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Abstract

Background: Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of
the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically
distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with
regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological
mechanisms of each when the goal is to maximize the discovery potential of these data sets.

Results: A multi-step decision tree-based method is described for defining endotypes based on gene expression,
clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative
approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which

accounting for both major determinants of disease.

incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step
decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it
provides easy access to all genes and clinical covariates that distinguish the groups.

Conclusions: The multi-step decision tree method described here will lead to better understanding of complex
disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms
underlying these diseases. This application should be considered a complement to ongoing efforts to better define
and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of
gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby
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Background

Complex diseases, caused by multiple genetic and envi-
ronmental factors acting together, are often difficult to
diagnose, treat, and study due to the limited under-
standing of their mechanistic underpinnings. New ap-
proaches are needed to better understand the biologic
processes that underlie the clinical phenotypic expression
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of complex disease [1]. Study of the associations between
bioindicators and disease outcomes can provide evidence
of early changes preceding disease, which leads to a better
understanding of the mechanistic underpinnings of com-
plex disease [2].

Gene expression microarrays developed over the past
decade represent powerful tools for investigating bio-
logical and disease processes [3]. For example, Sen [4]
summarized the published literature on transcriptional
profiles resulting from exposure of cells or organisms to
complex environmental mixtures such as cigarette
smoke, diesel emissions, urban air, motorcycle exhaust,
carbon black, jet fuel, and metal ore fumes. Relevant to
this study are studies using blood cell gene expression
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analyses to evaluate environmental chemical exposures
[5-7]. Lobenhofer et al. [8] demonstrated the utility of
performing gene expression profiling on whole blood sam-
ples as an effective surrogate for the target organ to clas-
sify compound exposures. They demonstrated the power
to detect not only the presence of liver injury, but also the
potential severity. A significant body of literature now pro-
vides the promise of gene expression in peripheral blood
cells for developing biomarkers of disease [9-11]. To-
gether, these studies suggest that gene expression in peri-
pheral blood cells has a role in deciphering target tissue
effects relevant to both exposure and clinical assessments.
Gene expression studies with “phenotypic anchoring” are
limited but provide more meaningful results than when
either gene expression or phenotypic data is viewed alone
[8,12-14]. Few studies of childhood asthma use gene
expression in peripheral blood cells; however, such data
combined with clinical measurements may provide a more
comprehensive understanding of asthma etiology and
diagnosis.

Childhood asthma is known to involve both genetic and
environmental components with low-level, ubiquitous en-
vironmental exposures contributing substantially [15,16].
Evidence exists for genomic features contributing to
pathogenesis, which in part relates to innate immuno-
logical characteristics such as variation in host defense
genes [17]. Some scientists believe that, as the result of
rapid urbanization over the last few decades, genes pre-
viously protecting humans from parasitic infection may
now contribute to a ‘misdirected’ response to environ-
mental agents [18]. Tools to characterize and unravel
interacting genetic and environmental factors are clearly
required [19,20]. Understanding the contribution of envi-
ronmental factors to disease susceptibility requires a more
comprehensive view of exposure and biological response
than has traditionally been applied.

Various methods have been proposed to identify and
describe the mechanistic underpinning of asthma and
complex airway disease endotypes. Several groups have
defined asthma endotypes based on phenotypes and puta-
tive pathophysiology that was applied to asthma for use in
clinical study design and drug development [21-25].
Cho et al. used clustering algorithms to better define
airway disease, without specifically addressing asthma, by
combining genetic and phenotypic variables with a com-
bination of factor and cluster analysis [26]. However, with
childhood asthma in particular, the phenotypes are varia-
ble, leading to difficulty in linking phenotype information
to endotypes of asthma [27].

Clustering was most successful when applied to severe
asthmatics [28,29]. Weatherall et al. defined distinct cli-
nical phenotypes of airway disease (including asthma) by
cluster analysis [30]. Kelley et al. suggested grouping pa-
tients based on questionnaire responses and skin prick
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tests followed by multivariate regression to determine
whether demographic or potential risk factors varied bet-
ween phenotypes and whether measures of severity varied
by phenotypes [31]. Kelley’s method was successful in de-
fining endotypes but did not lead to greater mechanistic
understanding. Results from the National Heart, Lung,
and Blood Institute’s Severe Asthma Research Program
have shown clustering to be very effective generally [29]
and specifically for children [28]. These methods rely
heavily on existing clinical criteria and are clearly the best
approach when determining diagnostic criteria for asthma
endotypes. However, restricting focus to established cli-
nical criteria is not a viable option when the primary goal
is the discovery of potentially novel mechanisms.

Auffray et al. proposed the use of global genome, tran-
scriptome, proteome, and metabolome data sets collected
in cross-sectional patient cohorts and integrated with bio-
logic and clinical data to develop predictive multi-scale
models, which can be evaluated and expanded using sys-
tematic perturbations of carefully selected animal models
of disease [1]. Many recent studies illustrate the feasibility
of this approach [32]. Gene expression from airway epi-
thelial cells was used to define potential asthma endotypes
[33], which had implications for corticosteroid treatment
[34] and biomarker identification [35]. Similar studies
using induced sputum samples [36], and blood [37,38]
have also provided information about molecular mecha-
nisms underlying different asthma endotypes.

Current methods have been most successful when cha-
racterizing disease using previously established biomarkers
or looking at gene expression in the target tissue such
as airway epithelial cells. In this paper, we present a new
approach focused specifically on the identification of novel
biomarkers and previously unreported mechanisms dri-
ving disease endotypes from blood. This method was
developed using data from the Mechanistic Indicators of
Childhood Asthma (MICA) study [39]. The new method
was developed as a result of the lack of success with tradi-
tional methods such as Student’s t-test, single-data domain
clustering, and the more complex Modk-prototypes algo-
rithm. We evaluate the results from each of the analysis
methods based on segregation of known asthmatics from
non-asthmatics, as well as information provided to sup-
port biological interpretation of the results. Secondly, we
evaluate the impact on the analytical results of how and
when each domain of data is incorporated in each analysis
scheme. Insights of analysis methods with respect to com-
plex disease are presented.

Methods

Study design

This study involved data collected from participants of the
Mechanistic Indicators of Asthma (MICA) study, con-
ducted by the United States Environmental Protection
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Agency between November 2006 and January 2007 in
Detroit, Michigan, as described [39]. This was a cross-
sectional study based on a stratified sample of children
with asthma and children without asthma, selected in an
approximately 1:1 ratio. A total of 205 children age 9-13
years old were enrolled. The study design and protocols
were approved by the Institutional Review Boards at
Henry Ford Health System (Detroit, MI), Westat Inc.
(Rockville, MD), and the University of North Carolina at
Chapel Hill (Chapel Hill, NC — US EPA’s IRB of record).
Written consent was obtained from guardians, and
written assent was obtained from each child, with an oral
review of both consent and assent prior to study enroll-
ment. According to self-reported race, study subjects were
85% African American [39]. Data were collected from
subjects via clinical measurements; observational evalua-
tions by clinicians; and questionnaires distributed to the
parents of subjects. Data pertaining to subjects’ demo-
graphic, physical activity, and medical history were col-
lected through a questionnaire distributed to the parents
of subjects. Gene expression data were compiled to eva-
luate potential biomarkers of asthma.

