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Abstract

Background: The process of drug discovery and development is time-consuming and costly, and the probability of
success is low. Therefore, there is rising interest in repositioning existing drugs for new medical indications. When
successful, this process reduces the risk of failure and costs associated with de novo drug development. However, in
many cases, new indications of existing drugs have been found serendipitously. Thus there is a clear need for
establishment of rational methods for drug repositioning.

Results: In this study, we have established a database we call “PharmDB” which integrates data associated with disease
indications, drug development, and associated proteins, and known interactions extracted from various established
databases. To explore linkages of known drugs to diseases of interest from within PharmDB, we designed the Shared
Neighborhood Scoring (SNS) algorithm. And to facilitate exploration of tripartite (Drug-Protein-Disease) network, we
developed a graphical data visualization software program called phExplorer, which allows us to browse PharmDB data
in an interactive and dynamic manner. We validated this knowledge-based tool kit, by identifying a potential
application of a hypertension drug, benzthiazide (TBZT), to induce lung cancer cell death.

Conclusions: By combining PharmDB, an integrated tripartite database, with Shared Neighborhood Scoring (SNS)
algorithm, we developed a knowledge platform to rationally identify new indications for known FDA approved
drugs, which can be customized to specific projects using manual curation. The data in PharmDB is open access
and can be easily explored with phExplorer and accessed via BioMart web service (http://www.i-pharm.org/, http://
biomart.i-pharm.org/).
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Background
Modern drug discovery is time-consuming and expensive,
involving coordinated multi-disciplinary research in mul-
tiple stages, each requiring intensive and specialized
resources [1]. Although rapid advancement of “omics”
approaches, computational systems biology and accumu-
lation of digital data resources have provided a vast array
of significant information in life science [2], data relevant
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reproduction in any medium, provided the or
to drug discovery are not easily identified and recruited
for application to pharmaceutical research [3]. Despite the
technological advances in drug discovery such as HTS, the
approval of new drugs has remained stagnant in the past
decade, resulting in an overall decline in the productivity
of` the pharmaceutical industry.
In efforts to save development time and minimize the

risk of failure during drug develo pment, repositioning of
currently available drugs to new therapeutic indications
is considered an alternative route [1]. To date most repo-
sitioned drugs have been the consequence of serendipit-
ous observations of unexpected efficacy and side effects
of drugs in development or on the market. However, re-
cently, systems biology approaches have been applied in
efforts to discover unknown effects for existing drugs.
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For instance, drug repositioning approaches have incor-
porated in silico approaches for analyzing large data sets
such as gene expression profiles [4,5], literature mining
[6], chemical similarity [7], side-effect similarity [8],
disease-drug network [9], pathway-based disease network
[10], and phenotypic disease network [11]. To establish a
more logical approach to repositioning a known drug to
a new indication, we established a knowledge plat-
form comprising binary linkages between diseases,
drugs, and proteins, from which new and previously un-
known connections can be drawn between drugs and dis-
eases of interest. This integrated database was designated
PharmDB.
For probing the database and identifying disease-drug

linkages, we have developed the Shared Neighborhood
Scoring (SNS) algorithm, which predicts relationships
between drugs, proteins and diseases. While the relation-
ship data are collected from experiments, coverage of the
data is still incomplete. Thus there may be undetected
links and hidden nodes in the network. Up to now, a
number of prediction methods and measures have been
proposed to find these undetected associations from
topological or structural properties of various complex
networks [12,13]. To date, most of these algorithms and
measures are applicable only to a monopartite network
that consists only of one type of node. Therefore, multi-
partite network composed of more than a type of nodes
cannot be analyzed using these measures. To solve this
problem, researchers have used projection methods that
convert multipartite networks into monopartite ones.
Unfortunately, any projection method can result in infor-
mation loss, especially in low-degree nodes. Accordingly
projecting the PharmDB tripartite network into mono-
partite drug, protein and disease networks can distort
many well-known network measures, such as average
path length < l>, average clustering coefficient <C>,
degree-dependent clustering coefficient C(k), degree dis-
tribution P(k), assortativity coefficient r [14], and degree-
degree correlation coefficient knn(k) [15]. To overcome
Table 1 Data sources of PharmDB

Drug-Protein
Relation

Protein-Disease
Relation

EntrezGene Interaction

MINT

DIP

PharmGKB V V

CTD V V

TTD V V

ChemBank

OMIM V

GAD V
these limits of the projection technique, we designed a
new prediction method called Shared Neighborhood
Scoring (SNS) algorithm which calculates the probability
of a link existence between two nodes of interest. This
can be done by evaluating the connections of their neigh-
bors in PharmDB tripartite network.

