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Abstract

Background: In System Biology, iterations of wet-lab experiments followed by modelling approaches and model-
inspired experiments describe a cyclic workflow. This approach is especially useful for the inference of gene
regulatory networks based on high-throughput gene expression data. Experiments can verify or falsify the
predicted interactions allowing further refinement of the network model. Aspergillus fumigatus is a major human
fungal pathogen. One important virulence trait is its ability to gain sufficient amounts of iron during infection
process. Even though some regulatory interactions are known, we are still far from a complete understanding of
the way iron homeostasis is regulated.

Results: In this study, we make use of a reverse engineering strategy to infer a regulatory network controlling iron
homeostasis in A. fumigatus. The inference approach utilizes the temporal change in expression data after a
change from iron depleted to iron replete conditions. The modelling strategy is based on a set of linear differential
equations and offers the possibility to integrate known regulatory interactions as prior knowledge. Moreover, it
makes use of important selection criteria, such as sparseness and robustness. By compiling a list of known
regulatory interactions for iron homeostasis in A. fumigatus and softly integrating them during network inference,
we are able to predict new interactions between transcription factors and target genes. The proposed activation of
the gene expression of hapX by the transcriptional regulator SrbA constitutes a so far unknown way of regulating
iron homeostasis based on the amount of metabolically available iron. This interaction has been verified by
Northern blots in a recent experimental study. In order to improve the reliability of the predicted network, the
results of this experimental study have been added to the set of prior knowledge. The final network includes three
SrbA target genes. Based on motif searching within the regulatory regions of these genes, we identify potential
DNA-binding sites for SrbA. Our wet-lab experiments demonstrate high-affinity binding capacity of SrbA to the
promoters of hapX, hemA and srbA.

Conclusions: This study presents an application of the typical Systems Biology circle and is based on cooperation
between wet-lab experimentalists and in silico modellers. The results underline that using prior knowledge during
network inference helps to predict biologically important interactions. Together with the experimental results, we
indicate a novel iron homeostasis regulating system sensing the amount of metabolically available iron and
identify the binding site of iron-related SrbA target genes. It will be of high interest to study whether these
regulatory interactions are also important for close relatives of A. fumigatus and other pathogenic fungi, such as
Candida albicans.
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Background
A major workflow in Systems Biology is an interlocking
circle between experimental and theoretical work [1].
Experimentalists perform high-throughput experiments
in order to monitor the response of a biological system
to an external stimulus. These data is then used to con-
struct spatio-temporal models from which reasonable
hypotheses are generated. These hypotheses are experi-
mentally verified or falsified. Using the results of these
experiments, scientists are able to refine the model and
thus generate new knowledge [2].
One way of describing biological systems are networks.

Networks are graphical representations, where the nodes
represent the objects of interest and edges represent rela-
tions between these objects [3]. Network models help to
explain, understand and describe the functioning of a cell
[4]. In many cases we do not know the underlying inter-
action networks within the system of interest. Network
inference aims at the deduction of these networks utiliz-
ing high-throughput data and prior knowledge. The
inference of gene regulatory networks consists of three
parts: the identification of potential regulators, the pre-
diction of target genes, and the inference of the mode of
interaction (e.g. activation or repression). A number of
approaches are established to perform this task, such as
setting up Bayesian Networks [5], information theoretical
approaches [6-8], regression based inference [9-11], and
differential equation models [12-17]. A number of studies
successfully applied these methods for different biological
purposes, e.g. modelling of immune diseases [10,13], full
genomic models of Escherichia coli [8] and Saccharo-
myces cerevisiae [18], and models of pathogenic fungi
[16]. It has been shown that the integration of different
data sources improves the reverse engineering approach
[10,19-21].Since different data sources might be contra-
dictory, it is advantageous to softly integrate them during
the modelling procedure. That means, proposed interac-
tions can be scored by the confidence of the prior knowl-
edge source and might be removed if they contradict too
much to the measured data. A recent study shows how
the Systems Biology circle supports network inference
[22]. Due to the large amount of available data and
knowledge E. coli is best suited as model organism for
network inference. However, this task is more difficult
for pathogenic fungi by virtue of the small amount of
data and small number of known interactions.
Aspergillus fumigatus is an airborne saprophytic fungus

[23]. Humans constantly inhale numerous conidia of
A. fumigatus, which are usually eliminated by the immune
system. However, in immunocompromised individuals the
fungus can cause life-threatening infections [23]. In fact,
the number of infections has been dramatically increased
due to the growing number of immunocompromised indi-
viduals [24-26].