Clinical and demographic covariates

Within this study, “covariate” (Table 1) describes every
type of data collected except for gene expression and
indicators of health outcome, with the latter being
asthma and allergy status. Clinical measurements col-
lected from blood and lung function test are referred to
as clinical covariates, whilst data collected via the ques-
tionnaire and clinician observations, except for indica-
tors of health outcome, are referred to as demographic
covariates. Covariates consist of a number of clinical
measures of hematologic, immunologic and cardio-
pulmonary variables, body size measures, indicators of
allergy and asthma, and concentration and/or percent
distribution of white blood cells (i.e. eosinophils, mono-
cytes, lymphocytes, neutrophils (Table 1). During the
clinic visit, clinicians evaluated subjects and collected
biospecimens for clinical tests [39].

Each covariate incorporated into the analysis was
selected by a panel of multidisciplinary experts from sta-
tistics, systems biology, epidemiology and toxicology
based solely on the data characteristics. Given the focus
on discovery, no a priori clinical criteria were applied.
The inclusion criteria were completeness (lack of mis-
sing data), sampling distribution (normality was checked
before correlations were calculated), and comparability
with accepted data values based on established clinical
criteria (where available) or data from previous studies.
Based on these criteria, a set of 81 continuous covariates
was selected for consideration in each of the data ana-
lysis methods, including blood chemistry of clinical indi-
cators of allergic disease (Table 1). Care was taken to
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Table 1 List of 81 covariates used in analysis
Category Description Units
Allergen screen **FoodScreen (5 food allergens) KUA/L
**Phadiatop (15 aeoallegens) KUA/L
Total Serum IgE kU/L
Blood Chemistry C-reactive Protein mg/ml
Albumin g/dL
Alkaline Phosphatase IU/L
Serum Glutamic Pyruvic Iu/L
Transaminase
Serum Aspartate Aminotranferase /L
(AST) Serum Glutamic-
Oxaloacetic Transaminase (SGOT)
Albumin/Globulin ratio
Serum Total Bilirubin mg/dL
Serum Blood Urea Nitrogen mg/dL
Serum Blood Urea Nitrogen
Creatinine Ratio
Serum Calcium mg/dL
Serum Chloride mmol/L
Serum Creatinine mg/dL
Serum Ferritin ng/ml
Serum Fibrinogen mg/dL
Serum Gamma-Glutamyl /L
Transpeptidase (GGT)
Serum Total Globulin g/dL
Blood Hematocrit %
Blood Hemoglobin g/DdL
Serum Iron ug/dl
Serum Lactate Dehydrogenase u/L
Plasma Leptin ng/ml
Serum Glycated Hemoglobin %
Serum Glucose mg/dL
Potassium mmol/L
Urine Creatinine mg/dl
Serum Arachidonic Acid ug/ml
Serum Osmolality mOsmol/kg
Serum Phospholipids Mg/dL
Concentration
Serum Phosphorus mg/dL
Serum Total Protein g/dL
Sodium mmol/L
BP Oxygen Saturation %
(Dissolved Oxygen)
CBC White Blood Cell Count K/uL

Basophil percent of sum White
Blood Cells

Eosinophil percent of sum White
Blood Cells

%

%
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Table 1 List of 81 covariates used in analysis (Continued)

Clinic

Hematology

Inflammatory

Lipids

Lung Function

Serum Allergens

Lymphocyte percent of sum
White Blood Cells

Monocyte percent of sum White
Blood Cells

Neutrophils percent of sum
White Blood Cells

Subject Age
Subject Height

Subject Body Mass Index Weight/
height

Subject Weight

Mean of first Two Diastolic Blood
Pressure Measurements

Mean of first two Systolic Blood
Pressure Measurements

Blood Pressure Pulse

Red Blood Cell Count

Platelet Count

Mean Corpuscular Hemoglobin

Mean Corpuscular hemoglobin
concentration

Mean Corpuscular Volume

Red Blood Cell Distribution
Width

Interleukin-4
Serum Total Antioxidant Status

Serum Unbound Iron-Binding
Capacity

Serum Uric Acid

Plasma Average of Reactive
Oxygen Species Measurements
minus Control

High density Lipoprotein
Low density Lipoprotein

Total Cholesterol to High density
Lipoprotein Ratio

Total Cholesterol
Serum Triglycerides
Very Low Density Lipoprotein

Forced Expiratory Flow Between
25% and 75% of Forced
Expiratory Flow

Fractional Exhaled Nitric Oxide

Forced Expiratory Volume /ratio
to Forced Vital Capacity

Peak Expiratory Flow

*Serum Alternaria Alternata
*Serum Aspergillus Fumigatus
*Serum Cat Dander Epithel

*Serum Cladosporium Herbarum

%
%
%

Years
Cm

kg/m?

Kg

mmHg
mmHg

beats/min
M/uL
K/uL

Pg

g/dL

fLxx
%

pg/ml

mmol/L

ug/dl

mg/dL

mg/dL
mg/dL

mg/dL
mg/dL
mag/dL.

ppb
%

(L/min)
kKUA/L
kUA/L
kUA/L
kKUA/L

*Serum Derm Farin Dustmite KUA/L
*Serum Derm Pter Dustmite KUA/L
*Serum Dog Dander KUA/L
*Serum German Cockroach KUA/L
*Serum Mouse Urine Protein KUA/L
*Serum Penicillium Notatum KUA/L
*Serum Rat Urine Protein KUA/L

*Indicates variables not included in the 67 Covariate List. **Indicates variables
that were converted to categorical variables for the 67 Covariate List.
***femtoliters. ****relative luminescence unit.

remove values with a common derivation (such as a
value calculated from a different covariate), but some
correlated biomarkers were retained to fully represent
the potential biology of the system.

The 81 covariates were used for single-domain cluste-
ring and multi-step decision tree methods. Further pro-
cessing of the clinical covariates was performed to remove
indicators of allergic disease for the second clinical cova-
riate single-domain clustering and Modk-prototype algo-
rithm methods as described below (Figure 1).

As discussed previously, childhood asthma is highly
variable in presentation; therefore two indicators of
asthma disease outcome were considered. That is, a child
was considered asthmatic if (1) the clinical records
showed one or more asthma-related emergency depart-
ment visits, two or more asthma-related outpatient visits,
or two or more asthma-related medications and (2) the
child’s parent reported a physician’s diagnosis from the
question “Has a doctor ever diagnosed your child with
asthma” included on the MICA questionnaire. Subjects
with conflicting or incomplete asthma status data were
excluded from the analysis, resulting in 146 subjects with
known asthma status. Subjects reported to have had an
asthma episode within the last 12 months were also con-
sidered when the methods were able to accept multiple
input indicators of asthma.

