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Abstract

Background: Transcription networks define the core of the regulatory machinery of cellular life and are largely
responsible for information processing and decision making. At the small scale, interaction motifs have been
characterized based on their abundance and some seemingly general patterns have been described. In particular,
the abundance of different feed-forward loop motifs in gene regulatory networks displays systematic biases
towards some particular topologies, which are much more common than others. The causative process of this
pattern is still matter of debate.

Results: We analyzed the entire motif-function landscape of the feed-forward loop using the formalism developed
in a previous work. We evaluated the probabilities to implement possible functions for each motif and found that
the kurtosis of these distributions correlate well with the natural abundance pattern. Kurtosis is a standard measure
for the peakedness of probability distributions. Furthermore, we examined the functional robustness of the motifs

evolvability.

facing mutational pressure in silico and observed that the abundance pattern is biased by the degree of their

Conclusions: The natural abundance pattern of the feed-forward loop can be reconstructed concerning its
intrinsic plasticity. Intrinsic plasticity is associated to each motif in terms of its capacity of implementing a
repertoire of possible functions and it is directly linked to the motif's evolvability. Since evolvability is defined as
the potential phenotypic variation of the motif upon mutation, the link plausibly explains the abundance pattern.

J

Background

Evolutionary adaptability in biological systems is often
the result of trade-offs between flexibility and specializa-
tion [1]. In this context, buffering mutations and noise
seem an important requirement for stability. This can
be achieved by a robust response to parameter changes
and correlates with the degree of specialization of the
given structure. A given network insensitive to muta-
tions will always perform the same function. On the
other hand, adaptation and evolvability requires flexible
structures that can be re-used to perform different
(potential) functions and thus provide plasticity [2,3].
The problem here is often understanding why some par-
ticular structures are so common and what their (if any)
functional meaning is. This is closely tied to the map-
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ping f between structure S and function F, namely the
relationship:

shF (1)

which is usually dubbed as the genotype-phenotype
mapping problem [4]. Understanding the nature and
origins of this mapping is at the core of many key ques-
tions concerning the evolution of complexity in nature.

Within the context of gene transcription networks, it
has been suggested that the previous problem can be
dissected by analyzing the frequency of some overabun-
dant sub-networks of three or four elements, so called
network motifs [5-7]. These sub-graphs only capture the
topological pattern of connections and a dynamical
description of their potential function requires a set of
differential equations [8,9]. One particularly important
example is provided by feed-forward loop (FFL) motifs
[5]. Many genetic and biochemical systems, such as the
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Lac and Che systems in E. coli (responsible for lactose
utilization and chemotaxis, respectively) involve FFL
motifs [10-12]. Mounting evidence indicates that they
have key roles in cell function [10] and morphogenesis
[13,14].

However, the origin of a preferential bias towards
given topologies remains under discussion.

The relative frequency of FFLs displays a well-defined
pattern (figure 1c) dominated by two sub-graphs (C1
and I1). The uneven abundance of these graphs could
be a fingerprint of their functional relevance [8,15-17].
Such importance would be the blueprint of an evolu-
tionary advantage, but it is not clear whether such func-
tional connection really exists [15,18-21] or if it
resembles instead a byproduct of non-adaptive processes
[22-25]. As shown below, motif structure does not
directly relate to its frequency, but its plasticity in
implementing different functions does.

21
/.
[21
G,L
21
time

XY X-Z Y-Z XY XTI YZ
(sily + + + N + + -
c2|- - + ||i2|- - -
. - - - =N+ - +
C4| - + - B - + + ﬂ
PH{T+)
C
030 m yeast
OE. coli

Relative abundance
=

ol LIM [] I_Inrmm

Cl c2 C3 ¢4 11 12 13 14

Figure 1 Structure and frequency of FFL motifs. In (a) we show
the schematic representation of the FFL's genetic regulatory
interactions (+' represents activatory regulation and -’ represents
inhibitory regulation). The external input / activates the signal
protein X. Active X modulates expression of gene G directly and
indirectly via regulation of Y expression, which in turn also regulates
Gz The dynamics of these regulatory interactions is described by a
set of equations dy/dt = F(y, 2), dz/dt = Gly, z) incorporating the
nonlinearities associated to gene-gene interactions. In (b) we plot
the general topology of FFL motifs and the six different functions ¢
(t) represented by qualitative time-courses [Z(1)]. ‘G" indicates grader
dynamics, ‘P’ pulser dynamics. We specifically take into account the
initial slope of the time-course (+ or ') and the concentration of
the final target Z with respect to the non-induced protein
concentration (T+' and T-). In (c) we display the relative abundance
Pous(I')) of these motifs in the transcription networks of yeast and E.
coli (data from [27]).
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Results and Discussion