Results
System overview
The PharmDB is a tripartite pharmacological network
database consisting of three kinds of nodes: human dis-
eases, FDA approved drugs or druggable chemicals, and
proteins. The proteins in PharmDB include therapeutic tar-
gets, disease-associated proteins, and drug-metabolizing
proteins. The nodes and links used to construct this net-
work database were imported from nine public databases,
namely, EntrezGene interaction [16], MINT [17], DIP [18],
CTD [19], TTD [20], ChemBank [21], PharmGKB [22],
OMIM [23], and GAD [24] (Table 1).
Although these individual databases provide informa-

tion about the relationships between drugs, diseases, and
proteins, they do not provide an integrated network map
among the three components in an interactive manner.
For data integration in a unified format, we adopted Pub-
Chem CID for drugs, GeneID for proteins (tagging separ-
ate IDs for isozymes and subunits), and MeSH descriptor
for diseases (Figure 1). PharmDB currently includes
the nodes of 11,792 drugs, 38,056 proteins, and 6,607
diseases. It also contains 189,800 Drug-Protein, 109,124
Protein-Disease, and 12,232 Drug-Disease, 156,902
Protein-Protein links. The contents of the tripartite
pharmacological network in PharmDB are provided
through a website (http://www.i-pharm.org/). phExplo-
rer, a graphical data visualization software program is
also provided for interactive browsing of relevant data.
For constructing workflows, PharmDB is provided in
BioMart format (http://biomart.i-pharm.org/). Currently,
software for finding the shortest path between two nodes
is only provided through the website.
Drug-Disease
Relation

Protein-Protein
Interaction

Update
Date

V 2011.07.20

V 2011.07.08

V 2010.10.10

V V 2011.07.20

V 2011.07.11

V 2011.07.04

V 2011.07.21

2011.03.10

2011.07.16

http://www.i-pharm.org/
http://biomart.i-pharm.org/


Figure 1 Overview of PharmDB. Nine different databases were integrated using standard IDs (Entrez Gene ID for protein, PubChem CID
for drug and MeSH Descriptor ID for disease) to construct PharmDB. The integrated network was analyzed using the shared neighborhood
scoring algorithm, providing a predictive capacity for PharmDB to suggest functional relationships between diseases, proteins, and rugs.
These data are provided through a web browser, phExplorer (network visualization software) and web service (http://www.i-pharm.org/,
http://biomart.i-pharm.org/).
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Shared neighborhood scoring (SNS) algorithm
The concept of SNS algorithm is similar to Swanson’s
ABC model, which applies the transitivity rule to dis-
cover missing knowledge from biomedical literature
[25]. The SNS algorithm is based on the observation
that the probability of connection between two nodes
shows monotonic increase with “Shared Nodes Count”,
the number of in-between nodes connecting two nodes
(Figure 2, middle left box). Further we calculated weights
for all possible pairs of the network. First we assigned
weight 1 to each connected pairs directly linked between
two nodes. If a pair of two nodes is not connected, the
connection probability is assigned as weight for this in-
direct link or a virtual link between two nodes. As shown
in the Figure 2, the connection probability for given
“Shared Nodes Count” can be computed to be the frac-
tion of directly connected pairs among the total number
of pairs having the given “Shared Nodes Count”. Finally
we developed the share neighborhood score (SN score)
by summing up “Shared Nodes Count”, the number of
shared nodes and “Shared Nodes Weight”, the product of
each weight of (direct or indirect) links bridging the two
end nodes (Figure 2, bottom left). As the SN score pos-
sesses a range of values in each relation category (drug-
protein, protein-disease, and drug-disease), we developed
a normalization method using the connecting probability
function of SN score distribution (see Materials and
Methods for details).