Gene expression

Blood collected during observational clinic visits was
used for gene expression analysis [39]. Gene expression
was measured using the Affymetrix GeneChip® Human
Genome U133 Plus 2.0 Array by Expression Analysis,
Inc. (www.expressionanalysis.com; Durham, NC). Before
target production, the quality and quantity of each RNA
sample was assessed using a 2100 BioAnalyzer (Agilent).
Target was prepared and hybridized according to the
"Affymetrix Technical Manual". Total RNA (5 ug) was
hybridized with four PNA oligomers whose sequences
are complementary to the 3’ portions of the alpha and
beta hemoglobin RNA transcripts. The PNA oligomers
form stable duplex structures with the globin mRNA
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56000+ Probe pairs

Gene Expression
Preprocessing

Clinical Chemistry
Preprocessing

1279 Probe pairs

’ 81 Clinical Covariates

81 clinical covariates
t-Test
Analysis 1279 Probe Pairs MODK
Allergen
Decision Tree Processing
Gene Selection 67 clinical covariates
+ 2 Allergen statuses
901 Probe Pairs g
Clinical
Gene .
. Covariate
Expression .
. Clustering
Clustering

Figure 1 Data pre-processing workflow for gene expression and clinical data used in each of the analysis methods.

and block the progression of reverse transcriptase. The
inhibition of globin ¢cDNA synthesis dramatically re-
duces the relative amount of anti-sense, biotin-labeled
cRNA corresponding to the hemoglobin transcripts
(http://www.expressionanalysis.com/images/uploads/tech_-
notes/Globin_Tech_Note_final_v2.pdf). RNA was con-
verted into ¢DNA using Reverse Transcriptase
(Invitrogen) and a modified oligo (dT)24 primer that con-
tains T7 promoter sequences (GenSet). After first strand
synthesis, residual RNA was degraded by the addition of
RNaseH and a double-stranded cDNA molecule was gen-
erated using DNA Polymerase I and DNA Ligase. The
¢DNA was then purified and concentrated using a phenol:
chloroform extraction followed by ethanol precipitation.
The cDNA products were incubated with T7 RNA Poly-
merase and biotinylated ribonucleotides using an In Vitro
Transcription kit (Affymetrix). The resultant c(RNA prod-
uct was purified using an RNeasy column (Qiagen) and
quantified with a spectrophotometer. The cRNA target
(20 ug) was incubated at 94°C for 35 minutes in fragmen-
tation buffer (Tris, MgOAc, KOAc). The fragmented
cRNA was diluted in hybridization buffer (MES, NaCl,
EDTA, Tween 20, Herring Sperm DNA, Acetylated BSA)
containing  biotin-labeled OligoB2 and Eukaryotic
Hybridization Controls (Affymetrix). The hybridization
cocktail was denatured at 99°C for 5 minutes, incubated at
45°C for 5 minutes and then injected into a GeneChip
cartridge. The GeneChip array was incubated at 42°C for
at least 16 hours in a rotating oven at 60 rpm. GeneChips
were washed with a series of non-stringent (25°C) and
stringent (50°C) solutions containing variable amounts of
MES, Tween20 and SSPE. The microarrays were then
stained with Streptavidin Phycoerythrin and the fluorescent
signal was amplified using a biotinylated antibody solution.

Fluorescent images were detected in a GeneChip® Scanner
3000 and expression data was extracted using the Gene-
Chip Operating System v 1.1 (Affymetrix). All GeneChips
were scaled to a median intensity setting of 500.

The raw microarray data were subjected to the Reduction
of Invariant Probes (REDI) algorithm to remove data from
unresponsive probes (http://www.expressionanalysis.com/
images/uploads/tech_notes/REDI_Tech_note_final_v2.pdf).
The data were then normalized using the MAS 5.0 soft-
ware [40]. Principal Components Analysis (PCA) identi-
fied a significant sex effect on gene expression globally,
which might dominate the gene expression-covariate cor-
relations, so a standard linear adjustment for the effect of
sex was performed, where the residuals were used for
subsequent analysis. Additional justification for controlling
the effect of sex arises out of the age range of our sub-
jects (9—12 years of age), which spans the national aver-
age age at menarche. Next, genes with lower variation
across our subjects were filtered out of the gender-
adjusted data by selecting only probe sets with an inter-
quartile intensity range (IQR) greater than 2000. This
IQR level was identified as the inflection point in the empir-
ical cumulative distribution of 54675 probe sets having a
significant departure from baseline (See Additional file 1:
Figure S1). Exploring a broad set of IQR thresholds showed
that the chosen value of 2000 allowed diverse genes to pass
the filter (ie. more than just housekeeping genes of ex-
tremely high expression) while avoiding genes with trace
expressional levels that are prone to spurious ratio-based
associations at later steps. Finally, the microarray data were
log2 transformed to pull data into a roughly Gaussian dis-
tribution. Of the more than 56000 probe sets collected for
each subject, a subset of 1279 were selected for use in each
of the methods as described below. Further steps were
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necessary for the gene expression input of the multiple-step
decision tree method (Figure 1).

The microarray data from this publication have been
submitted to the Gene Expression Omnibus (GEO) re-
pository (http://www.ncbi.nlm.nih.gov/geo/) and assigned
the identifier GSE35571.

Analysis methods

Each data analysis method involved different domains of
data at different steps from preprocessing and analysis
to interpretation (Figure 2) as described below.

Traditional methods

Each domain of data was evaluated using 3D scatter-
plots and PCA to determine if there were any outliers.
Two observations were noted 1) simple dimension re-
duction of repetitive or redundant measures was not
possible and 2) one subject appeared to be an outlier in
the covariate data but not in the gene expression data.
As such no outliers were removed. A two-sample t-test
procedure was performed using R multtest package to
determine the consistency of asthma diagnosis using the
null hypothesis that there was no significant difference
between the gene expression intensities of asthmatics
and non-asthmatics with the dataset (http://cran.r-
project.org/web/packages/multtest/index.html). The t-
test procedure was performed using each asthma
definition yielding two lists of differentially expressed
genes at a=0.05. Results were evaluated without mul-
tiple testing correction.

As single domain clustering has previously been shown
as a successful method for understanding disease etiology,
single domain clustering was performed. The ClusterSim
R package was used to search for the optimal clustering
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procedure for each domain of data. ClusterSim identifies
the combination of normalization method, distance
metric and classification method that produces the
highest cluster validity index score considering 2 to 50
possible clusters (http://cran.r-project.org/web/packages/
clusterSim/clusterSim.pdf). The ClusterSim R package
considers the “kmeans”, "single", "complete’, "average’,
"mcquitty”, "median", "centroid", "ward", "pam", and "diana"
classification methods. For these data, the algorithm
considers the manhattan, euclidean, chebychev (max),
squared euclidean, generalized distance measure 1,
Canberra, and Bray-Curtis distance measures. The top
three clustering combinations correspond to the best
values of three internal cluster validity index scores:
maximum Rousseeuw’s Silhouette cluster quality index
[41], maximum Baker and Hubert adaptation of Goodman
and Kruskal’s Gamma statistic [42], and minimum Hubert
and Levine’s internal cluster quality index [43]. The clus-
tering was a result of maximizing the cluster validity index
values and not as the result of outliers.

Given a sample size of 146 subjects, clustering combina-
tions that produce large numbers of clusters, e.g., 50, offer
limited ability to learn mechanistic information because
each cluster is limited to a small number of subjects, e.g.,
three. Conversely, clustering combinations that produce a
small number of clusters, e.g., two, are difficult to interpret
because the variability of each gene or covariate is higher
within clusters having a large number of subjects, e.g.,
75, presumably because different endotypes have been
combined in the cluster. Resulting plots of clusters were
examined visually for separation of asthmatics and non-
asthmatics as well as cluster separation

A similar process was used for clinical and allergic
disease indicator covariates considering 2 to 25 possible

Interpretation

Expression, Clinical Covariates, and Indicators of Disease Status.

Gene Clinical
Expression Covariates
Methods

Single Domain Decision

T-test Clustering MODK Tree
Preprocessing
) GE  CC
Analysis Analysis
GE cc

Figure 2 Data incorporation scheme for each of data analysis method consideration. Shading corresponds to each data domain: Gene
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clusters. Two sets of covariates were used, 81 covariates
and a subset of 67 covariates. The subset of 67 covariates
was considered for comparison to the Modk-prototype al-
gorithms method (refer to Methods: Modk for details).
The top three methods were used to determine the best
clustering, and the covariate data were processed as such
using the identified methods in R. Resulting plots of
clusters were examined visually to evaluate the different
clustering methods with respect to the separation of asth-
matics from non-asthmatics.