The human host evolved a number of strategies to pre-
vent microbial infection. One important strategy is to
keep iron away from the pathogen [27]. Iron is an essen-
tial metal required as a cofactor for several proteins, as
well as for a number of biochemical processes. However,
within the human host, iron is bound to proteins such as
haemoglobin, ferritin, transferrin, and lactoferrin. Conse-
quently, there is almost no free iron available [28]. Thus,
the acquisition of iron is an important virulence attribute
of most pathogens. During co-evolution, A. fumigatus
has developed a number of efficient iron acquisition
pathways: 1) reductive iron uptake, 2) uptake via sidero-
phores, and 3) low-affinity uptake (for a more detailed
description see [29]). Since excess of iron is toxic for a
cell, iron homeostasis needs to be tightly regulated in
A. fumigatus. The knowledge about the molecular inter-
actions underlying these regulations is still fragmentary.
The transcription factors SreA and HapX have been iden-
tified as a counter pair [30-32]. Under iron replete condi-
tions, SreA is activated and represses iron uptake. Under
these conditions, SreA also represses hapX transcription.
Since HapX is a repressor of iron consumption pathways,
SreA indirectly activates iron consumption. Moreover,
HapX also acts as an activator of iron acquisition. A num-
ber of target genes are known for both regulators, however
we are still far from a complete understanding of iron
homeostasis in A. fumigatus.
Recently, we proposed a model predicting regulatory

interactions for iron uptake of another fungal pathogen,
Candida albicans, when the fungus is adhering to and
invading into human epithelial cells [17]. The model is
based on time series expression data during experimental
infection of reconstituted human oral epithelium. The
usefulness of these data lies in the fact that it re-samples
important parts of a real infection scenario. On the other
hand, in the previous modelling approach a number of
environmental parameters are not constant during infec-
tion, such as pH and nutrient availability. This may have
caused side effects and made it difficult to decide
whether the proposed interactions are purely based on
changes in iron availability or other environmental para-
meters. Such environmental variations finally hamper
experimental verifications of the proposed interactions.
The use of in vitro time series expression data after a
change from iron depleted to iron replete conditions will
help to decide which interactions C. albicans uses to reg-
ulate iron homeostasis. For A. fumigatus, such time series
expression data is already available and utilized in this
study.
In the present work, we propose the first computa-

tional model of the regulation of iron homeostasis genes
in A. fumigatus using high-throughput gene expression
time series data after a shift from iron starvation to iron
replete conditions [31]. It is based on a set of linear
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differential equations and utilizes selection criteria such
as sparseness and robustness [17,21,33]. Since the soft
integration of prior knowledge has been shown to
improve the reliability of the predicted networks
[10,19-21], our modelling approach softly integrates
three kinds of prior knowledge: Northern blot analysis
under limited iron [31,32], microarray expression analy-
sis of transcription factor knock-out mutants [31,32], as
well as the occurence of transcription factor binding
motifs analysis in regulatory regions of genes [31,34-36].
The inferred model predicts new transcription factor to
target gene interactions. A recent study utilizes North-
ern blots and experimentally verifies two of these inter-
actions [37], while another predicted interaction is
falsified and one remains unevaluated. Using the results
of the recent experiments as additional prior knowledge,
we are able to refine our model. The final network
model predicts a number of SrbA targets. To study,
whether or not the transcriptional regulator directly
binds to these target genes, we performed motif search-
ing that lead to the identification of potential SrbA
binding sites in the promoters of the predicted target
genes. Indeed, wet-lab experiments demonstrate high-

affinity binding capacity of SrbA to the promoters of
hapX, hemA and srbA.

Methods
Data and imputation
Schrettl et al. performed full-genomic transcriptional pro-
filing of A. fumigatus as response to the change from iron
depleted growth to iron replete growth [31]. They moni-
tored gene expression at five timepoints after adding iron
to the culture medium: 10 min, 30 min, 60 min, 120 min,
240 min. We used the preprocessed (i.e. normalised and
logarithmised) data of Schrettl et al. [31]. Figure 1 gives an
overview about the applied methods. Since clustering and
network inference need complete data, we imputed miss-
ing values using the Bayesian Principal Component Analy-
sis (BPCA) imputation from the R-package ‘pcaMethods’
[38]. This method performed best among a set of different
imputation methods (for more information see additional
file 1, table S1).

Clustering
Schrettl et al. identified 1147 genes to be differentially
expressed within the wild-type strain comparing iron

Figure 1 Overview of applied workflow. The green lines illustrate how the cyclic workflow of Systems Biology was applied in this study.
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depleted and iron replete conditions [31]. We added srbA
to this set (see candidate genes for regulatory network
model) and collected (imputed) expression values of
these genes. We applied fuzzy c-means clustering [39] to
this expression matrix. The optimal number of clusters
was estimated as previously described [13,17]. In short,
42 cluster validity indices (Dunn’s index and the Davis-
Bouldin index with 18 generalizations each as well as the
silhouette width and five other indices as described in
[13]) capturing different aspects of a clustering structure
were used to assess the partitions based on 2 up to 20
clusters. The number of clusters that was ranked best by
the most validity indices was chosen.

Overrepresented gene ontology terms
In order to identify key biological processes/functions
most significantly enriched with genes within each of
the clusters, we performed functional categorization and
identified significantly overrepresented categories using
the tool FungiFun [40]. We applied both Funcat [41] (all
four hierarchical levels) and Gene Ontology [42] (Biolo-
gical Process and Molecular Function) categorization.