http://www.i-pharm.org/
http://biomart.i-pharm.org/
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Figure 2 Shared neighborhood scoring algorithm. SN score can be calculated by summing up "Shared Nodes Count" and "Shared Nodes
Weight". First, “Shared Nodes Count” is defined as the number of shared nodes to consider the effect of direct connectors. Similary, “Shared
Nodes Weight” is defined as the product of each weight of links bridging two end nodes to trace the effect of indirect neighbors (Bottom right).
Here weight is a measure for connecting probability of each pair. For all possible pairs of the network, firstly weight 1 is assigned to each
connected pairs directly linked between two nodes. Weight for unconnected pairs is assigned the connection probability, the fraction of directly
connected pairs among the total number of pairs having the given “Shared Nodes Count”. For example, (1) the weight product of two indirect
links (2), (3) weight of the upper (direct link / indirect link) multiplied by weight of the lower one (indirect link / direct link). The sum of (1), (2),
and (3) is "Shared Weight" of the unconnected pair (protein, drug) (bottom left).
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We compared the “Shared Nodes Count” distribution
for connected pairs and unconnected pairs. Connected
pairs shared more neighborhood nodes than unconnected
pairs. The p-values of the Kolmogorov-Smirnov (KS) test
are less than 2.2e-16 in all three relation categories, mean-
ing that connected pairs and unconnected pairs have sig-
nificantly distinct distribution (Figure 3A, 3B, 3C).
The prediction performance of the SNS algorithm was

measured by plotting receiver operating characteristic
(ROC) curves (Figure 3D, 3E, 3 F). For calculating SN
scores, “simple algorithm” considers only “Shared Nodes
Count” but “extended algorithm” includes both “Shared
Nodes Count” and “Shared Nodes Weight”. As shown in
the Figure 3, the extended algorithm shows better per-
formance than simple one. AUC values of simple algo-
rithm are 0.679, 0.778, and 0.602, in Drug-Protein
relation, Drug-Disease relation, and Protein-Disease rela-
tion, respectively. And AUC values for extended algo-
rithm are 0.937, 0.868, and 0.871. According to the
result, prediction performances with extended scope of
shared neighborhood nodes were improved by 38%, 12%,
and 45%, respectively.
Case study – benzthiazide as a potential agent for lung
cancer
As a case study, we chose squamous cell carcinoma
(SCC) (MeSH descriptor: D002294), a subtype of lung
cancer, and tested whether PharmDB could identify
any drugs that have a potential for treating this type
of cancer. For the primary selection of drug candidates
in this case, we made the following criteria. First, they
should be inferred by SNS algorithm with SN score
bigger than 0.004 and Share Nodes Count zero. Sec-
ond, they should belong to FDA approved drugs.
Third, they should not have been previously used for
cancer drug. Forth, they should be directly linked to
cancer target proteins (Figure 4). Twenty eight common
drugs fit to the four criteria above and were suggested as
potential SCC drug candidates (Additional file 1: Table
S3). We then went over these candidates to choose the
one for experimental validation. Considering technical
feasibility, availability of materials, intellectual property
and potential for new drug development, we decided to
examine thia-benzthiazide (TBZT) whether it can be
used for SCC treatment. TBZT is a kind of thiazide



Figure 3 Shared neighborhood node distribution and evaluation of the shared neighborhood scoring algorithm. Shared neighborhood
node distribution comparison between connected links and unconnected links in Drug-Protein relation (A), Drug-Disease relation (B) and Protein-
Disease relation (C) (Rectangle: Connected links, Triangle: Unconnected links). ROC analysis of simple form of SNS algorithm and extended form
of SNS algorithm in Drug-Protein relation (D), Drug-Disease relation (E) and Protein-Disease relation (F) (Rectangle: Simple algorithm, Triangle:
Extended algorithm).
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diurectic used for the treatment of high blood pressure
and edema [26]. To validate a potential of TBZT as a
lung cancer drug, we administered different concentra-
tions of TBZT to squamous lung cancer cells (HCC-
1588) under hypoxic conditions (which mimic the tumor
microenvironment), as well as under normoxic condi-
tions [27]. Their effects on cell proliferation were moni-
tored by [3H] thymidine incorporation. We found that
under hypoxic conditions only, TBZT can suppress pro-
liferation of cancer cell in a dose-dependent manner
(Figure 5A). The hypoxia-dependent cell death induced
by TBZT was further confirmed by flow cytometry
(Figure 5B).
Carbonic anhydrases (CAs) are zinc metalloenzymes