Probability distribution of implementing different
functions

Consider the FFL graphs I; from the set
S ={Cy,C;,C3,Cy,1I1,15,15,14} shown in figure la. In
previous studies [9,26] it has been shown that, the
topology of a given FFL does not univocally define its
function but it captures the probability distribution of
implementing different functions. Our first goal is to
identify an appropriate mapping f between FFL topology
and each potential response @;(t), i.e. f; : {I';, x(0), u} —
©;(t) where we indicate as {I';, x(0),4} the FFL graph
together with its initial condition x(0) and the set of
parameters used u [26]. The six different responses (fig-
ure 1b) are triggered by an external input. These are
either fast response (pulser) or delayed response (grader)
considering the target concentration of the output. Here
[ indicates the likelihood that ¢;(¢) is implemented by
T.

How likely is a motif to become part of a complex cel-
lular network? Two extreme strategies can be envi-
sioned. In the first, specific motifs play specific roles in
a robust way and they are common because they are
insensitive to mutational noise. In the second, the larger
the variety of implementable functions, the more flexible
the better. Such a scenario is feasible under the premise
of ever-changing environments and comes with the cost
of reduced robustness. In order to measure the plasticity
of decision-making between these two strategies, let us
first determine the (conditional) probability f; = P(¢y|T,).
These probabilities are normalized, i. e.
Z{@.} P(¢jITi) = 1 and can be systematically computed
[26]. This set actually defines our structure-function
map, namely

r2 i &)

and can be displayed (figure 2a) as a weighted, motif-
function bipartite graph (see Methods). The graph
reveals that most motifs implement all functions, but
the likelihood of each pair is case-dependent. Some
motifs seem clearly more specialized (such as C4)
whereas others are rather generalists (see for example
I4). What influences the choice of a given topology over
others? Since most of the functions can be implemented,
it is not clear that a one-to-one, function-based argu-
ment will work. But we can go a step beyond and look
at the structure of the probability distribution {P(¢;|T";)}
of each topology. This can be done by measuring the
degree of homogeneity displayed, for each I';, by plotting
P(¢j|T;). If the motif is highly specialized, some domi-
nant peak(s) would be observed, whereas if it is very
flexible no prominent peaks will appear. A simple way
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Figure 2 FFL function and their probabilities. (a) The landscape
of FFL motifs is displayed as a bipartite graph linking patterns
(upper row) and processes (lower). The weight of the links indicates
the relative probability P(g; | T') that a given motif T'; implements a
given function ¢;. In (b) the matrix of motif-function probabilities is
displayed using a color scale. The plots highlight that some motifs
look more specialized, whereas others display rather evenly
distributed functional responses.

of measuring the homogeneity of the distribution is
given by its kurtosis, defined as the fourth standardized
moment by

ky

K=
G

-3 3)

Kurtosis is the measure of the “peakedness” of a distri-
bution. It quantifies the concentration of frequencies
around the mean of the distribution. Higher kurtosis
means that the variance is the result of infrequent,
extreme deviations from the mean as opposed to fre-
quent, modestly sized deviations resulting in low kurto-
sis. In order to define a measure characterizing the
degree of plasticity of a given motif in terms of its spe-
cialization or its flexibility, we can consider two extreme
cases, namely the most flexible graph I'; equally likely to
implement any function @;, and the most specialized
graph I'y implementing only one function ¢;. In the first
case we would have P(¢; |Iy) = 1/6 and the kurtosis
associated is K(/y) = -3.33, whereas in the second case
we would have P(I;) = 1 and 0 otherwise, with kurtosis
K(I'y) = 6. Details on the calculation can be found in
Methods. Any other FFL graph I'; from the set
S ={Cq,Cy,C3,C4, 11,1, I3, 14} has kurtosis values locat-
ing within this interval, K(I';)) € (K(I', K(T)).