Network prediction
Network inference was performed similarly as previously
described [17] applying the Net Generator tool [33].
This tool is available upon request. In short, the net-
work inferences approach has the following features:

1. It is based on a set of linear differential equations
and models the temporal change of the expression
intensity xi(t) of gene i (i = 1..n) at time t as the
weighted sum of the expression intensities of all
other genes and an external stimulus u(t) at time t
(see equation 1). The external stimulus u(t) is mod-
elled as a stepwise constant function representing
the change from iron depletion to iron repletion.

ẋi(t) =
n∑

j=1

wi,jxj(t) + biu(t) (1)

2. Based on the given time series data, the tool calcu-
lates the gene regulatory matrix W and the perturba-
tion vector B. The parameter wi,j (component of W)
represents an influence of gene j on the expression of
gene i, while the parameter bi (component of B)
represents the impact of the external stimulus given
by the function u(t). Non-zero parameters define the
edges of the regulatory network. A positive parameter
wi,j denotes an activation and a negative parameter
denotes a repression of gene i by gene j.
3. The approach follows the selection criterion of
sparseness. Using a heuristic search strategy it tries

to minimise the number of non-zero parameters
(interactions) which are necessary to fit to the mea-
sured data points.
4. The approach follows the selection criterion of
robustness, i.e. technical noise in measured mRNA
concentrations caused by the microarray technology
does not alter inferred regulatory interactions. This
is achieved by iterating the network inference proce-
dure 1000 times using randomly perturbed input
time series data (Gaussian noise with mean 0 and
standard deviation 0.05 added to the measured and
pre-processed data) [13,16]. Only edges which are
confirmed by more than 50% of the iterations are
considered to be robust.
5. The inference approach uses prior knowledge (i.e.
putative regulatory interactions based on additional
data to time series expression data). Based on the con-
fidence of the prior knowledge source, it is possible to
score each proposed interaction. Since different data
sources might be contradictory, it is advantageous to
softly integrate them during the modelling procedure.
If a proposed interaction contradicts the measured
data too much it might be removed. If necessary, the
tool adds new interactions not covered by the prior
knowledge in order to fit to the measured data.
6. Interactions included in the regulatory model might
mainly be based on their occurrence in the set of prior
knowledge, rather than on the expression data. Thus,
we tested whether or not the predicted interactions
are robust against changes in the set of prior knowl-
edge by iterating the modelling approach 1000 times
while randomly skipping 10% of all interactions in the
set of prior knowledge in each run. Again, only edges
which are confirmed by more than 50% of the itera-
tions are considered to be robust.

Three different sources are used to compile prior knowl-
edge for the prediction of gene regulatory networks:

Source 1: Evidence of transcription factor - target
gene interactions based on single experiments (e.g.
Northern blots). Confidence score = 0.5
Source 2: Gene expression studies under limited
iron conditions and expression analysis of transcrip-
tional regulator knock-out mutants. Confidence
score = 0.25
Source 3: Occurrence of the respective transcription
factor binding motif in the upstream intergenic regions
of iron homeostasis genes. Confidence score = 0.125.

The score is additive, i.e., if an interaction is predicted
by several sources the used score equals the sum over
all confidence scores for the respective sources.
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SrbA binding site
Three DNA sequences with high binding-affinity to the
transcriptional regulator Sre1 were identified in Schizo-
saccharomyces pombe [43]. Sre1 and SrbA show high
sequence similarity. Furthermore, the SrbA protein con-
tains a basic helix-loop-helix/leucine zipper (bHLHZ)
domain. This domain has been shown to specifically bind
DNA in S. pombe [43]. The three high-affinity Sre1 bind-
ing-sites are characterised by a conserved ATC at the 5’
end and a conserved AT at the 3’ end, while the remain-
ing parts are highly variable (5’-ATCNNNNNAT-3’). For
the human ortholog of Sre1 and SrbA, the adenosin and
thymidin enable the contact with the protein [44]. To
predict a SrbA binding site in A. fumigatus, we first
downloaded intergenic regions of genes predicted to be
SrbA targets by our network model. Next, these inter-
genic regions were scanned for the occurrence of the
three high-affinity binding sites of Sre1 allowing maximal
two mismatches [45]. Finally, we only considered those
sites which contain the conserved 5’ and 3’ AT.

To determine whether A. fumigatus SrbA recognizes
the identified putative binding sites, the bHLHZ domain
of SrbA (amino acids 161-267,"SrbA161-267” ) was pro-
duced in E. coli and purified. The protein domain was
analysed by real-time in vitro surface plasmon resonance
(SPR) binding assays. Immobilized DNA duplexes (see
additional file 2 for experimental details ) were used to
test whether or not the protein domain can bind to the
predicted DNA sites.

