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Abstract

Background: The field of synthetic biology has greatly evolved and numerous functions can now be implemented
by artificially engineered cells carrying the appropriate genetic information. However, in order for the cells to robustly
perform complex or multiple tasks, co-operation between themmay be necessary. Therefore, various synthetic
biological systems whose functionality requires cell-cell communication are being designed. These systems, microbial
consortia, are composed of engineered cells and exhibit a wide range of behaviors. These include yeast cells whose
growth is dependent on one another, or bacteria that kill or rescue each other, synchronize, behave as predator-prey
ecosystems or invade cancer cells.

Results: In this paper, we study a synthetic ecosystem comprising of bacteria and yeast that communicate with and
benefit from each other using small diffusible molecules. We explore the behavior of this heterogeneous microbial
consortium, composed of Saccharomyces cerevisiae and Escherichia coli cells, using stochastic modeling. The stochastic
model captures the relevant intra-cellular and inter-cellular interactions taking place in and between the eukaryotic
and prokaryotic cells. Integration of well-characterized molecular regulatory elements into these two microbes allows
for communication through quorum sensing. A gene controlling growth in yeast is induced by bacteria via chemical
signals and vice versa. Interesting dynamics that are common in natural ecosystems, such as obligatory and facultative
mutualism, extinction, commensalism and predator-prey like dynamics are observed. We investigate and report on
the conditions under which the two species can successfully communicate and rescue each other.

Conclusions: This study explores the various behaviors exhibited by the cohabitation of engineered yeast and
bacterial cells. The way that the model is built allows for studying the dynamics of any system consisting of two
species communicating with one another via chemical signals. Therefore, key information acquired by our model may
potentially drive the experimental design of various synthetic heterogeneous ecosystems.

Keywords: Stochastic modeling, Synthetic ecosystem, Cell-cell communication, Synthetic microbial consortia,
Bacteria-yeast ecosystem

Background
Advances in the field of synthetic biology have enabled
the design of engineered cells performing human-defined
functions at a single cell resolution [1,2]. These func-
tions include but are not limited to oscillators [3-5],
bistable switches [6], bio-logical gates [7-9], riboregulators
[10,11] and molecular devices that control gene expres-
sion [12,13]. Despite this progress, several limitations
still exist. A major shortcoming is the decreased robust-
ness and the limited potential complexity of single cell
functions. Thus, attention has been shifted to synthetic
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systems based on communication between cells, rather
than individual isolated cell functionality. Cooperation
among cells is largely mediated by quorum sensing [14]
andmay be promising for the development of cell-systems
that robustly perform complex tasks [15-17]. These tasks
range from cells rescuing or killing one another [18-21] to
cells synchronizing across a relatively long distance [22].
The potential advantage of microbial consortia com-

pared to monocultures is two-fold. First, in contrast to
monocultures, multicultures allow the different species to
share the various required synthetic functions or the dif-
ferent steps of a synthetic function. This function sharing
decreases the burden in the metabolism of the cells sig-
nificantly. Second, the sharing of different functions, or
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steps, among different cells potentially renders microbial
consortia more suited for fine-tuning of their artificial
functionality [23].
It is now clear that mathematical models can accurately

capture the behavior of synthetic systems comprising of
either bacterial or yeast cell strains and allowing cell-
to-cell communication [18-20,22,24-28]. You and his co-
workers designed a synthetic bacterial ecosystem where
cell-cell communication controls cell density by induc-
ing a killer gene in the bacteria [19]. To mathematically
investigate the dynamics of this system, they coupled their
experiments with a simple deterministicmodel. Shou et al.
designed a synthetic yeast system where cell growth was
dependent on successful cell-cell communication [24]. To
further explain their system behavior, they used a mathe-
matical model comprised of algebraic equations. Basu and
his co-workers designed a synthetic system, composed of
bacteria, that forms different patterns of differentiation,
such as rings and clovers, driven by cell-cell commu-
nication via N-Acyl homoserine lactone (AHL) signals
[25]. In addition to experimentally designing this system,
they used a deterministic mathematical model to explore
the behavior of this system. Balagadde et al. designed a
synthetic bacterial ecosystem where cell-cell communica-
tion enables cells to exhibit predator-prey dynamics by
either killing or rescuing one another [18]. They initially
developed a deterministic model to thoroughly study the
dynamics of their synthetic ecosystem and then intro-
duced a constant noise term to their model aiming to
explore the influence of the stochasticity in their system.
Even though communication between different species

