for
preparing labeled-cDNA for microarray hybridization
and the third replicate for q-RT-PCR using unlabeled
cDNA, for validating the microarray results). All experi-
ments were run in replicates of 4 and the most similar 3
were selected for RNA isolation. The growth curve
and product formation patterns are summarized in
Additional file 2: Figure S9.

RNA isolation and labeled cDNA generation

Samples for RNA isolation were collected by centrifu-
ging 15 mL of cultures at 5,000 rpm for 10 min and the
cell pellets were frozen at —80°C. Before extracting RNA,
the pellets were thawn and RNA was extracted using
Qiagen’s RNeasy Mini Kit as described earlier [5]. cDNA
generation and its subsequent amino allyl labeling were
performed as described [47].

Microarray analysis

Microarray analysis was performed using Agilent cus-
tom arrays (4x44K arrays, GEO accession number
GPL10908) by hybridizing 250 ng of Cy3/Cy5 labeled
c¢DNA hybridized against 250 ng oppositely labeled
(Cy5/Cy3) common reference pool (containing equal
amount of 2.5 pg labeled ¢cDNA from each of the 48
samples) at 65°C for 16—18 hours. Separate reference
pools were created for butanol and butyrate stress, re-
spectively. Following hybridization, the slides were
washed and scanned in an Agilent scanner; image
analysis was carried out using Agilent’s Feature Ex-
traction Software (v9.5.1). Normalization was carried
out using the LOESS method in R (Limma package
from Bioconductor [76]) using a custom script/algo-
rithm developed in Papoutsakis lab based on SNN-
LERN (Segmental Nearest Neighbor normalization
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method) [77]. Normalized outputs contained averaged,
normalized values of replicates and dye-swaps with
respect to the common reference pool. The micro-
array data can be accessed at GEO through the access
numbers GSE48031 and GSE48039, respectively.

The data were analyzed by pairwise and point-by-point
comparison to the non-stress control using significant ana-
lysis of microarrays (SAM) [27] in TIGR MeV suite 4.8.1
[78]. For a gene to be identified as being differentially
expressed for a metabolite stress, it had to be significant (5%
FDR for SAM analysis) and have at least five time points
out of the 18 with expression changes (6 time points for
each stress level of Low, Medium and High) over 1.5 fold
(up or down) for that metabolite stress. To be considered as
bimodally expressed, the gene had to have at least five time
points for 1.5 fold up and five time points for 1.5 fold down
individually for that metabolite stress. Normalized ratios
were grouped by K-means clustering (TIGR MeV, version
4.8.1 [78]) and visualized with heat (or Eisen) plots [79]
using TIGR MeV [78]. The K-means clustering was carried
out with Euclidean distance metric. We chose K-Means
clustering because the number of clusters produced can be
directly controlled by the user-defined parameter K without
having to somewhat arbitrarily cut a clustering tree like for
the case of hierarchical clustering. The microarray data was
validated using q-RT-PCR for 6 genes, which were vali-
dated for upregulation (CAP0102, CAC1391, CAC1405
& CAC3190), downregulation (CAP0102, CAC0766 &
CAC1806), butanol stress (CAP0102, CAC1405,
CAC1806 & CAC3190) and butyrate stress (CAP0102,
CAC1391 & CACO0766). CAC3571 was used as the
house keeping gene. The comparison between Q-RT-
PCR and microarrays are summarized in Additional
file 2: Figure S10.

Transcription factor binding site analysis

DNA sequences up to 300 nt upstream from the start
codon of genes in C. acetobutylicum were obtained using
RSAT Sequence tools. Given a user-provided query gene,
RSAT footprint-discovery analysis provides PWMs for
over-represented oligonucleotides (words) or spaced
pairs thereof (dyads) for the query gene’s orthologs in a
user-defined taxon [20]. The obtained PWMs were com-
pared against the PWMs of known TF binding DNA
motifs from three resources: RegPrecise [22], RegTrans-
base [23] and PRODORIC databases [24], with the tool
Tomtom in suite MEME [25]. The results, together with
OMA ortholog search in C. acetobutylicum genome for
the predicted TFs and target genes (TGs) defined in
RegPrecise [22,26], allowed the inference of TFs and
their target genes in C. acetobutylicum. RSAT Matrix
Scan is used to scan the C. acetobutylicum upstream se-
quences with PWMs to identify instances of the corre-
sponding motifs (putative TFBSs).
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Identification of genes associated with stress responses
from the literature and databases

We collected 318 B. subtilis stress related proteins through
data mining and text mining. With BLAST search between
B. subtilis and C. acetobutylicum, 515 C. acetobutylicum
proteins matching to 209 out of those 318 B. subtilis stress
proteins are obtained. We also obtained PPIs from STRING
database, a pre-computed database for the exploration of
protein-protein interactions (PPIs). The 9.05 version of
STRING, which was the newest version at the time of the
study used here, covers approximately 5 million proteins
from 1133 different organisms [73]. We integrated “Ac-
tions” data [which include actions such as inhibition, activa-
tion, reaction, catalysis, post-translational modification,
binding] with the “evidence” data [which include scores for
neighborhood, gene fusion, co-occurrence, co-expression,
experiments, databases and text mining respectively, and a
combined score] of all C. acetobutylicum genes for cytos-
cape analysis [80].

Additional files

Additional file 1: Detailed information for the differentially
expressed genes.

Additional file 2: Supplemental text and figures.

Additional file 3: Detailed information for the 164 significantly
differentially expressed transcriptional regulators.

Additional file 4: Conservation of SRN (transcription factors and
their target genes) in 5 Clostridium species.
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