Results
Clustering and overrepresented GO categories
The BPCA (Baysian Principal Component Analysis)
method gave best results for imputation (see additional
file 1, table S1) and was thus chosen to impute missing
values into the original gene expression data set.
The optimal number of clusters for partitioning the

expression data was found to be four (see additional file 3,
figure S3). Scaled time series profiles are visualised in
figure 2. Additional file 4 shows to which cluster each
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Figure 2 Cluster analysis results. The best partition consists of four clusters. Points: mean (logarithmised, scaled and centred) expression values
of all genes in the cluster, lines: standard deviation.
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gene belongs to, while additional file 5 lists significantly
overrepresented categories for the respective clusters.
Cluster 1 consists of genes which show a quick up-regu-
lation after adding iron to the culture medium. This
cluster is significantly enriched with genes involved in
iron-dependent processes including iron-sulfur cluster
biosynthesis, heme biosynthesis, respiration, TCA cycle
assembly as those categories are overrepresented accord-
ing to Funcat (level 2-4) and to GO-Biological Process
(GOBP). Furthermore, cluster 1 is significantly enriched
with genes involved in transcriptional regulation. In fact,
17 genes belong to the GO category “transcription” (p =
0.0028). Among them are important regulators of iron
homeostasis, namely the transcription factors SreA and
PacC. Since the averaged expression profile in this clus-
ter shows a quick up-regulation, further so far unknown
regulators might be involved in regulating genes
involved in iron homeostasis.
Cluster 2 also shows a quick, but delayed, up-regula-

tion. This cluster mainly consists of genes involved in
RNA processing.
Cluster 3 consists of genes which are highly expressed

under iron starvation conditions and are therefore down-
regulated after adding iron. Interestingly, all 49 genes
belonging to the SreA regulon [31] are members of clus-
ter 3, showing that the clustering partitioned the genes
into biologically relevant groups.
The majority of the characterized SreA target genes are

involved in iron uptake, including reductive iron assimi-
lation and siderophore mediated iron acquisition (Funcat
level four). Another SreA target is the HapX-encoding
gene. Taken together, these data demonstrate that Clus-
ter 3 encodes the major genes required for adaptation to
iron starvation.
Cluster 4 mainly consists of genes involved in oxida-

tion-reduction processes (GOBP). Its mean expression

profile is characterized by a local minimum after 30
minutes followed by an up-regulation.
Taken together, the best characterized gene sets are

found in Cluster 1 with iron-dependent pathways and
Cluster 3 with pathways that are important for adapta-
tion to iron starvation. The co-clustering of many genes
with yet unknown functions indicates similar features.

Candidate genes for regulatory network model
In order to model a network, it is necessary to select a set
of relevant genes, which will be represented by nodes in
the network model. Table 1 summarises information
about genes which are included in the network model.
From each cluster, we chose a number of genes involved
in important parts of iron homeostasis system, or genes
coding for regulators of iron homeostasis.
As they are important regulators, SreA and HapX are

parts of the model. Another regulator is PacC, which has
been shown to be involved in regulating siderophore bio-
synthesis genes in the close relative Aspergillus nidulans
[46]. Moreover, its C. albicans orthologue Rim101 might
be involved in regulating iron acquisition genes during
(experimental) oral infection [17]. Finally, we included
the regulator SrbA because recent data suggest that it
might be involved in regulating the metabolically avail-
able iron level. The C. neoformans orthologue is essential
for growth under iron starvation and regulates reductive
iron uptake [47]. In A. fumigatus, the protein is activated
under ergosterol-limited conditions and might be
involved in activating iron uptake [48]. Finally, expression
of srbA is downregulated under iron replete conditions
[31]. However, the fold-change of srbA is slightly smaller
than the cut-off applied by Schrettl et al. [31] for the
identification of differentially expressed genes.
In order to have genes coding for proteins involved in

different parts of iron homeostasis, we included a low-

Table 1 Model genes

ID Name Cluster Function

AFUA 5G11260 SreA 1 siderophore transcription factor SreA

AFUA 5G03920 HapX 3 bZIP transcription factor (HapX), putative

AFUA 3G11970 PacC 3 C2H2 transcription factor PacC, putative

AFUA 2G01260 SrbA 1 HLH transcription factor, putative

AFUA 5G06270 HemA 1 5-aminolevulinic acid synthase

AFUA 5G10370 Sdh2 1 succinate dehydrogenase iron-sulphur protein

AFUA 4G14640 Fet4 2 low-affinity iron transporter, putative

AFUA 5G10610 AFUA 5G10610 2 ubiquinol-cytochrome c reductase iron-sulfur subunit precursor

AFUA 3G03640 MirB 3 siderochrome-iron transporter (MirB), putative

AFUA 5G03800 FtrA 3 high-affinity iron permease CaFTR2

AFUA 1G04450 SidL 4 siderophore biosynthesis protein, putative

AFUA 1G07480 Hem13 4 coproporphyrinogen III oxidase, putative

Genes used as candidates for the regulatory network model.
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affinitiy iron transporter (Fet4, cluster 3), one high-affi-
nity iron transporter (FtrA, cluster 3), one protein
involved in siderochrome-iron transport (MirB, cluster 3)
and one protein involved in haem uptake (HemA, cluster
1). Furthermore, we included genes coding for proteins
involved in siderophore and haem biosynthesis (SidL,
Hem13, cluster 4), as well as genes coding for iron-sulfur
cluster proteins (Sdh2 cluster 1 and AFUA 5G10610
cluster 2). Note, that we only used one imputed value for
network inference, namely the expression value of sreA at
timepoint zero.