Modk

The Modk-prototypes data analysis strategy was a multi-
step process that considered the gene expression, cli-
nical, and disease indicator covariates simultaneously in
a meaningful disease context [12,44]. The original imple-
mentation of the Modk-prototypes algorithm partitions
subjects into their respective disease class groups using
k-means and k-modes clustering over three subjectively
weighted data domains: target organ gene expression,
clinical chemistry, and histopathology. This approach
was adapted for our study by replacing target organ gene
expression with blood gene expression and using allergy
and asthma health outcome indicators in place of histo-
pathology calls.

Table 2 Indicators of disease status

Indicator of Disease Known/Unknown

146/59

Description

Confirmed asthma When parent questionnaire
response to the question
“has a doctor ever
diagnosed this child as
having asthma” was
confirmed through
administrative records
regarding clinic visits and
the prescription of asthma
medication

Labeled Asthmatics and 192/13
Non-Asthmatics reporting
an asthma attack in the last

12 months

Current asthma

Questionnaire-defined 186/19

asthma

Positive response to “has a
doctor ever diagnosed this
child as having asthma” on
parent questionnaire

Positive serum test to a 173/32
panel of at least 15

common allergens

Phadiatop - Atopy/
Allergen screen

Positive serum test to a 190/15
panel of 6 common allergy
provoking foods (cows milk

protein, egg white wheat

codfish peanut and

soybean)

Foodscreen — Food
allergen screen

Column 2 provides a description of each disease indicator. Column 3 shows
the number of subjects for which a given disease status was unknown.
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The first step of the Modk-Prototypes data analysis
strategy was to separate the clinical covariates from the
indicators of allergic health outcome (Table 2). Of the 81
covariates (Table 1), 67 remained as continuous covariates.
The remaining 14 covariates were summarized into two
indicators of allergic disease: phadiatop and foodscreen.
Phadiatop summarizes the subject’s propensity to exhibit
allergic disease due to environmental allergens and food-
screen summarizes the subject’s propensity to exhibit
allergic disease due to food allergens. Phadiatop and food-
screen were transformed into categorical variables with
five levels with the highest level being highly allergic and
the lowest level being not allergic. If a subject was positive
for any of the serum allergens (Table 1), a positive test for
atopy from the panel of allergens (Phadiatop test) was
verified to insure that no information was lost. The allergy
levels were based on the quantiles of the two measure-
ments (See Additional file 1: Table S1).

The nature of the Modk-prototypes algorithm required
the serum allergens to be summarized as categorical vari-
ables whereas the decision tree method did not. More
specifically, many of the serum allergens had a high per-
centage of imputed values where the raw measurements
were below a detectable threshold. Due to the imputation
method used, this resulted in the same value for all indi-
viduals where the actual value was below the detection
limit, which could artificially inflate the measured asso-
ciations among those variables. In addition, most of the
allergen measurements were very highly correlated (i.e. a
subject that has a significant value for one allergen tends
to have a significant value for another allergen throughout
the dataset), which could overweight the influence of the
allergen measurements on the final clustering. As de-
scribed previously, the decision tree method used the full
81-covariate set rather than the 67-covariate subset used
in the Modk method. In that case, the gene/covariate as-
sociations were calculated separately from the classifica-
tion of the asthmatics, which reduced the influence of the
serum allergens by collapsing them into a single gene
cluster.

The next step was to impute all missing continuous
values. There were no missing values in the gene expres-
sion data. Missing clinical values due to missing blood
samples were imputed using mean imputation in the
€1071 R package (http://cran.r-project.org/web/packages/
e1071/index.html). There were 186 total missing values
for 47 out of 67 variables, 2% missingness. There were no
consistent missing values across the subjects. For the
47 variables with missing values, there was on average
4 missing values. Upon evaluation, imputed values did not
contribute to clustering results and were only necessary to
meet the requirements of the Modk-prototypes algorithm.
Next, the final dataset was combined in a tabular format
with the three indicators of asthma health outcome
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and two indicators of allergy health outcome (Table 2)
followed by 67 clinical covariates, and 1279 gene expres-
sion values for each subject annotated to denote the data
domain of each variable.

One of the advantages of using this Modk-prototypes
algorithm is that the data domains can be weighted adap-
tively or subjectively. Subjective weighting was based on
the 15 “expert suggested weighting schemes” from Bushel
et al. [12]. Weighting schemes where the gene expression
or clinical chemistry were 0% were removed as well as
weighting schemes that were within less than 10% of one
another. In all, results shown are for seven separate sum-
mative weighting schemes including an adaptive weighting
scheme where the weight of each data domain is deter-
mined within the algorithm and adjusted at each iteration
of the algorithm to maximize the objective function based
on cluster quality (Table 3) [44]. Specifically, the objective
function is constructed with the sum of the squared
Euclidean distances for numeric microarray and clinical
chemistry data and simple matching for categorical values
in order to measure dissimilarity of the samples. The
Modk-algorithm was implemented in Matlab with slight
modifications from the original code to allow larger data-
sets to be processed across multiple workstations in a pa-
rallel manner (available upon request from PRB). One run
of the Modk algorithm at a specified weighting scheme
produced a gene expression, clinical covariate, and indica-
tor of disease prototype for each cluster. The segregation
accuracy of each weighting scheme was calculated to-
gether with the number of predicted classes of asthmatics
and non-asthmatics.

Next, the best-suited weighting schemes were selected
based on the segregation accuracy. The prototypes for
gene expression and clinical covariates were standard-
ized to z-scores. Subsequently, statistically significant
biomarkers, defined by a=0.05, and significant clinical
biomarkers, defined as clinical covariates that fall more
than 1 standard deviation from their overall mean, were

Table 3 Modk-prototypes weighting schemes

Gene expression  Clinical covariates Indicators of disease status

33 33 33

20 40 40

40 20 40

50 50 0

30 60 10

60 30 10

40 40 20
Adaptive Adaptive Adaptive

The Modk algorithm was run with 7 pre-defined weighting schemes. This table
shows the combinations of gene expression, clinical covariates, and disease
indicator weighting for each run. For the adaptive weighting scheme, the
weights were determined by the algorithm as described in the methods.
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identified. Gene covariates were considered in the same
manner.

Decision tree

The multi -step decision tree method was implemented
in R and consists of four sequential steps (Figure 3). The
first step was to calculate the correlation of each cova-
riate with each gene expression variable, which resulted
in a distribution of Pearson correlation test statistics
(81 covariates x 1279 IQR-filtered genes). In order to
correct for the multiple covariate tests, we applied a
p-value threshold that included a Bonferroni correction
of 0.05/81=0.0006, which roughly corresponds to a cor-
relation greater than 0.23. This process resulted in a list
of 901 genes whose expression was significantly asso-
ciated with at least one of the 81 covariates selected for
this analysis.

Second, to reveal patterns in the gene-covariate cor-
relation, unsupervised hierarchical clustering (complete
linkage) was performed using the absolute correlation
values [0, 1] for 901 significantly covariate-associated
genes. Clustering revealed eleven groups of genes in
which mRNA expression is related to distinct sets of
covariates.