In order to measure the degree of plasticity in the
decision-making between these extreme cases we intro-
duce w(T';). w(I';) is the distance between the absolute
value of the kurtosis K(I';) and the origin K, [26] or in
other words represents the intermediate level between
specialization and flexibility. This transformation opens
the way for a more intuitive biological interpretation:
The values for w(I';) range between high plasticity (low
w([;)) and high commitment towards one of the
extreme strategies, i.e. maximal specialization or maxi-
mal flexibility (high w(T';)). The optimal solution here is
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likely to be strongly impacted by the predictability of
the environment. As a first approximation we therefor
place Kj at the midpoint of the interval (K;K)), i.e.

¥ (Ty) = [K(Ty)| — Ko (4)

Finally we define the likelihood p(I';) of a given motif
I'; to appear within a network as a function of its w(I)).
Assuming that a high degree of flexibility or specializa-
tion should be related with lower likelihood of appear-
ance for a given motif I';, we write

p(r) = 9 (1) ©

where o is a normalization coefficient defined as
o= st=l 1p(rj)_l'

This function actually defines the expected probability
of finding a given sub-graph and is thus mapping
between the distributions associated to each motif and
the expected abundance of motifs within networks. Fig-
ures 3a and 3b show the correlation between relative
abundances of FFL motifs in E. coli and S. cerevisiae
with respect to their expected probabilities p(I";). The
matching is striking (data concerning abundances
obtained from [27]). The two most abundant graphs (C1
and I1) are consistent with our results and the actual
distribution matches well the observed pattern.

Interestingly, the expected probabilities indicate a
positive bias toward systems which show high plasticity
as presented in figure 4. Intermediate values for kurtosis
(figure 4a) or low w(I';) (figure 4c) correlate with an
increase in the likelihood of appearance. The values for
kurtosis, w(I';) and p([';) are collected in table 1. As an
alternative measure for the homogeneity of a probability
distribution the Shannon entropy is discussed in the
Methods section, where the motif’s entropy is used to
characterize the degree of flexibility or specialization of
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Figure 3 Predicted probability and FFL abundance. In (a) we
compare the natural abundance and its predicted counterpart p(I').
S. cerevisiae (black box) is compared to E. coli (white box) and the
predicted probabilities (black triangle). In (b) we present the
correlation between p(I") and the natural abundances. The Pearson
coefficient for the linear fit is r = 0.91 and r = 0.94 for E. coli and S.
cerevisiae, respectively.
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Kurtosis Entropy

Figure 4 FFL plasticity and abundance. Here we compare the
measures kurtosis, entropy and (') and their correlation with the
abundance of NW motifs (S. cerevisiae shown in black and E.coli in
white). In (a) the kurtosis of the motif's probability distribution for
different functions versus the motifs abundance is plotted. In (b) we
show entropy versus abundance. The most abundant motifs have
intermediate values for both measures which can be interpreted as
high plasticity in both cases. In (c) we present the correlation
between w(I';) and abundance. y(y) correlates negatively and thus
again, plasticity correlates positively with motif abundance.

a given motif I'; [26]. Both, entropy (figure 4b) and kur-
tosis (figure 4a) yield similar results, ranking the most
abundant motifs with intermediate values which trans-
lates to high functional plasticity.

For the less abundant motifs we see a more disordered
trend in the two measures, as is the case for C3, C4, 13
(both measures) or C2 (entropy). The interpretation
here is not straightforward. It is feasible that the disor-
dered trends can be consequence of non-adaptive pro-
cesses. An alternative hypothesis is related to the shape
of the real distributions for the implementation of any
function. We assume that for more and less frequent
motifs the analytically deduced probability distributions
does not fit equally well the real counterpart. The more
abundant the motif, the better the underlying probability
distribution is mirrored in its abundance, because the
sampling space is covered more readily.

Our analysis of FFLs dynamics was performed consid-
ering single, isolated motifs. However, in real systems
motifs are embedded in large networks allowing for the
combination of motifs. The combination of more abun-
dant motifs, such as C1 and I1, can cover the whole set
of possible dynamics by that affecting the abundance of
the rest of the motifs.