Prior knowledge
Table 2 lists the prior knowledge used in this study.
As prior knowledge source 1, we used Northern blot

results of transcription factor knock-out mutants com-
paring iron replete conditions with iron depletion. In that
way, we identified two potential target genes of HapX
[29,32] and three for SreA [31]. As prior knowledge
source 2, we made use of the full genomic gene expres-
sion profiles of transcription factor knock-out mutants, i.
e. we added a potential interaction if a gene is differen-
tially expressed in the knock-out mutant compared to

the wild type. Altogether, we identified eight potential
interactions this way [31,32].
For prior knowledge source 3, we added a potential

interaction if the respective binding motif of a transcrip-
tion factor occurred in the regulatory region of genes
included in the model. For SreA we used the consensus
binding motif 5’-ATCWGATAA-3’ [31] which we found
in three potential target genes. The PacC consensus
binding motif 5’-GCCARG-3’ of the A. nidulans [46]
was also found in three potential target genes. HapX
interacts with the 5’-CCAAT-3’ binding box in A. nidu-
lans [30]. In order to test whether or not this interaction
also occurs in A.fumigatus, we proposed one gene with
the CCAAT-box in their promoters as HapX targets.

Regulatory network of iron homeostasis genes
Following the modelling approach described in the meth-
ods chapter, we inferred two regulatory network models.
The first model is based on the prior knowledge being
available previous to the study of Blatzer et al. [37]. Figure
3 shows that the initial model (i.e. before tested for robust-
ness) fits well to the measured kinetics. Figure 4 presents
the network after removing non-robust edges. The model
explains how SreA and HapX interact to regulate iron
homeostasis genes and elucidates the role of further regu-
lators. The model predicts the repression of hapX by
SreA, which is supported by the SreA binding site in the
upstream region. As expected, HapX itself does not
repress sreA, even though this interaction is supported by
source 3. This interaction only takes place under iron
deplete conditions [29]. The known repression of mirB by
SreA [32] was confirmed by our model. This shows that
our modelling approach is capable of finding de-novo bio-
logically relevant interactions. Table 3 summarizes target
genes of transcriptional regulators newly predicted by the
model. Of high interest is the activation of hapX by SrbA.
If sufficient amount of metabolic iron is available, SrbA
might down-regulate iron consumption by activating
hapX.
Similar to A. fumigatus, the C. neoformans SrbA ortho-

log activates genes involved in high-affinity iron uptake
of iron, including genes in both siderophore-mediated
and reductive iron transport, as well as heme biosynthesis
[47]. Moreover, heme biosynthesis, including Hem13, is
activated by the SrbA orthologs in S. pombe and C. neo-
formans [43,47]. Since most oxygen-dependent enzymes
are also iron/heme-containing, the iron starvation
response is often coordinately regulated with the
response to hypoxia [49]. Therefore, the cellular needs
for oxygen and iron are tightly linked, which most likely
provides the rational for coregulation of iron, heme and
oxygen metabolism by SrbA in A. fumigatus.
Furthermore, the model newly predicts two regulators of

hem13. PacC and SreA are predicted to down-regulate this

Table 2 Prior knowledge

Regulator Target Interaction Source Score Reference

HapX sreA repression 1 0.5 [29]

HapX AFUA_5G10610 interaction 2 0.25 [32]

HapX mirB activation 1,3 0.625 [32,51]

HapX hemA repression 2 0.25 [32]

HapX sdh2 repression 2 0.25 [32]

input sreA activation 2 0.25 [31]

input hapX repression 2 0.25 [32]

PacC mirB interaction 3 0.125 [46]

PacC ftrA interaction 3 0.125 [46]

PacC hem13 interaction 3 0.125 [46]

SreA sdh2 repression 2 0.25 [31]

SreA hemA repression 2 0.25 [31]

SreA AFUA_5G10610 repression 2 0.25 [31]

SreA hapX repression 1,3 0.625 [31]

SreA mirB repression 1 0.5 [31]

SreA ftrA repression 1,3 0.625 [31]

SreA sidL repression 3 0.125 [31]

SrbA hapX activation 1 0.5 [37]

SrbA ftrA activation 1 0.5 [37]

SrbA mirB activation 1 0.5 [37]

SrbA hem13 activation 1 0.5 [37]

SreA hem13 no
interaction

1 0.5 [37]

The table lists regulator-target gene interactions, the type of interaction, the
source of prior knowledge, the score used and references. The second part of
the table lists additional prior knowledge we exploited in order to refine the
model within the second round of modelling. “Input” denotes the fact that a
target gene is regulated by the external perturbation (shift from iron replete
to iron depleted conditions).
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gene under iron deplete conditions. Finally, the model pre-
dicts a number of self-repressing interactions. These self-
repressing interactions can be interpreted as degradation
of the mRNA.