which catalyze the conversion of carbon dioxide to the
bicarbonate ion and protons. The CAs are involved in
many biological and physical processes including pH
homeostasis and have 16 mammalian isoforms (CA1~
CA 16) [28]. In PharmDB, TBZT is linked to carbonic
anhydrase 2 (CA2). However, TBZT can suppress pro-
liferation of lung cancer cell under hypoxic conditions
only (Figure 5) and the expression of CA2 is not
associated with hypoxic conditions. So we have
extended cancer-linked CA isoforms in PharmDB
(Figure 6A). As a result, we considered three different
human CA isozymes (i.e., 1, 2, and 9) as targets of
TBZT, and tested whether TBZT inhibits CA activity.
TBZT suppressed all of the three CA isozymes with
similar Ki values (Figure 6B). As a positive control,
acetazolamide (AZA), a known inhibitor of carbonic
anhydrases (CAs), was also used [29]. AZA also sup-
pressed the activities of the three CAs, although the Ki

values varied depending on the target enzymes. How-
ever, among the CA isozymes, CA9 is known to be
induced in hypoxic conditions and has functional asso-
ciation with cancer [30]. Thus, the efficacy of TBZT
against HCC-1588 cells is likely to have resulted from
its inhibition of CA9. For that reasons, we decided to
focus on CA9 as the major effective target of TBZT
against cancer although we do not exclude the involve-
ment of other isozymes.
CA9, a carbonic anhydrase isoenzyme, is a transmem-

brane protein that plays an important role in pH regulation
[31]. The expression of CA9 is highly induced in various



Figure 4 Drug repositioning pipeline overview. Schematic representation of drug repositioning pipeline for squamous cell carcinoma (SCC).
First, cancer-related proteins and drugs were extracted from PharmDB using cancer terms (such as “Carcinoma”, “Neoplasm”, and “Cancer”).
Second, inferred SCC-related drugs were extracted using the shared neighborhood scoring algorithm. Among the candidates, any known cancer
agents were filtered out; leaving only drugs that had not been previously implicated as anti-cancer drugs. Then the FDA approved drugs which
known to be related with cancer-related proteins were maintained for further analysis as SCC drug candidates in this study.
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cancers under hypoxic conditions, which is functionally
important for the growth and survival of tumor cells [31].
We confirmed whether CA9 is actually induced in hypoxic
conditions by Western blotting with its specific antibody in
HCC-1588. As expected, CA9 levels were significantly
increased in hypoxic conditions (1% O2) compared with
those in normoxic conditions (20% O2) (Figure 6C). We
also confirmed that TBZT induced cell death by measuring
Figure 5 The hypoxia-dependent TBZT effect against SCC. (A) Antiprol
incorporation under normoxic and hypoxic conditions. (B) The effect of TB
the activation of caspase 3 (Figure 6D). To confirm the
drug-protein pair relationship between CA9 and TBZT, we
tested whether the forced expression of CA9 would com-
pensate for the anti-proliferative activity of CA9 by the
treatment of TBZT under hypoxic conditions. Cell prolif-
eration was reduced to 70% of the control cells by the
treatment of TBZT in the cells transfected with EV, but
35% of the control cells in the cells transfected with CA9.
iferative activity of TBZT was monitored by [3 H] thymidine
ZT on cell death was monitored by counting sub-G1 cells.