Table 1 Kurtosis, w(I';) and predicted probability p(I';)

Kurtosis w(l') pr))
C1 1.631 0.297 0342
(@ 4142 2.808 0.036
a 3.042 1.707 0.059
4 4835 3.501 0.029
1 -1.721 0.386 0.263
12 2.506 117 0.087
13 -2.083 0.748 0.136
14 3459 2123 0.048

Table 1 shows the values for the motifs’ kurtosis, (') and predicted
probability p(77). The entries are calculated from the probability distributions
according to equations 3,4 and 7.
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Evolvability

In order to have a relevant role in evolvability, the degree
of plasticity of FFLs should correlate with the motif’s capa-
city of generating phenotypic variation by exploring differ-
ent functions under mutation. Two key aspects are of
importance here, namely i) the reduction of mutational
lethality and ii) the up-speeding of adaptational processes
(reduction of the number of mutations needed to generate
new phenotypes [1]). The evolvability of the circuits I';
can be studied by calculating the transition probabilities
wy' (¢jl¢i) of shifting from function ¢; to @; under » muta-
tions. The matrix p,(k) = (@}') defines a flow graph (fig-
ure 5b) which allows us quantifying its evolvability &(T;).
We compared the robustness against single mutations ver-
sus sequential accumulation of multiple mutations. Muta-
tions m are defined as single parameter changes. For
better understanding of the procedure, we want to stress
the conceptual difference of continuous rea/ mutations
and the here applied parameter changes m which result in
a discretized observation pattern. In the presented
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Figure 5 Computation of the transition frequencies. Sketch of
the procedure. In (a) the update rule is shown. For a given string of
conditional relations (BR) the associated dynamical pattern is
calculated at time-step t - 1. Next the entries of BR are mutated at
time-step t and the (new) dynamical pattern is evaluated. Then the
transition of pattern,; to pattern, is binned. This protocol is
executed until no more changes in the bins occur as shown in plot
(). In (b) the graph Q,,(T") associated to the transitions between
the possible types of dynamics is represented for C1. The thickness
of the arrows correspond to transition probabilities obtained from
procedure (a). From these graphs (see Methods) we can calculate
the motif evolvability & which is found to positively correlate with p
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framework a mutation m can be both, numerically small
or large without impact as long as it does not drive the
system into another functional regime.

Robustness is defined as the sum of the diagonal ele-
ments of Q,,(k), i. e. D_; ;' (¢il$i). The diagonal elements
w}' (¢il$i) give the probabilities of performing the same
function after m mutations. A detailed description of the
procedure is given in Methods. We have found that FFL
motifs are very robust but some of them exhibit a high
phenotypic variation under repeated mutations. The most
abundant motifs, C1 and I1, show the highest phenotypic
variation. In other words, C1 and /1 can widely change
their function with greater ease than the rest of the circuits
facilitated by their low w(I';) (figure 6b). A network dis-
playing little phenotypic diversity would give small values
of & whereas sub-graphs with high transition rates among
states will have a high &. As presented in figure 6a, & corre-
lates positively with the abundance of motifs, with C1 and
I1 displaying the largest values. These results suggest that
a proper degree of plasticity, in terms of a balance between
flexibility and specialization, is the optimal strategy to
increase evolvability providing the playground for adaptive
responses without increasing mutational lethality.

Assuming that motif plasticity is a relevant trait, our
analysis supports the idea that the observed FFL abun-
dance pattern actually correlates with motif evolvability.

Our analysis suggests that neither a direct interpreta-
tion of motifs as functional modules [1,2,4] nor a purely
non-adaptive view of their abundance [22-24] account
for the uneven presence in transcription networks. Con-
sistently with previous works [28,29] duplication-rewir-
ing dynamics alone cannot explain the evolution of
FFLs. The potential for evolvability associated to their
topological structure might well be the missing ingredi-
ent connecting both views.
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Figure 6 FFL evolvability. In plot (a) we show the correlation
between the motif's evolvability and its abundance. Evolvability &,
which is found to positively correlate with p(I')), is highest for the
most abundant motifs C1, /1. In black we show data point of S.
cerevisiae, in white E. coli. In (b) we show the correlation between
the FFL's evolvability and its w(I"). We calculate a Pearson coefficient
of r = -0.92 for the linear fit. The lower y(T’)), the higher the motif's
plasticity and the higher its evolvability. The data points are
developed from the motifs topology and thus are species
independent (blue).
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Conclusions