Experimental verification
In a recent study, Blatzer et al. [37] performed gene
expression analysis under iron replete and iron depleted
conditions of a number of genes involved in iron homeos-
tasis using Northern blots. The special focus of this study

is the regulatory role of SrbA. Results of the study verify
the activation of hapX by SrbA which was predicted by
our first model (see figure 4). This shows that our model-
ling approach is not only able to include current knowl-
edge but also correctly predicts interactions. Note, that no
prior knowledge was used to predict this interaction.
Another predicted interaction was falsified by the experi-
mental results [37]. It turns out from the Northern blot
analysis that there is no evidence that SreA represses
hem13. Instead, the experimental study indicates an

Figure 3 Data fit for the initial model. Data fit of the initial model (i.e. before refining the prior knowledge and before testing for robustness).
Dots: measured data points, dashed lines: interpolated data points, solid lines: model-simulated data points.
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activation of hem13 by SrbA. The interaction between
PacC and hem13 was not experimentally tested.

Refining the network model
Having the experimental results of the recent study at
hand [37], we were able to complete the prior knowledge
in order to refine the network model. Table 2 (second
part) lists the interactions additionally included as prior
knowledge in the next modelling round. From a methodo-
logical point of view, this modelling round followed
exactly the same strategy as the first one, i.e. we identified
interactions which are robust against technichal noise in
the mRNA concentration and do not change when we
randomly skipping parts of the prior knowledge (see
methods).
Figure 5 shows a visualization of the model. Additional

file 6, table S6 displays results of the resampling by

input

SrbA

SreA

HapX PacC

HemA

Sdh2

Fet4

AFUA_5G151515

FtrA

SidLHem13MirB

Figure 4 Inferred regulatory network before refinement of the prior knowledge. The node colour denotes the cluster the gene belongs
to. An edge between two nodes represents an interaction; arrows are activations while bars are repressions. Green edge: based on measured
kinetics, consistent with prior knowledge, and robust(found more than 50% in models based on randomized input time series data and cross-
validation of prior knowledge); blue edge: not in prior knowledge, based on measured kinetics, and robust; Grey edge: predicted by the prior
knowledge but contradicting time series data, not in the model.

Table 3 Transcriptional regulators and predicted target
genes

Regulator newly predicted target genest

Before refinement After refinement

SreA sreA, hem13* sreA

HapX hapX hapX

PacC pacC, hem13

SrbA srbA,hapX srbA,hemA

For each regulator, newly predicted target genes are shown. A target gene is
counted as “newly predicted” if it was predicted by the time series data
without prior knowledge, or if it was predicted by prior knowledge based on
the occurrence of transcription factor binding motif (source 3) and was found
to be consistent with the gene expression data. The second column of the
table lists the results after refining the model. Bold genes have been validated
by Northern blots [37] (before refinement) or binding to SrbA (after
refinement). The interaction marked with asterix was falsified.
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perturbation of input data and cross-validation. Alterna-
tive configurations of the resampling were studied showing
similar results as presented (data not shown). Due to the
lack of a “gold standard” for the “true” network we are
unable to decide about the best configuration of
resampling.
The questionable interactions predicted by the first

model do not occur in this model any more. In the new
model, hem13 and hapX are activated by SrbA, which is
in agreement with the new prior knowledge [37]. By con-
trast, the activation of ftrA and mirB by SrbA was not
found. Instead, the refined model predicts a direct activa-
tion of hemA by SrbA. This activation was already pre-
dicted before refinement of the model, but the activation
was indirectly indicated in figure 4.

SrbA binding site and regulon
The refined network model consists of four target genes
for SrbA. Two of them, hapX and hem13, have been
validated by Northern blots [37], while the self-repres-
sion of srbA and the activation of hemA remain
untested. In order to test these two interactions and to

see if the Northern blots findings are a result of a physi-
cal interaction, we predicted SrbA binding sites using
motif searching (see methods). For experimental verifi-
cation, we used real-time in vitro surface plasmon reso-
nance (SPR) binding assays of the predicted binding
sites and the purified SrbA-DNA-binding-domain (see
methods and additional file 2 for details and figures).
Table 4 summarises the results. The predicted binding
site within the srbA promoter (-735 to -726) has no mis-
match when aligned to the consensus sequence of high-
affinity sites in S. pombe. A. fumigatus SrbA161-267
shows high-affinity DNA-binding responses that fit to a
KD value of 0.63nM for this binding site. By contrast,
only low-affinity binding (KD > 300nM) was observed
for a DNA duplex mutant that served as negative con-
trol and altered the srbA binding motif from ATCA-
TACGAT to ATATAACATA. Furthermore, high
affinity SrbA161-267 binding was observed as well with
putative binding sites that had only one mismatch com-
pared to known binging sites in S. pombe. Kinetic bind-
ing responses on duplexes encoding hapX (-1340 to
-1331) and hemA (-527 to -518) promoter regions fit