Third, the genes in these eleven groups/clusters were
used as the basis for constructing metagenes that sum-
marize information content across all gene expression
variables in each of the cluster groups. The metagenes
were built by performing eleven separate principal com-
ponents analyses (PCA) on the expression data for each
gene cluster identified above. All principal components
(PCs) explaining at least 5% of the variance for a cluster
were considered in subsequent steps. Each of these PCs
was then considered a metagene (because it summarized
the expression of a set of genes) in all subsequent ana-
lyses. Formally, each metagene is a vector that summa-
rizes the combination of weights (loadings) by which the
gene expression variables in that cluster are multiplied
to yield subject-wise PCs. For the eleven clusters in
Supplemental Figure 1 (See Additional file 1), the num-
ber of significant metagenes (PCs meeting the minimum
variance criterion) for clusters A through K, respectively,
were: 3, 6, 4, 2, 3, 3, 3, 4, 2, 2, 2. Metagenes were named
according to gene-covariate cluster and principal com-
ponent number (e.g. F-2 for the second principal com-
ponent (PC) from the PCA on genes in cluster F). While
the first PC explains the most variance in gene expres-
sion, lower PCs (exceeding our variance threshold) were
retained in order to capture different aspects of cluster
variance.

Finally, in order to identify asthma endotypes, decision
trees were built from the meta-genes to segregate subjects
according to covariate-associated gene expression pat-
terns. The Weka implementation of the C4.5 algorithm
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Figure 3 Multistep decision tree method.
A

. Cluster genes according to common
correlation with covariates

. Reduce dimensionality of each cluster
via Principal Components Analysis

. Iterate through all clusters, then use
superset of all PCs as metagenes for
decision tree

was used (http://www.cs.waikato.ac.nz/ml/weka/) [41,45].
Trees were built to segregate subjects based on asthma
status, and a minimum of 14 subjects per terminal leaf
was specified (chosen to assure that leaves contained at
least 10% of the total subject pool). This recursive parti-
tioning algorithm proceeds by identifying the attribute
(metagene) whose split provides the greatest Information
Gain (reduction in entropy of asthma status) across all
subjects. Starting with the initial split, the algorithm con-
tinues growing a tree whose branches are defined by
metagenes until splits no longer improve Information
Gain or result in leaves containing fewer than 14 subjects.
An estimate of predictive ability was obtained by running
10,000 bootstrapped (resampled with replacement) sam-
ples through the tree. While alternative tree construction
methods, such as Random Forests [46], could have been
used, standard decision trees were chosen to keep the
focus on our goal of interpretability. Alternative methods
that rely on bagging or boosting generate aggregate mo-
dels that must be statistically parsed to obtain final
models, while the trees built here provide a straight-
forward model of meta-gene interactions.

Results and discussion

We have developed a new method to address situations
where discovery of novel biological mechanisms is the
primary focus. Approaches such as the one described
here should complement those used to build better

diagnostic criteria based on known clinical criteria as
our results should provide novel biomarkers for that
purpose. With this discovery focus in mind, our new
multi-step decision tree was evaluated as an alternative to
traditional methods.

Three domains of data were considered: 1) gene expres-
sion; 2) clinical covariates; and 3) indicators of health
outcomes.

Traditional methods

A two-sample t-test procedure was performed for each of
two asthma indicator variables (Table 2 - Current Asthma,
Confirmed Asthma) to test the null hypothesis of no sig-
nificant difference between the gene expression intensities
of asthmatics and non-asthmatics for the 146 subjects for
1279 genes selected for analysis. After correcting for mul-
tiple testing, no genes met the significance threshold for
either case. Comparing the uncorrected gene lists showed
very little overlap between the two lists. Results with the
T test might have been improved by accounting for dif-
ferences in the underlying cell types across samples. How-
ever, it has previously been established that asthma is a
syndrome consisting of multiple, mechanistically distinct
endotypes [23,25,47,48]. Without previous knowledge of
how the subjects group by endotype, it is likely that vari-
ability associated with mechanistic differences among sub-
jects would be at least as great as that due to changes in
cell type. In addition, since the changes in cell type might
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themselves be indicators of mechanistic differences among
the asthmatics, accounting for these differences during
the interpretation phase was deemed more appropriate.

Previously, clustering has been successful in defining
subtypes of complex disease [22,26,28,29,33,36]. Often the
limitation of clustering is the inability to choose the best
parameters and clustering methods. For this reason, the
combination of normalization method, distance metric,
and classification method was selected to produce the
highest cluster validity index score. The three most opti-
mal combinations were determined using three internal
cluster quality index values: 1) maximum Rousseeuw’s
Silhouette cluster quality index [41]; 2) maximum Baker
and Hubert adaptation of Goodman and Kruskal's Gamma
statistic [42] and 3) minimum Hubert and Levine’s in-
ternal cluster quality index [43]. Additional combinations
were evaluated that produced more reasonable numbers
based on a priori information for determining endotypes
of childhood asthma. Single-domain clustering was per-
formed separately for each continuous domain, gene ex-
pression and clinical covariate.

Cluster validity testing suggested that the best gene ex-
pression clustering occurred with 2 or 50 clusters depen-
ding on the distance measure and clustering method used
(Table 4). As shown in Figure 4A-B, the Silhouette and
Baker &Hubert clusterings resulted in two groups, one
composed of all subjects except one with no separation
between asthmatics and non-asthmatics. The Hubert &
Levine clustering resulted in 50 non-distinct groups com-
posed of both asthmatics and non-asthmatics (Figure 4C).
Further exploration of clustering combinations (sum-
marized in Table 4) yielded similar results (Figure 4D-F).
The clusters were not distinct for the number of asth-
matics and non-asthmatics or levels of allergic disease
(not shown).

Clinical covariate domain clustering was performed
using all 81 clinical covariates and separately with a subset
of 67 covariates for comparison to the multi-domain
Modk method (see Methods). Cluster validity testing
when using 81 covariates suggested that the best clinical
chemistry clustering occurred with 2 or 25 (Table 5). The
Silhouette clustering yielded two distinct and balanced
clusters, however, they were both equally composed of
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asthmatics and non-asthmatics (Figure 5A). The Baker &
Hubert clustering yielded two clusters with one containing
a single subject, also seen in the gene expression results
(Figure 5B). The Hubert & Levine clustering yielded 25
clusters (Figure 5C). Some of the clusters were all asth-
matics and non-asthmatics, however, the well-segregated
groups were composed of less than five subjects each
(See Additional file 1: Table S2). While this represents a
better segregation of asthmatics and non-asthmatics than
seen with the gene expression, the group sizes are inade-
quate for meaningful interpretation. Less optimal cluste-
ring combinations were chosen using 81 covariates based
on index values to ascertain whether there were cluster
counts that were more suitable for asthma segregation
and mechanistic interpretation (Figure 5 D-F). These clus-
tering combinations yielded one clearly non-asthmatic
cluster and several other equally non-asthmatic and asth-
matic clusters. The use of 67 covariates yielded similar
results (Table 6, Figure 6, and See Additional file 1:
Table S3). One individual was a constant outlier (based on
the clustering results) through each of the clustering
methods (i.e. the only individual in the cluster). However,
this individual did not meet any of the standard metrics
for defining outliers. To determine if this potential outlier
was deterministic in the clustering results, the individual
was removed and the clustering repeated. The resulting
clusters still did not segregate asthmatics from non-
asthmatics. Since the individual could not be defined as an
outlier by any formal test, the original results including
this individual are shown.