In this article we have interpreted a simplified, qualita-
tive model of the FFL motif. The thorough analysis
within the model framework allows to reconstruct its
natural abundance pattern and provides insight in what
might have shaped it. The argument leads to the very
core of the genotype-phenotype mapping problem, since,
due to its simplicity, a perfect mapping between the
topology and all possible functions it can implement can
be constituted. We claim, however, general applicability.
FFL abundances are correlated with their plasticity and
evolvability. Evolvability has been defined as a compro-
mise between robustness against single mutations and
the capability to modify the functional response upon
increasing mutational pressure. The results indicate that
a proper portion of intrinsic functional plasticity, which
can be understood as a strategic trade-off between spe-
cialization and flexibility, is necessary to be abundant.
Because only then one is suited to be readily evolvable
in changing environments.

Future work should be devoted to analyzing how the
coexistence of different motifs embedded in a large net-
work affects their dynamics and abundance compared to
the single motif analysis performed in this work.

Methods

Dynamical response of FFL motifs

Network motifs are recurrent interaction patterns, which
are significantly more often encountered in biological
interaction graphs than expected from random nets. It has
been shown that feed forward loops (FFL) are capable of
processing external signals by responding in a very speci-
fic, robust manner, either accelerating or delaying
responses. They are composed of three genes. Firstly, gene
Gy that expresses the protein X. This protein X regulates
the expression of the other two genes Gy and G encoding
the proteins Y and Z, respectively. Additionally, protein Y
regulates the expression of Z (see figure 1). Here, we
assume that expression of X is unregulated and the protein
is expressed in its inactive form, i.e. X does not regulate
the expressions of Y and Z straightaway. Only upon the
presence of an external signal (the input) X becomes active
and regulation of Y and Z takes place, where Z resembles
the output of the motif. The dynamics describing how the
concentration of Z changes during time from the initial
state (without input) to the final state (with input) are cal-
culated from a set of two differential equations [26]:

. 1+ axa)ifX"
Y=w 1+ w*X" —oY
! (6)

P (1 + Bt X" + BrlY™ + ﬁ%?X"Ym> 5.7
-z 1+ wlX" + a)ZY'" + a)?/X"Y’” ‘
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Here y; describes the basal production of protein i,
with i = {Y¥, Z}, subsuming the concentration of all bio-
chemical elements which remain constant in time. The
binding equilibrium of the regulators j with the gene G;

are denoted by a){:, with j = {X, Y, Z}. Parameters o* and

B define the type of regulatory interactions, i.e. activa-
tion or inhibition, for gene Gy and G, respectively, pro-
viding the regulatory rates with respect to the basal
transcription. Values < 1 correspond to inhibitory regu-
lation, whereas > 1 accounts for activation (denoted by
‘-’ and ‘+’ in figure la respectively). The parameter
accounts for the simultaneous regulation of Gz. The
degradation rate of protein i is denoted as ¢;. Finally, n
and m are the degree of multimerization of the
regulators.

If we consider the system in phase space, we find that
in absence of input the system resides in a stable steady
state determined by the crossing of the nullclines, Y = 0
and Z = 0, respectively. Upon external input, X is acti-
vated and hence the shapes of the nullclines change.
They provide a new crossing and consequently a new
steady state. Due to these changes in the nullclines’ geo-
metry the system must evolve from the initial state
towards the new stable state. The evolution corresponds
to a trajectory crossing phase space that depends on i)
the location of the initial state, ii) the location of the
final state, iii) the new shapes of the nullclines upon
input. The specific dynamics implemented by a given
motif is determined by this trajectory, which depends on
the set of parameters. However, by analyzing the geome-
trical features of the nullclines it is possible to deter-
mine the so-called Backbone of Requirements for the
FFL response (BR), i.e. a set of qualitative relationships
between different geometrical features of the nullclines
and the location of the initial and the final point that
univocally determines the dynamics [26]. Therefore, for
a given FFL motif all different sets of parameters satisfy-
ing the same BR implement the same function. Simi-
larly, also different BRs may implement the same
function.