input

SrbA

SreA

HapX

PacCHemA

Sdh2 Fet4AFUA_5G10610

FtrA

SidL

Hem13MirB

Figure 5 Inferred regulatory network after refinement of prior knowledge. For description see figure 4.
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with KD values of 4.6nM and 4.2nM, respectively. Addi-
tionally, we identified two sites with weak binding in
hapX and hemA, respectively. Taken together, SrbA has
high-affinity binding capacity to binding sites in hapX,
hemA and srbA. Together with our predicted network
and the Northern blot analyses [37], these results sug-
gest a direct physical interaction of SrbA with these tar-
get genes. The consensus of the high-affinity sites is 5’-
ATC[G–A][T–G][A–G][C–T][G–C]AT-3’. We used the
experimentally validated sites to scan for further puta-
tive SrbA target genes within the A. fumigatus genome,
allowing up to 2 mismatches in the variable region (see
additional file 7, table S7). About 13% of the A. fumiga-
tus genes contain one of these sites with maximal one
mismatch in their regulatory region. A functional cate-
gorisation of this gene list resulted in overrepresented
functional categories such as “Heavy metal binding (Cu,
Fe, Zn)” and “Lipid, fatty acid and isoprenoid metabo-
lism”. This adds evidence to the hypothesis that SrbA
links ion concentration and fatty acid metabolism.

Discussion
In this study, we propose a modelling approach based
on a set of ordinary differential equations. Even though
this approach fits well to the measured time series data,
it has the drawback that it is inappropriate for large-
scale modelling. In general, a large number of genes
being part of a model leads to a large number of para-
meters to be identified, which may result in over-fitting
of the data. Our modelling approach aims at inferring a
sparse network (i.e. many parameters are zero) and
makes use of resampling techniques where the data are
perturbed in a random manner (see chapter “Network
prediction” point 4 and 6). Both attempts help to pre-
vent over-fitting. Furthermore, we restrict the number
of genes, thereby leading to a smaller number of para-
meters to be identified. The selection of those genes
that are included in the model are directed from experi-
mental findings. However, some additional genes which
might be involved in iron homeostasis are not included
in the model. Furthermore, there is a number of so far
uncharacterised genes which might play a role. The

clustering of the expression data helps to get an idea
about those genes. One gene of each cluster in the pro-
posed regulatory model could be thought of a cluster
representative. In this way, regulatory interactions
inferred by our model might be transferred to other
pairs of genes belonging to the respective clusters. With
the knowledge of co-expression patterns and the regula-
tory influences proposed by our model, it might be pos-
sible to obtain an idea about the function of so far
uncharacterised genes.
The modelling strategy makes use of prior knowledge.

The cross-validation procedure helps to prevent the
model from adapting too much to the given knowledge.
However, the prior knowledge incooperated into the
model could be changed. In general, we could add more
interactions when making use of knowledge based on
other organisms. It remains to find out what organisms
could be used for this task, i.e. what the maximal evolu-
tionary distance of an organisms that could be used as
prior knowledge source is. This also relates to the ques-
tion of how we chose the local scores for each interac-
tion. The scoring sheme used in this study was already
successfully applied [17]. However, when including infor-
mation from an evolutionary distant organism this scor-
ing scheme needs to be expanded. For example,
Northern blot analysis revealed that mirB is activated by
PacC under alkaline conditions in A. nidulans [46]. This
would add another category of prior knowledge ("North-
ern blots of close relatives”). Our models do not predict
this interaction, even though we use prior knowledge
based on the occurrence of the PacC binding site.
A recent study shows that sidL is expressed indepen-

dently of SreA [50]. Our models predict no interaction
between these genes, even though it was proposed by the
prior knowledge source 3. This shows that our modelling
strategy is not blindly adapting to the given set of prior
knowledge. If an interaction proposed by the prior
knowledge contradicts the measured expression data too
much, our modelling approach removes it from the pre-
dicted network.
The applied scoring scheme assigns the highest score

for prior knowledge based on Northern blots. The

Table 4 SrbA binding sites

Gene Position Strand Sequence ka(M
-1s-1) kd(s

-1) KD(nM)

srbA -735 to -726 Sense ATCATACGAT 1.48 ± 0.05 * 107 9.27 ± 0.29 * 10-3 0.63 ± 0.04

srbA* -735 to -726 Sense ATATAACATA 5.92 ± 0.08 * 105 2.29 ± 0.01* 10-1 386 ± 7.3

hapX -774 to -783 Antisense ATCCTCCCAT 5.68 ± 0.07 * 105 1.61 ± 0.01* 10-1 282 ± 5.1

hapX -1340 to -1331 Sense ATCAGATGAT 3.10 ± 0.01 * 107 1.44 ± 0.01 * 10-1 4.64 ± 0.03

hemA -527 to -518 Sense ATCGGATCAT 1.41 ± 0.07 * 107 5.88 ± 0.28 * 10-2 4.18 ± 0.41

hemA -338 to -347 Antisense ATCGCCTCAT 1.03 ± 0.01 * 106 3.66 ± 0.02 * 10-2 35.7 ± 0.52

The binding of SrbA to five predicted binding sites was analysed. Results indicate three high-affinity binding sites in promoter regions of hapX, hemA and srbA.
The asterix denotes a mutated binding site. Mutated nucleotides are underlined. ka= association rate constant, kd = dissociation rate constant, KD = kd/ka
equilibrium dissociation constant.
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rationale behind this is that Northern blots are no high-
throughput experiments and thus we believe these
experiments give strong evidence that the respective
regulatory interactions exist. However, the Northern
blots were performed at steady state (24 hours after
adding iron). On the other hand, the used expression
data focused on early effects after the change to iron
replete conditions (10 to 240 minutes). This might
explain some discrepancies between the Northern blot
data and the proposed models.
Here, we report the first SrbA binding sites in A.

fumigatus. The data revealed a remarkable sequence
similarity between S. pombe and A. fumigatus. An inter-
esting future task will be to identify further SrbA target
genes and to analyse whether the defined binding sites
are conserved throughout other fungal species. All high-
affinity binding sites of S. pombe and A. fumigatus show
a conserved C at the third position. While the existence
of the conserved AT can be explained by the fact that
the human SrbA ortholog physically interacts with these
nucleotides, the reason for the conservation of the C
remains to be elucidated.