using non-AHL signals has been demonstrated previously
[29], no synthetic ecosystem has been developed that is
composed of bacteria and yeast which communicate with
and benefit from each other using AHL signals. Such a
microbial consortium could exhibit interesting dynamics,
such as oscillatory behavior, that stem from the substan-
tial differences (e.g. different volume, growth rate, gene
expression process) between prokaryotes and eukaryotes.
Here, we investigate the behavior of such a synthetic het-
erogeneous community using stochastic modeling. To this
end, we have modeled and simulated a synthetic consor-
tium composed of Saccharomyces cerevisiae (S. cerevisiae)
and Escherichia coli (E. coli) cells. This synthetic ecosys-
tem was found to exhibit intriguing dynamic behavior
that is commonly observed in natural ecosystems. Our
model, capturing the behavior of this ecosystem, has been
built in such a way that it can capture the dynamics
of any system with two different species communicating
with AHL signals. Thus, our model may drive the exper-
imental design of artificial ecosystems with two different
species (e.g. mammalian-yeast or mammalian-bacteria)
which communicate with and regulate gene expression in
one another.

Methods
Design of the synthetic ecosystem
In this study, we propose the design of a synthetic yeast-
bacteria ecosystem that is based on diffusible chemical
signals. Examples of these signals are the RhII/RhlR and
LuxI/LuxR quorum sensing signals from Pseudomonas
aeruiginosa and Vibrio fisheri quorum sensing systems,
respectively, which are known for their sensitivity and the
absence of signal cross-reactivity [30].
Each species exists in the presence of a molecule con-

trolling growth, Gc. This molecule could be an antibiotic,
such as Kanamycin, which is effective against both E. coli
and S. cerevisiae [31]. Gc inhibits cell growth and there-
fore each species ultimately goes extinct. However, each
species contains a resistance gene which counteracts the
function of Gc and is controlled by the other species via
diffusible molecules. Thus, when both species are present,
they induce each other’s resistance gene through chemical
signals, thereby rescuing one another. A schematic rep-
resentation of the proposed ecosystem is illustrated in
Figure 1.
More specifically, S. cerevisiae constitutively expresses

a diffusible molecule, AHL1. AHL1 diffuses out of the
S. cerevisiae cells, penetrating E. coli cells and binding
to its cognate receptor, AHLR1. AHLR1 is constitutively
produced in E. coli. The activated molecule in E. coli
binds to the responsive element fused upstream of the
Res promoter activating expression of Res. Subsequently,
the resistance protein, Res, deactivates Gc in E. coli.
Potential Res could be the Kanamycin resistance protein
[31].
The second component of the feedback loop in E.

coli functions in the same genetic fashion. It con-
stitutively produces an autoinducer synthase, AHL2.
Once AHL2 is produced, it diffuses out of the E. coli
into S. cerevisiae, and is recognized by its cognate
receptor, AHLR2, which is constitutively produced in
S. cerevisiae as a fusion protein that allows it to be
activated in eukaryotic cells. This activated molecule
now binds to its responsive promoter and induces
expression of the resistance gene, res. The resistance pro-
tein, in turn, represses the function of Gc in S. cerevisiae.
It is important to note that for the purposes of this

study, we assume synthetic bacterial molecular compo-
nents function in yeast. We hypothesize that their func-
tionality may be retained when they are used in yeast. This
is not an unreasonable hypothesis since the functionality
of quorum sensing bacterial elements has been demon-
strated experimentally in other higher organisms [32].
Here, we aim to computationally explore the behavior

of a microbial consortium consisting of two different
species, and how the differences of the two species affect
its dynamics. The focus is therefore on the popula-
tion dynamics. The functionality of such an ecosystem



Biliouris et al. BMC Systems Biology 2012, 6:58 Page 3 of 13
http://www.biomedcentral.com/1752-0509/6/58

Figure 1 Logic behind the synthetic yeast-bacteria ecosystem. S. cerevisiae cells produce AHL1 thereby activating resistance gene expression in
E. coli and cell survival. Similarly, E. coli cells produce AHL2 that induces resistance gene expression in S. cerevisiae rescuing the latter.

could in principle be achieved using any other molecular
components with similar function.