Based on the analysis of the different BRs associated
with a given motif and their impact on the motif’s func-
tion, we are in the position to determine a distribution
of probabilities for the implementation of any function
(see [26] for details about quantification of the dynami-
cal probabilities). Table 2 shows the conditional prob-
ability that each motif I'; (rows) implements the
function ¢; (columns).

Functional robustness and mutational perturbation

Parametric mutations have different impact on the
motif’s function, as in nature they can either be neutral
or causing qualitative changes. For the system we
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Table 2 Conditional probabilities P(¢; | I';)
G* G PT* PT" PT" PT*
a 04862 0211 0.2018 0.03669 0.0642 0
(@ 0.0931 05349 0.1861 0.09302 0.0931 0
a 02336 05514 00748 0.09346 0.0374  0.0093
4 0.5862 0.0689 0.1379 0.13793 0 0.0689
n 0.3571 0.2143 0.2857 0 0.1429 0
2 (OARRNI 04167 01111 0.2222 0.0648 00741
3 0.2553 0.2766 0 0.2979 0 0.1702
14 04019 0.1402 0.1869 0.1308 0.0748 0.0654

Table 2 shows the conditional probability for each motif T'; (rows) to
implement the function ¢; (columns).These probability distributions are
calculated from the association of a given motif, its possible BRs and the
respective functions, as described in [26].

present here, only those mutations cause functional
change, which induce a qualitative alteration in the
shape of the nullclines, represented in the Backbone of
requirements for the FFL response (BR) [26]. However,
the mutation will become visible only, if the resulting
BR is actually associated with a different function.

To estimate and compare the degree of mutational
robustness for the different FFL motifs, we carried out a
numerical study calculating the frequency of functional
shifts upon parametric perturbation of equation (6) as
shown in figure 5. For a given motif, this can be done
introducing random mutations in the parameters that
define characteristically the dynamics of FFL motif (fig-
ure 5a). We restrict the analysis to that sort of muta-
tions that does not change the topology of the FFL, i.e.
mutations that do not change the qualitative type of reg-
ulations (activation or inhibition) described by a*, §*
and .

The suffered mutations are reflected (or not) in a qua-
litative change of the BR. Here different scenarios are
possible, i) mutations that do not affect qualitatively the
nullclines’ geometry, i.e. there are no changes in the BR
(neutral), ii) mutations that are reflected in compatible
changes in the BR, but the new BR is associated to the
same dynamic than the previous one (neutral), and
finally iii) mutations that are reflected in compatible
changes in the BR, and the new BR is associated to a
different dynamic (qualitatively changing mutations).

In our numerical study we have considered 1000 dif-
ferent sets of parameters for each FFL type (8000 cir-
cuits in total). For each FFL, the mutational process is
repeated 10.000 times until the probabilities of func-
tional shifts stabilize (figure 5¢) and the effects of the
accumulation of mutations can be analyzed. This evalua-
tion of the transition probabilities does not depend on
specific parameter values but on the conditional rela-
tions between them. Since the relations are of the sort a
> 6, changes in the function may be achieved by very
small or large parameter changes equally likely,
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depending only on the conditional dependencies
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Table 4 Transition probabilities for single mutations 11-14