Conclusions
This study demonstrates how the Systems Biology circle is
carried out, i.e. how experimental work and modelling
iteratively interact, in order to gain understanding of a bio-
logical system. Analysing gene expression time series data
and using a modelling approach based on a set of differen-
tial equations, we were able to predict new regulatory
interactions controlling iron homeostasis in A. fumigatus.
Wet lab experiments proved that the proposed modelling
approach allows to predict novel biologically relevant
interactions. Results of the latest experiments were used to
refine the predicted model. Taken together, this underlines
that using prior knowledge during network inference
improves the prediction quality of the reverse engineering.
Together with the experimental results, we identified a
new iron homeostasis regulatory network based on the
amount of metabolically available iron. Furthermore, we
found that SrbA physically interacts with its predicted tar-
get genes via specific DNA-binding and identified the
SrbA binding site in A. fumigatus.
In a previous study, we predicted a regulatory network

concerning iron acquisition by the fungal pathogen
C. albicans during an experimental infection. This model
was based on a similar modelling strategy, i.e. it also
exploits gene expression data and uses a set of prior
knowledge. In the case of C. albicans it remains unclear
which of the predicted regulatory interactions is exclu-
sively based on limited iron. In contrast, for A. fumigatus
we do not know which of the (predicted) interactions
play a role in an in vivo infection process. Further

experiments will focus on time series expression of A.
fumigatus in an (experimental) infection and on expres-
sion data of C. albicans under in vitro iron limitation. It
will be interesting to figure out whether C. albicans also
regulates iron homeostasis based on the amount of meta-
bolically available iron. This will give us the opportunity
to compare regulations of iron homeostasis for both
important fungal pathogens. Together with the growing
amount of available expression data for both fungi we
will be able to expand our models to other important
processes, thus making A. fumigatus and C. albicans
model organisms for fungal infections.

Additional material

Additional file 1: Table S1 - Imputation. The whole genome
expression data (wild-type and mutant) includes 20.4% missing values.
Since clustering and network inference need complete observations, we
imputed those missing values following a similar approach applied by
Albrecht et al. [52]. First, we removed 1253 genes (rows), which had
100% missing values (genes not spotted on the chip). Then, we tested
the following imputation methods. From the R package ‘impute’ [53] K-
nearest-neighbour; from the R package ‘pcaMethods’ [38]: probabilistic
Principal Component Analysis (PCA), Bayesian PCA (BPCA), Single-Value-
Decomposition impute (SVD impute), PCA by non-linear iterative partial
least squares (NIPALS), Neural network based non-linear PCA (NLPCA),
and Local Least Squares (LLS) imputation. The concatenation of the wild-
type data and the mutant data was used together, since more data
improves imputation. For test purpose we found the largest sub-matrix,
which consists of full observations (5566 genes with no missing data)
and constructed a test-data matrix by randomly introducing artificial
missing values in this sub-matrix, keeping the distribution of missing
values within the columns the same like in the original matrix. We used
the different imputing methods on the test-data and compared the
results to the original data in terms of the root mean square error
(RMSE). In the first step, we ran each method separately on a range of
parameter settings to identify optimal local parameter values. In the
second step, we applied the methods using the respective optimal
parameter settings on 500 random test matrices. Finally, we compared
the methods to each other using the mean RMSE values. The table
summarizes results of both steps.

Additional file 2: SrbA binding site. Experimental details and results of
real-time in vitro binding analysis of SrbA.

Additional file 3: Figure S3 - Cluster validity index. Validity indeces
for partitions based on two up to twenty clusters are shown. The
maximum denotes the best partition.

Additional file 4: Table S4 - Cluster annotation. This table shows to
which cluster each gene belongs to. Functional annotations and GO
annotations are given.

Additional file 5: Table S5 - Overrepresented functional categories
for each cluster. Overrepresented categories for each cluster. The file
consists of 20 sheets. For each cluster, significantly (p < 0.01)
overrepresented functional categories for Funcat level 1-4 and Gene
Ontology are presented.

Additional file 6: Table S6 - Inferred interaction network based on
final prior knowledge. The table summarise results of the inferred
network based on the final prior knowledge list. It gives the number of
resampling during random perturbation of time series data and during
the cross-validation of prior knowledge.

Additional file 7: Table S7 - SrbA regulon. The table lists A. fumigatus
genes having the experimentally validated SrbA binding sites in their
regulatory region.
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