Single domain clustering is limited for discovery-
focused applications because it only incorporates one
domain of data during the analysis stage and relies upon
the indicators of health outcome only in the interpretation
stage. This requires careful selection of the appropriate
variables ahead of time, which reduces the discovery po-
tential of the technique. Both the gene expression and
clinical domain clustering are less successful than other
methods because of the nature of complex disease with its
multiple contributing factors. Even when clustering com-
binations yielded reasonable clustering (more than two
clusters) the clusters had little separation and multiple
contributing factors, i.e. large numbers of genes and

Table 4 Top ranking gene expression clustering methods from clusterSim

Index metric Index value Distance measure Clustering method No. of clusters
Silhouette 0.6325 Manhattan Hierarchical - Single linkage 2
Baker & Hubert 1 Manhattan Hierarchical — Single linkage 2
Hubert & Levine 0.0615 Generalized Distance Measure Hierarchical - Complete linkage 50
Generalized Distance Measure Hierarchical - Complete linkage 14
Generalized Distance Measure Hierarchical - Complete linkage 12

The optimal distance measure and clustering method using three separate indices are shown along with the associated index value in each case. Where no index
metric or value is given, an attempt was made to create more informative clusters rather than optimize a clustering index.
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Figure 4 Scatterplots for each of the Gene Expression Clustering methods (Table 2); A: Silhouette, B: Baker & Hubert, C: Hubert &
Levine, D-E: Additional clustering Combinations. Colors are representative of individual clusters.

clinical covariates that defined each cluster. Hence, these
unsupervised methods have limited ability to explain the
underlying etiology of unknown endotypes.

While clustering approaches were not optimal for the
experimental design from this case study, there are exam-
ples of the successful use of this approach for defining
asthma endotypes. Recent examples relied on a priori
selection of a limited set of variables with a known rela-
tionship to the outcome [22,28,29]. This variable selection
method limits the discovery capability of the method,
however, and the methods described below try to strike a
more even balance between guiding the results via the use
of covariates of general relevance without restricting the

variables to the point of no longer allowing the data to
drive the endotype assignments. Clustering will also be
more effective in cases where the molecular differences
among the samples collected are heavily influenced by
the outcome of interest. For asthma, this would include
BALF cells [33] or induced sputum [36]. Those studies
also restricted their population to asthmatics thereby
increasing the likelihood that changes observed would
reflect differences among endotypes but reducing their
ability to evaluate the segregation based on separation
of asthmatics and non-asthmatics. While asthma does
provide an opportunity for evaluating samples collected
directly from the target organ in human subjects, many

Table 5 Top ranking 81 covariate clustering methods from clusterSim

Index metric Index value Distance measure Clustering method No. of clusters
Silhouette 0.6662 Generalized Distance Measure Partitioning Around Medoids 2
Baker & Hubert 0.9954 Chebyschev Hierarchical - Single linkage 2
Hubert & Levine 0.0290 Generalized Distance Measure Hierarchical - Complete linkage 25
Generalized Distance Measure Hierarchical - Average linkage 11
Generalized Distance Measure Hierarchical - Average linkage 14
Generalized Distance Measure Hierarchical - Average linkage 12

The optimal distance measure and clustering method using three separate indices are shown along with the associated index value in each case. Where no index
metric or value is given, an attempt was made to create more informative clusters rather than optimize a clustering index.



Williams-DeVane et al. BMC Systems Biology 2013, 7:119
http://www.biomedcentral.com/1752-0509/7/119

Page 12 of 19

A B C
4 | | o ™ L \ .«
t I" = = : A \ i PR
. - HEEN
pr L ] 15 -
e = v .. D BB S ERP
v |1 » g- « | - g. . ‘t L {.a [ ]
o rgte e | s o | T e
 EERALEC | EMLENCEC  Emtanvmcms il | S
grrtrreeey | grztrreeee | ptiumm——
D E F
:.\ .-'* ol ] e L]
i A . EEE < S N "gg- -
.:;‘. .l .. :;;. .l n ;. .. ®
v U j ‘- . i : ‘. . i : xl
: 'H i I"H o L ] H «
:/ * ?‘. ® 1 ® 9‘ ® : * ?\ ®
./ A © ./ (9
2777TreeTe | gzrtrreess | grztrrreee,

of individual clusters.

Figure 5 Scatterplots for each of the 81 Clinical Covariate Clustering Methods (Table 3); A: Silhouette, B: Baker & Hubert, C: Hubert &
Levine, D: Prespecified cluster count = 11, E: Prespecified cluster count = 12, F: Prespecified cluster count = 14. Colors are representative

complex diseases do not, so methods that can leverage
blood and other surrogate matrices are important.

Multiple domains

Given that existing methods are suboptimal when at-
tempting to define novel disease endotypes, we deve-
loped a multi-step decision tree method that attempts to
integrate clinical markers, gene expression data, and dis-
ease indicators for endotype discovery. The method was
designed to maximize the links between the resulting
endotypes and the clinical markers and genes most
associated with that endotype. For comparison, we also
tried the Modk-prototypes algorithm, which has pre-
viously been used successfully to link gene expression

and clinical markers to histopathology results in re-
sponse to chemicals.

The decision tree method incorporates gene expression
and clinical chemistry in a preprocessing stage, disease
status and gene expression in an analysis stage, and all
three data domains in the interpretation stage (Figure 2).
This method seeks to balance the influence of clinical
covariates and disease status to maximize the probably of
identifying disease mechanisms while simultaneously
minimizing the bias against novel biological processes.
The incorporation of covariates with known association
to disease in the preprocessing step guides the clustering
of genes to disease-relevant pathways without explicitly
including the disease status. The disease status is

Table 6 Top ranking 67 covariate clustering methods from clusterSim

Index metric Index value Distance measure Clustering method No. of clusters
Silhouette 0.6692 Generalized Distance Measure Partitioning Around Medoids 2
Baker & Hubert 09122 Chebyschev Hierarchical - Single linkage 2
Hubert & Levine 0.0279 Generalized Distance Measure Partitioning Around Medoids 24
Generalized Distance Measure Hierarchical - Average linkage 8
Generalized Distance Measure Hierarchical - Average linkage 14
Generalized Distance Measure Hierarchical - Average linkage 13

The optimal distance measure and clustering method using three separate indices are shown along with the associated index value in each case. Where no index
metric or value is given, an attempt was made to create more informative clusters rather than optimize a clustering index.
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Figure 6 Scatterplots for each of the 67 Clinical Covariate Clustering Methods (Table 4); A: Silhouette, B: Baker & Hubert, C: Hubert &
Levine, D: Prespecified cluster count = 11, E: Prespecified cluster count = 12, F: Prespecified cluster count = 14. Colors are representative

incorporated in the analysis stage to identify those gene
clusters that best segregate asthmatics into distinct groups.

To enhance our ability to interpret the mechanistic basis
underlying different asthma endotypes, the information
contained in each cluster of genes was first summarized
using Principal Components Analysis (PCA) prior to our
considering the asthma phenotype (Figure 3). Starting
with the clusters as crude groupings of associated genes,
we used PCA to segregate each of these into several prin-
cipal components (PCs), thus resolving the clusters into
subclusters. Another option would have been to set a
lower cut point on the original dendrogram; however, we
chose not to use that approach because a cut point that
low on the tree would likely separate many genes that
should be considered together. The PCA method, how-
ever, provided a “fuzzy” sub-clustering within our main
clusters, that is, each gene had the opportunity to contrib-
ute to more than one PC.