between the key-parameters and the corresponding G G T PT PT PT
values at time-step ¢ - 1. n
Tables 3 an‘d 4 show the.probablhtles.of tran51‘t{0n o 0241 0 0,060 0 0 0
betw?en the dlfferent’ dynamlf:s subsumefi ina transition G 0 0103 0 0 0 0
matrix. These matrices define a transition graph for P 0 0 0.345 0 0
each FFL motif shown in figure 5b. pT 0 0 0 0241 0 0
‘ The el‘emer}ts of the fllagopal correspoTld to the fu’nc- P 0 0 0 0 0
tionally invariant mutations, i.e. changes in the BR with- P 0 0 0 0 0 0
out changes in the dynamics. Rows represent the initial, o
columns the final dynamics. In tables 3 and 4 we sum- —
. . . . G 0.144 0 0.024 0 0 0
marize the effects of single mutations, whereas in table
. . . G 0 0408 0 0 0.016 0
5 and 6 accumulated mutations are presented, i.e. multi- N
s . . PT* 0 0 0.160 0 0 0
ple conditions of the BR changed in a successive )
PT 0 0 0.128 0 0
manner. PT 0 0032 0 0080 0
The sum of the diagonal elements determines the J— 0 Ao 0 0 .o 0008
fraction of the mutations without impact on the
dynamics. It provides a measure of the robustness 13
G* 0.091 0 0 0 0 0
G 0 0.212 0 0 0.061 0
Table 3 Transition probabilities for single mutations C1- P 0 0 0 0 0 0
c4 PT 0 0 0 0 0 0
G" G PT PT P'T PT" PT 0 0121 0 0 0394 0
1 PT" 0 0 0 0 0 0.121
Gt 0.251 0 0008 0 0 0 14
G 0 0.329 0 0 0.003 0 G* 0.398 0 0.008 0 0 0
PT" 0.015 0 0.180 0.013 0 0 G 0 0.141 0 0 0.023 0
PT 0 0 0.015 0.157 0 0 pPrT" 0 0 0.063 0 0 0
PT 0 0.0049 0 0 0.031 0 PT 0 0 0 0.008 0 0
PT" 0 0 0 0 0 0 PT 0 0.047 0 0 0.156 0
c2 PT" 0 0 0 0 0 0.156
G* 0 0 0.007 0 0 0
G 0 0.82 0 0 0.007 0
PTT 0008 0 0022 0001 0 0 against perturbations. As our data show, all FFLs are
T 0 0 0043 0039 0 0 highly robust against single mutations, they show similar
PT 0 0.007 0 0 0.039 0 values above 90%. In other words, upon single muta-
P 0 0 0 0 0 0 tions the FFLs display low sensitivity against mutation,
c3 hence a low evolvability &. However, there occurs a sig-
G* 0317 0 0.008 0 0 0 nificant change in the degree of evolvability if the effect
G 0 0242 0 0 0026 0 of accumulated mutations is studied. We quantify the
P 0023 0 0.030 0 0 0 evolvability ¢(T';) of a given topology as:
PT 0 0 0 0 0 0
PT 0 0043 0 0 0174 0046 2<% (#i191)
A 7o g(riy=1- <O, )
P 0 0 0 0 0046 0151 2 2 (¢ile)
c4 where _; w,';’(¢i|¢i) represents the robustness against
"
c 0815 0 0019 0 0 0 accumulated and }_; Q] (¢il¢;) represents the robustness
G 0 0 0 0 0.019 0 . . . .
against single mutations. Since
PIT* 0 0 0.037 0 0 0 Ql Qm h 0<&(Th) <1
- 0 0 0 0 o 0 i (dildi) > D 2 (dildi), we have 0 < E(Ty,) < L
o 0 007 0 ’ 0037 0 Ent kurtosi d the likelihood of f FFL
o 0 0 0 0 0 0037 ntropy, kurtosis and the likelihood of appearance o

Table 3,4,5 and 6 list the transition probabilities between functions for every
motif and its respective function probability distribution. The values are
obtained from numerical simulation.

motifs
The degree of homogeneity of the distribution of prob-
abilities for the implementation of any function can be
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Table 5 Transition probabilities for accumulated
mutations C1-C4