Figure 6 TBZT as an inhibitor of CA9. (A) To validate predictions by PharmDB analysis for SCC, TBZT is tested for inhibitory activity against its
potential targets, CA isozymes (CA1, CA2, and CA9). (B) In vitro inhibition of TBZT and the AZA control against CA isoforms (i.e., 1, 2, and 9). (C)
Cellular levels of CA9 in the SCC cell line, HCC-1588, under normoxic and hypoxic conditions. (D) The effect of TBZT on cell death was monitored
by caspase-3 activation. (E) HCC-1588 cells, transfected with an empty vector (EV) or CA9, were treated with TBZT under normoxic and hypoxic
conditions.
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Therefore, the exogenous supplementation of CA9
recovered the proliferation by up to 35% (Figure 6E).
This result validates that the anti-proliferative activity
of TBZT against HCC-1588 cells mainly involves
CA9. Perhaps, the remaining part could be contribu-
ted by other CA isozymes that are also involved in
the regulation of cancer. Even if further chemical
optimization of TBZT is required to improve efficacy
and specificity, these results suggest a possible appli-
cation of TBZT for further development against lung
cancer through its CA9 inhibitory activity.

Discussion
This study demonstrates that drug repositioning can
be rapidly guided by a knowledge platform PharmDB,
a pharmacological network database comprising pro-
tein, drug, and disease data which we are providing
as a web-based service. As an ever-increasing amount
of biological and pharmacological data are scattered
throughout the literature and in proprietary databases,
the integrated data of PharmDB provides a valuable
tool by consolidating certain valuable sets of data. We
adopted a tripartite pharmacological network-based
analysis, and developed a novel neighborhood scoring
algorithm to predict previously unknown relationships
between drugs, proteins and diseases. The theoretical
foundation of algorithm is that a connection probabil-
ity between two nodes is proportional to the number
of nodes commonly shared between them. So the
connection probability of two indirectly linked nodes
was computed, which is called the shared neighbor-
hood score. This score can highlight missing linkages
which may either result from “no actual connection”
or “lack of information” and help to differentiate be-
tween these two possibilities.
We experimentally validated the usefulness of the

shared neighborhood score by identifying a hitherto
unknown drug-protein relationship and potential
new indication based on this connection. Aside from
drug repositioning, the network map of PharmDB
composed of not only the data integrated from di-
verse databases but also the predicted data using the
shared neighborhood algorithm can applied to other
purposes, such as the prediction of drug mode-of-ac-
tion, off-target effects, and even the design of opti-
mal drug combinations for a disease of interest.
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Conclusions
PharmDB, an integrated tripartite database, coupled with
Shared Neighborhood Scoring (SNS) algorithm, would
provide much more enriched information than general
integrated databases and give us clues for finding new
indication of known drugs. Furthermore, these data can
be easily explored with phExplorer and accessed via
BioMart web service (http://www.i-pharm.org/, http://
biomart.i-pharm.org/).

Methods
Construction of PharmDB
To integrate the data in the existing databases that contain
different identifiers, we assigned the following standard
identifiers (IDs): PubChem CID for drug, GeneID for pro-
tein, and MeSH descriptor for disease. We constructed a
comprehensive drug-protein-disease tripartite network by
integrating the link information from the nine databases,
namely, EntrezGene interaction (ftp://ftp.ncbi.nih.gov/
gene/GeneRIF/), MINT (ftp://mint.bio.uniroma2.it/pub/
release/mitab26/2011-07-08/), CTD (http://ctd.mdibl.org/),
TTD (http://bidd.nus.edu.sg/group/cjttd/TTD_Download.
asp), ChemBank (http://chembank.broadinstitute.org), DIP
(http://dip.doe-mbi.ucla.edu/dip/Download.cgi), PharmGKB
(http://www.pharmgkb.org/resources/downloads_and_web_
services.jsp), OMIM (ftp://ftp.ncbi.nih.gov/repository/
OMIM/ARCHIVE/), and GAD (http://geneticassocia-
tiondb.nih.gov/). As the existing databases have their own
unique ID systems, we tagged the standard IDs using
an in-house script. For the entities that were not tagged
by the in-house script, we manually assigned them with
appropriate IDs.