The Modk-prototypes algorithm partitions subjects
into their respective disease class groups using k-means
and k-modes clustering over three subjectively weighted
data domains : gene expression, clinical chemistry, and
histopathology or disease status [12,44]. For this study,
the three domains of data were blood gene expression
data, the clinical covariates, and the allergy and asthma
health outcome indicators. This represents the only

completely integrated analysis that incorporates all three
data streams in a single step (Figure 2). As with the
decision tree method, genes and clinical covariates that
heavily influence the clusters are readily obtained, though
the direction and magnitude of the influence is less readily
extracted. The influence of disease status can be adjusted
when using a pre-defined weighting scheme, but this
introduces the problem of how to choose a weighting
scheme a priori. For this study, the Modk-protypes
method was performed using seven pre-defined summa-
tive weighting schemes and one weighting scheme deter-
mined via adaptive weighting based on the maximization
of the objective function (Table 3).

The classification accuracy of the various weighting
schemes is compared with that for the decision tree
method in Table 7. Four Modk-prototypes weighting
schemes yielded 65% or better accuracy, but the overall
accuracy of the decision tree was the highest at 78%.
Unlike the single-domain clustering methods, both the
Modk-prototype weighting schemes and decision tree
optimally yielded between 7 and 12 clusters with ap-
proximately half asthmatic clusters in all cases (Table 7).
The accuracy of each asthmatic cluster or leaf from
those methods resulting in at least 65% overall accuracy
are shown in Table 8. Low accuracy may be indicative of
a cluster that could be split into separate groups or a
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Table 7 Accuracy per Method/Weighting scheme
Method

Classification % Groups Asthmatic/Non-Asthmatic

33/33/33 65 4/5
20/40/40 66 3/4
40/20/40 67 6/6
50/50/0 56 2/4
30/60/10 61 3/3
60/30/10 63 4/8
40/40/20 66 4/8
Adaptive 60 1/3
Decision 78 4/4

The weighting schemes are shown as Gene Expression Domain Weighting/
Clinical Covariate Domain Weighting/Indicators of Disease Status Domain
Weighting. Column 2 shows the percentage of subjects correctly classified by
asthma status after assigning asthma status based on the majority of subjects
in the group. Column 3 shows the number of asthmatic and non-asthmatics
groups respectively using this definition. Entries in bold represent those
methods showing at least 65% accuracy. Information on the classification
accuracy of the individual asthmatic clusters for these methods is shown

in Table 8.

Table 8 Accuracy per asthmatic leaf for each Modk
weighting scheme and the multi-step decision
tree method

Weighting scheme Cluster/Leaf number % Correct
33/33/33 1 84
58
88
67
68
83
67
73
90
55
100
56
57
86
70
60
100
90
71
5 60
8 73

The weighting schemes are shown as Gene Expression Domain Weighting/
Clinical Covariate Domain Weighting/Indicators of Disease Status Domain
Weighting. Methods with at least 65% overall accuracy were evaluated based
on the accuracy of the individual asthma groups. Column 2 shows the cluster
number from the original output. Missing numbers represent non-asthmatic
clusters. Column 3 shows the percentage of asthmatics in each asthma group.
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cluster for which the data are insufficient to describe the
mechanistic basis of disease in those individuals. While
the decision tree had a better overall accuracy, the per-
formance of a couple of the Modk-prototypes weighting
schemes was slightly better when considering only the
more highly accurate asthmatic clusters. While this is
arguably more important than overall accuracy since the
goal is mechanistic insight rather than development of a
classifier, how to objectively select the optimal weighting
scheme is a persistent challenge.

The multiple domain methods were better able to seg-
regate asthmatics and non-asthmatics compared to the
single-domain methods because disease status informa-
tion was explicitly used to define the subject groups.
The importance of incorporating health outcome indi-
cators becomes apparent by comparing the accuracy of
the resulting cluster from the seven differing weighting
schemes. The weighting schemes that incorporate health
outcome indicators at less than 20% are less successful
than those that incorporate them at higher percentages.
In contrast, even when the percentage of weight given to
gene expression and clinical covariates are reversed,
there is no significant gain in accuracy with regard to
the percentage of asthmatics that are correctly labeled as
asthmatic by the Modk-prototypes method.

In comparison to the other methods, multiple domain
methods provided the greatest information with respect to
identifying asthma endotypes. The two multiple domain
methods differ in how and at what stage the domains of
data are incorporated (Figure 2). The two methods give
similar results, groups of asthmatics and non-asthmatics
based on the indicators of health outcome. Each method
distributes the subjects slightly differently across different
leaves and clusters (See Additional file 1: Table S4A-J).
However, the decision tree and Modk-prototypes methods
agree 84% of the time with regard to asthmatic or non-
asthmatic asthma calls.

Modk-prototypes are able to classify both asthmatic and
non-asthmatics with some success. However, understan-
ding the variables that contribute to each cluster is as
difficult as with single-domain clustering. The resulting
prototypes can be analyzed using methods such as factor
or principal components analysis; however, there are many
variables that contribute to each cluster. Each weighting
scheme resulted in a defined list of key genes that con-
tributed to the clustering. This list of key genes was
not duplicative between the higher accuracy weighting
schemes leading to additional difficulty in the interpre-
tation process. If one weighting scheme was considerably
more accurate or if the adaptive weighting scheme had
been as accurate, it would be possible to use the key gene
list to reduce the numbers of genes considered in the
interpretation stage or focus the interpretation. To select
a single user-defined weighting scheme under these
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circumstances, however, could have introduced a user bias
in the interpretation step.

The Modk method was originally designed to cluster
biological samples (i.e., microarray gene expression data,
phenotypic variables such as clinical chemistry evalua-
tions, and histopathology observations) from perturbation
studies in target organs or studies of disease where there
is an acute event, i.e., chest pain for the study of heart
disease. The MICA study, however, was an observational
study where no acute event occurred before sample col-
lection. Gene expression in blood cells reflects many
influences (e.g., time and content of your last meal, medi-
cations), most of which have nothing to do with disease
[49]; of disease related influences, only a subset will relate
specifically to asthma. Due to the additional variability in
MICA attributed to the use of blood gene expression in
lieu of lung gene expression and lack of an acute event
before data collection, the decision tree method outper-
formed the Modk method in this study. However, the
Modk method would likely outperform the decision tree
method in cases better matched to its intended experi-
mental design.

The multi-step decision tree method has several advan-
tages for endotype discovery and characterization for
experimental designs like the MICA childhood asthma
study. This method showed the best segregation of asth-
matics from non-asthmatics of all methods tested. More-
over, the decision tree method is advantageous because of
its incorporation of clinical and gene expression data into
the preprocessing stage, which leads to the reduction of
the dataset to 380 gene variables. This dimension reduc-
tion gives the method more power while retaining the
structure of the gene expression data in relation to the
clinical covariate data. Further, the multi-step decision tree
method retains the information used to determine each of
the leaves. This characteristic makes them much easier to
interpret than less transparent methods. By aggregating
the gene expression and clinical data prior to generating
the decision tree, we enhance this interpretability by pro-
viding a rich set of biological information from which to
define potential mechanisms underlying the segregation of
endotypes. Multiple domain methods, multi-step decision
tree, and Modk, are all somewhat reliant on the varied
manner in which asthma status was defined in this case
study, but they have the flexibility to overcome labeling
errors that cause too much noise in other methods, e.g.,
t-test method. Subsequent analysis has also shown that
the decision tree method can distinguish known endo-
types of childhood asthma in a purely data-driven manner
while highlighting potentially novel endotypes (Reif et al.,
in preparation).