Page 8 of 9

Table 6 Transition probabilities for accumulated
mutations 11-14

G* G PTt PT PT PT" G* G PTt PT P'T PT"
c1 "
G* 0212 0 0.082 0.071 0 0 G" 0.171 0 0.114 0.086 0 0
G 0 0.235 0 0 0.010 0 G 0 0.024 0 0 0 0
PTt 0.035 0 0113 0.052 0 0 PTH 0.033 0 0229 0.098 0 0
PT 0.030 0 0.052 0.082 0 0 PT 0.024 0 0.098 0.122 0 0
PT 0 0.020 0 0 0.007 0 PT 0 0 0 0 0 0
PT" 0 0 0 0 0 0 PT 0 0 0 0 0 0
c2 12
G* 0.005 0 0.008 0.006 0 0 G" 0.088 0 0.048 0.040 0 0
G 0 0.822 0 0 0018 0 G 0 0.398 0 0.007 0.029 0.007
PTH 0.006 0 0.013 0.011 0 0 PITH 0.016 0 0.088 0.040 0 0
PT 0.008 0 0014 0.018 0 0 PT 0.013 0.015 0.040 0.061 0 0
PT 0 0.056 0 0 0.016 0 PT 0 0.058 0 0 0.037 0
PT" 0 0 0 0 0 0 PT" 0 0.015 0 0 0 0.001
(&) 13
G* 0.247 0 0.026 0 0 0 G" 0.024 0 0 0 0 0
G 0 0222 0 0 0.050 0.043 G 0 0.165 0 0 0.098 0.039
PIT* 0.016 0 0.008 0 0 0 PT* 0 0 0 0 0 0
PT 0 0 0 0 0 0 PT 0 0 0 0 0
PT 0 0.100 0 0 0.118 0 PT 0 0.196 0 0 0353 0
PT" 0 0.086 0 0 0 0.086 PT* 0 0.078 0 0 0 0.047
ca 14
G* 0.825 0 0.069 0 0 0 G" 0401 0 0.033 0.017 0 0
G 0 0 0 0 0.005 0.005 G 0 0.088 0 0 0.032 0.032
PIT* 0.042 0 0.011 0 0 0 PT" 0.037 0 0.035 0.005 0 0
PT 0 0 0 0 0 0 PT 0.009 0 0.003 0.001 0 0
P'T 0 0.011 0 0 0.011 0 PT 0 0.064 0 0 0.088 0
PT" 0 0.011 0 0 0 0.011 PT 0 0.064 0 0 0 0.088
used to characterize the level of flexibility or specializa- 7 2
tion or, complementarily, the plasticity of a given motif K(Ts) = 10 n(n+D)(n=1)=3(n-1) 9)
J) =

I';. Different measures can be used to quantify the
homogeneity of a distribution, namely kurtosis (see
Results and Discussion) or entropy. Here we point out
some more details on the calculation of the extreme
cases and their kurtosis and how the Shannon entropy
can be applied equally effective for this task. The
expression for kurtosis can be written [30] as:

B n(n+1) " (P(IT)— < P>\* 3(n—1)?
K(r‘)‘(n—l)(n—z)(n—s)g( ) ey ®

where <P > is the mean value of the probability distri-
bution and o is the standard deviation.

Considering the extreme case where the most specia-
lized motif 'y only implements a single function ¢, i.e.
P(p; | Ty) = 1if j = 1 and 0 otherwise, expression (8)
reduces to:

(n—2)(n-3)

On the other hand, the most flexible motif I's imple-
ments all possible functions with equal probability P(¢; |
I'y) = 1/n. Here expression (8) leads to a mathematical

0
indetermination o because P(¢; | I') = <P >. This inde-

termination can be solved calculating the limit

lim

K(T)).
s <p KD

(10)
Applying L'Hopital’s rule [31], expression (10) reduces
to:

(n+1)(n—1)=3(n—-1)>

(n—2)(n—-3) (1)

K(Ty) =
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The calculated kurtosis values are K(I'y) = 6 and K(/7)
= -3.33, knowing that » = 6 (number of different possi-
ble functions).

Finally, we apply the Shannon entropy [32] to our data
set to describe the qualitative differences in homogene-
ity of the motifs’ probability distributions and develop a
measure for functional specialization. It is defined as

6
H(T;) = = ) P(¢jT)loga | P(¢5IT)]

j=1

(12)

Again, we will first consider the extreme cases I'; and
[y to determine the range of all possible values. We find
for the most flexible case P(¢; | T') = 1/6 an entropy of
H(T'y) = log,(6). For the most specialized case I'; (P(¢; |
I'y) = 1 and 0 otherwise) the associated entropy is H(I'y)
= 0. Any FFL motif will have entropy values residing
within this range. When correlating the FFLs” entropy
and their abundance in figure 4b we find that the most
abundant motifs show intermediate values. This trend
coincides with what has been found when applying kur-
tosis, where too, C1 and /1 show intermediate kurtosis
values. They do neither exhibit high flexibility nor high
specialization, indicating that a trade-off between both
features is associated to the most abundant motifs. It
can be understood in terms of adaptability or in other
words the motifs’ plasticity to explore the landscape of
possible dynamics under mutational pressure.
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