Shared neighborhood scoring algorithm
The shared neighborhood scoring algorithm is based on
the basic principle that the connection probability of a link
between two nodes (i and j) is roughly proportional to the
number of nodes commonly shared between the original
two nodes, i and j (Additional file 1: Figure S1). The
shared neighborhood score Sij is defined as Sij ¼P

kWikWkj. In this equation, i and j indicate the indices of
a pair of nodes; k is the index of a shared neighbor node;
and Wik is the weight of a link between i and k. The link
between i (or j) and k can be real or virtual (i.e., having no
known connection but is expected to be connected). Thus,

we can define Wik as Wik ¼ aik þ P S 0ð Þ
ik

� �
δaik ;0 . Here,

aik ¼ 1 and δaik0 ¼ 0if the link between i and k is real; and
aik ¼ 0 and δaik ¼ 1 if the link is virtual. When there are
only direct connections between node i and node j, a 0th-

order shared neighborhood score s 0ð Þ
ij becomes S 0ð Þ

ij ¼P
kaikakj ¼ n 0; 1; 2; 3 . . .ð Þ , where n is the number of

bridging nodes between node i and node j. P S 0ð Þ
ik

� �
is a
connection probability that depends on the value of the

0th-order shared neighborhood score s 0ð Þ
ik . For the 0th-

order shared neighborhood score s 0ð Þ
ik ¼ n ¼ 0; 1; 2; . . .ð Þ ,

the function P nð Þ is defined as follows:

P nð Þ ¼ number of connected pairsð Þ
number of pairsð Þ for n ¼ 1; 2; . . .

P nð Þ ¼ 0 for n ¼ 0

Based on the probability above, non-linear regression
was carried out to extract connecting probability func-
tions. Logistic function was used for this (See Additional
file 1: Figure S2, Additional file 1: Table S1 for more
details).

f xð Þ ¼ 1
1þ eaþbx

The shared neighborhood score sij then becomes sij ¼
sij 0ð Þþsij 1ð Þþsij 2ð Þ¼P

k aikþP s 0ð Þ
ik

� �
δaik0

� �
akjþP s 0ð Þ

kj

� �
δakj;0

� �

where s 0ð Þ
ij ¼ P

kaikakj , s 1ð Þ
ij ¼ P

k aikP Skj 0ð Þ� �
δakj;0þ

�

akjP Sik 0ð Þ� �
δaik0 Þ, and s 2ð Þ

ij ¼P s 0ð Þ
ik

� �
δaik;0P s 0ð Þ

kj

� �
δakj;0. Here,

the 1st-order term s 1ð Þ
ij is added when some nodes are

linked directly to node i (or j) but linked indirectly to

node j (or i). The 2nd-order term s 2ð Þ
ij is considered only

when some nodes are linked indirectly to both node i
and node j. In Additional file 1: Figure S1, as node m is

the only shared neighbor of node i and node j, s 0ð Þ
ij ¼ 1.

To obtain the 1st-order shared neighborhood score s 1ð Þ
ij

or the 2nd-order shared neighborhood score s 2ð Þ
ij , con-

nection probability P s 0ð Þ
ik

� �
is calculated beforehand. As

a pair (i, k) is mediated by two nodes, Wik ¼ P 2ð Þ, Path
(i, k, j) is composed of an indirect link (i, k) and a direct
link (k, j). Similarly, Wil ¼ P 3ð Þ and Wlj ¼ P 1ð Þ. Path (i,
l, j) is composed of both indirect links (i, l) and (l, j).

The total shared neighborhood score is thus sij ¼ s 0ð Þ
ij þ

s 1ð Þ
ij þ s 2ð Þ

ij ¼ 1þ P 2ð Þ þ P 3ð ÞP 1ð Þ . When calculating s 2ð Þ
ij ,

we omitted a link between node i and j to remove the
dependency of the measure on the existence of a link
between i and j, which is the so-called “leave-one-out
approach” [32].
The shared neighborhood score is proportional to the

number of shared neighborhood nodes. So there is no
an upper limit on score. The problem is that the amount
of data is not evenly distributed on each relation cat-
egory. So, even if two different types of relations have
identical score, their connecting possibility can’t be
regarded as identical. For that reason, we normalized the
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http://biomart.i-pharm.org/
ftp://ftp.ncbi.nih.gov/gene/GeneRIF/
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ftp://mint.bio.uniroma2.it/pub/release/mitab26/2011-07-08/
http://ctd.mdibl.org/
http://bidd.nus.edu.sg/group/cjttd/TTD_Download.asp
http://bidd.nus.edu.sg/group/cjttd/TTD_Download.asp
http://chembank.broadinstitute.org
http://dip.doe-mbi.ucla.edu/dip/Download.cgi
http://www.pharmgkb.org/resources/downloads_and_web_services.jsp
http://www.pharmgkb.org/resources/downloads_and_web_services.jsp
ftp://ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE/
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http://geneticassociationdb.nih.gov/
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shared neighborhood score using connecting probability
function (Additional file 1: Figure S3).