The multi-step decision tree approach was superior to
all other methods for the case study considered here.
However, this method should be cautiously applied to
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other complex disease problems. For example, the multi-
step decision tree method can be severely limited by in-
correctly selecting the clinical covariates for the analysis.
The exclusion of important or inclusion of misleading
covariates may bias the selected gene expression data.
Each clinical covariate must be considered individually for
accuracy and probable relationship to disease processes.
Highly correlated markers can also unduly influence the
clustering of the gene expression data and bias the resul-
ting metagenes in favor of certain biological processes.
Conversely, reducing the clinical covariates based solely
on correlation can ignore distinct biological processes
where the correlation is informative for endotype defi-
nition. The key is to ensure that the clinical measures are
not biased towards selecting too many covariates related
to one disease process, e.g., selecting only clinical markers
of inflammation. Further, it is important not to have dupli-
cative measures of one clinical marker, such as measures
of the same metabolite in urine and blood, unless there
are duplicative measures for all clinical markers because
the gene expression data could, as a result, be biased. We
used a range of clinical variables including immunological,
blood chemistry and hematological indicators and at-
tempted to reduce correlated markers without restricting
the biological space being interrogated.

Implications for GWAS, EWAS, and exposomics

In the postgenomic era, the primary focus of complex
disease-related research such as age-related macular de-
generation (AMD), Type I and II diabetes, inflammatory
bowel disease, cardiovascular disease, and asthma has
been on understanding the genetic susceptibility and
heritability of the disease. Genome-wide association
(GWAS) mapping and other similar efforts have been
applied with increasing success [50-54]. Despite these
rapid advances, challenges remain in interpreting the
massive amount of genomic variation data to 1) identify
susceptibility genes associated with particular complex
diseases and 2) understand the underlying etiology of
the complex diseases. Beyond GWAS approaches, li-
mited insight has been gained by applying other genetic
approaches to study complex disease [55]. There are
innate limitations to studies that consider only genetic
data, mainly because contributions from single genes
are often limited and genetic studies generally do not
offer clues about the functional context of a gene asso-
ciated with a complex disorder. Approaches like the
multi-step decision tree described here should comple-
ment the ever-growing number of genetic associations
by providing additional mechanistic information for
interpreting those results. In addition, a better definition
of mechanistically distinct subtypes of complex diseases
will greatly enhance the power and value of the GWAS
approach [56].
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The search for causal factors in complex diseases is also
complicated by the fact that genetic drivers likely account
for less than 30% of the increased risk for those individuals
who develop common diseases in western society [57].
Wild has proposed the concept of an exposome that rep-
resents all environmental (i.e. non-genetic) contributors to
disease received by an individual during life [58]. Enthu-
siasm for this concept has increased in large part due to
emerging technologies that provide this new generation of
exposure information [59]. Rappaport and Smith further
consider the exposome paradigm as a comprehensive and
quantitative view of environmental exposure to include
biomarkers representing internal processes such as in-
flammation, lipid peroxidation, and preexisting disease
[60]. They propose a strategy that would measure all
chemicals (or products of downstream processing or
effects, i.e., read-outs or signatures) in a subject’s blood.
Although few studies have applied a true discovery-based
exposomic approach [61], methods are being investigated
[62,63] and momentum is building around this concept
[64]. As EWAS [62] and exposome [58], studies become
the norm, they will complement GWAS studies and pro-
vide a more complete picture of underlying drivers of
disease.

As experiments are designed to integrate these data
streams, several aspects from the current case study
should be considered. Measurements chosen for relevance
to the disease being studied are needed in addition to top-
down driven strategies for novel biomarker discovery.
These measurements will help to ground the analysis as
they did for the gene expression data in this study. In this
study, clinical covariates with known or suspected rela-
tionships to asthma were used to improve the analysis. By
leveraging covariates that are expected to relate in some
way to asthma, we are able to identify those gene expres-
sion changes that are relevant for our phenotype without
sacrificing the exploratory nature of the study. Defining
endotypes for any complex disease will be an iterative
process by which additional informative covariates are
added to each study as we better understand the disease.
The incorporation of metabolomic and proteomic mea-
sures, as proposed for the exposome, will increase the
discovery potential and minimize the bias introduced by
the directed covariate selection. The most important
aspect, however, is the data-driven nature of the disease
characterization. Discovery-driven methods such as the
multi-step decision tree, will make it possible to move
towards more mechanism-based clinical biomarkers of
disease and thereby reduce our reliance on diagnostic cri-
teria that are tied too closely to symptoms. In fact, it has
been said for asthma that the biggest advance yet to come
is not the realization of “personalized medicine” but in-
stead the “better characterisation of the phenotype that
can be linked to genetic characterisation” [65].
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Compatibilities with other systems biology approaches
For this case study, we considered simple correlations
rather than more advanced statistical assessments in de-
termining gene/covariate associations [56,66,67]. Given
the other factors being studied, the selection of a simple
correlation metric allowed us to focus on the unique
aspects of this approach without the additional consi-
derations of more sophisticated association methods.
Bayesian networks [68-70], Boolean networks [71-73], and
mutual information criteria [69,74-76] have all been suc-
cessfully used in similar situations, and the analysis me-
thods described here should be compatible with all of
these methods. Bayesian approaches in particular are at-
tractive in their ability to incorporate prior information
[77,78] as has been demonstrated with genetics studies
[79]. As we consider the iterative nature of this analysis,
the incorporation of prior information in a Bayesian
framework seems a logical next step.

Conclusions
A better understanding of complex disease relies on the
integration of all available domains of data. There are
gene-gene, gene-covariate, covariate-covariate interactions
that are lost when one variable is considered at a time
(t-test) or one domain at a time (single-domain cluste-
ring). The decision tree method applies these interactions
between the domains as a tool for dimension reduction
resulting in a more accurate model that is easily interpre-
table. The application and usefulness of models created to
increase understanding of complex disease are dependent
on the available data and the manner in which these data
are incorporated into the model (Figure 2). In particular,
much care was taken to incorporate both the covariate
information and asthma status in a way that would guide
discoveries toward those most informative for distingui-
shing asthma endotypes while at the same time mini-
mizing the bias against discovery of novel mechanisms
associated with a heavy reliance on known asthma etiology.
Several considerations drove the development of the
multi-step decision tree method. The first consideration
was the segregation of known asthmatics and non-
asthmatics. The earlier in the analysis the covariate on
which you want to segregate is introduced, the more in-
fluence it will have and the more likely that optimal segre-
gation will be achieved. However, this must be balanced
with avoiding undue influence on the natural segregation
of individuals based on the mechanistic drivers of interest.
We adopted a multi-step analysis pipeline largely to ad-
dress this particular issue. The second consideration was
ease of interpretation. Decision trees are particularly
powerful with respect to interpretation since the process
is completely transparent to the user. The final consi-
deration was the amount of mechanistic information
revealed by the different methods. By pre-assembling our
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gene expression and covariate information, we carried all
gene annotation and knowledge regarding the biological
pathways associated with the covariates into the interpre-
tation phase. This greatly increased our ability to translate
the branches from our decision tree into biological in-
sights. As a result, we believe our multi-step decision tree
method represents a novel approach to the discovery of
new mechanisms underlying complex disease and comple-
ments existing methods that convert these mechanistic in-
sights into informative biomarkers for the diagnosis of
disease.
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