FDA approved drugs
We have downloaded Drugs@FDA data files (Last up-
dated: 19/09/2011)(http://www.fda.gov/downloads/Drugs/
InformationOnDrugs/UCM163762). Then we extracted
single active ingredient from Product table and tagged
PubChem ID for them. The total number of FDA
approved drugs tagged with PubChem ID is 23,191.

Cell culture and materials
The HCC-1588 cell line was obtained from the Korean
cell line bank and was maintained in RPMI (Hyclone)
containing 10% fetal bovine serum and 1% antibiotics.
Antibody against caspase-3 and tublin (Cell Signaling
Technology) were purchased. M73 monoclonal antibody
to CA9 was obtained from Dr. S. Pastorekova (Slovak
Academy of Science, Slovak Republic). TBZT and AZA
were purchased from Sigma.

Thymidine incorporation assay
To determine the effect of TBZT on cell proliferation,
HCC-1588 cells were treated with TBZT in 2% serum-
containing media for 48 h under normoxic (20% O2) and
hypoxic (1% O2) conditions. AZA was used as positive
control. pcDNA3-CA9 vector and empty vector (Dr. J.-
Y. Kim, National Cancer Center, Korea) were trans-
fected into HCC-1588 cells using Lipofectamine 2000
(Invitrogen). After 24 h incubation, TBZT was added
to 2% serum-containing media for 48 h under hypoxic
conditions. [3 H] thymidine at 1μCi/ml was added to
the culture medium and was incubated for 4 h. The
incorporated thymidine was measured by liquid scintil-
lation counter (Wallac).

Flow cytometry
HCC-1588 cells were treated with TBZT (0.4, 2, 10 μM)
in 2 % serum-containing medium for 48 h under nor-
moxic and hypoxic conditions. AZA was used as positive
control. The treated cells were fixed with 70% ethanol for
1 h at 4°C, washed twice with ice-cold PBS, and stained
with propidium iodide (50 μg/ml) containing 0.1% so-
dium citrate, 0.3% NP-40 (nonylphenoxylpolyethoxy-
lethanol 40), and 50 μg/ml RNase A for 40 min. The cells
were subjected to flow cytometry (FACSCalibur, Becton-
Dickinson) to evaluate the apoptotic cells by counting
the sub-G1 cells. For each sample, 20,000 cells were ana-
lyzed using Cell Quest Pro software.

Enzyme activity
An applied photophysics stopped-flow instrument was
used for assaying CA-catalyzed CO2 hydration activity
[33]. Following the initial rates of the CA-catalyzed CO2
hydration reaction for a period of 10–100 s, phenol red
(at a concentration of 0.2 mM) was used as the indicator,
working at the absorbance maximum of 557 nm in
20 mM HEPES buffer (pH 7.5) and 20 mM Na2SO4 (to
maintain the constant ionic strength). For the determin-
ation of the kinetic parameters and inhibition constants,
the CO2 concentrations used ranged from 1.7–17 mM.
For each inhibitor, at least six traces of the initial 5–10%
of the reaction were used for determining the initial vel-
ocity. The uncatalyzed rates were determined in the
same manner and were subtracted from the total
observed rates. Stock solutions of the inhibitor (0.1 mM)
were prepared in distilled-deionized water and diluted
to 0.01 nM with distilled-deionized water. Inhibitor and
enzyme solutions were preincubated together for
15 min–72 h at room temperature (15 min) or 4°C (all
other incubation times) prior to assay to allow the for-
mation of the enzyme-inhibitor complex or the even-
tual active site mediated hydrolysis of the inhibitor.
The inhibition constants were obtained by non-linear
least-squares methods using PRISM 3 as previously
described. The mean values were represented from at
least three different determinations [31,34].
Additional file
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regression results for extracting connecting probability functions. And a
list of inferred SCC drug candidates is included.References.
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