Model description
As discussed in the previous section, numerous
mathematical models that describe the behavior of
synthetic ecosystems have been developed previously
[18-20,24-28]. The vast majority of these models are
deterministic, ignoring the stochastic nature which is
ubiquitous in biological systems [33-35]. Thus far, differ-
ent methods have been described [36-42] and extensively
applied to stochastically simulate the dynamics of biolog-
ical systems in general and gene networks in particular
[4,8,12,13,43-47].
In this study, we develop a stochastic model that

accounts for the intrinsic and extrinsic noise and describes
the dynamics of the synthetic bacteria-yeast ecosystem
depicted in Figure 1. The model takes into considera-
tion the volume and the growth rate differences between
E. coli and S. cerevisiae. In addition, it accounts for
the gene expression dissimilarities between bacteria and
yeast. Our model monitors the evolution of molecular
species that usually exist in relatively high amounts allow-
ing for the use of continuous stochastic models [38,41].
Continuous stochastic computational approaches have
also accurately described the experimental phenotype of
synthetic cell communities [18]. We, therefore, employ

chemical Langevin equations [41] to capture the evolution
of the species participating in this synthetic ecosystem.
The model consists of 17 reactions whose dynamics

are described using 9 Stochastic Differential Equations
(see Additional file 1). The equations were integrated
in Matlab using the Euler Maruyama method [48]. The
type of reactions as well as the kinetic parameters used
were acquired from previously published studies involv-
ing experimental work. Our model is generic (i.e it
may be used to capture the dynamics of various two-
species ecosystems), but for the purposes of this study we
assumed specific molecular components (and their asso-
ciated kinetic parameters) that have been widely used in
designing synthetic ecosystems. These components are
presented in Table 1. The current model may capture the
behavior of any similar heterogeneous ecosystem by sim-
ply modifying the kinetic parameters according to the
new system. The reaction network along with the kinetic
parameters and the reaction rates capturing the behavior
of our system is presented in Table 2.
The first two reactions describe the cell population

growth. Consistent with previous mathematical mod-
els [18-20], and because the model refers to ecology,
population growth follows logistic kinetics. Bacteria were
considered to grow four times faster than yeast [49];
k1 was set four times smaller than k2. Cmax represents
the carrying capacity of the bioreactor, i.e. the maximal
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Table 1 Molecular components assumed in themodel

Name Molecular component

ahlI rhlI

ahlR1 rhlR

AHL1 C4HSL

AHLR1 RhlR

ahl2 luxI

ahlR2 luxR

AHL2 3-oxo-C6HSL

AHLR2 LuxR

res kanR

Resistance protein (Res) Kanamycin resistance

Growth control (Gc) Kanamycin

population load that the bioreactor can sustain [51], and
is set equal to 109 cells [18,21]. Reactions 3 and 4 rep-
resent the cell death due to the presence of Gc (in our
case Kanamycin). We assume a constant concentration
of Gc (0.3 μM) as, according to the kinetic parameters
used in our model, this concentration kills each single
simulated cell colony when the two species are placed
separately. Both the bacteria and yeast carry a resistance
gene so the reaction rate is written such that the higher
the amount of the resistance protein, the slower the cell

death rate is. Similar reaction rates have been used pre-
viously to capture cell death due to killer proteins [18].
The correlation between Gc and the resistance protein
is tuned through the parameter α. The parameter α was
initially set equal to 5 ·104 molecules−1, due to the lack
of literature values, and subsequently the sensitivity of
the ecosystem’s behavior to changes in this parameter
was investigated. Reactions 5 and 6 describe the produc-
tion of the molecules responsible for the diffusible signals.
AHL1 and AHLR2 are produced by S. cerevisiae whereas
AHL2 and AHLR1 are produced by E. coli. The concen-
tration of AHLR2 and AHLR1 is considered constant (0.5
μM) and equal to previously published values [26]. AHL1
and AHL2 production reactions are assumed to be first
order, in accordance with previous studies [19,20,52]. The
production rate of these diffusible molecules can vary
significantly depending on the promoter strength of the
associated genes. Using directed evolution, a wide range
of quorum sensing production rates can be achieved [53].
The optimized behavior can be also achieved using com-
putational approaches [54]. In our model, we initially
adopted k4 and k5 from [18] and subsequently increased
their values since our system required very long time to
reach steady state under these conditions. Reaction 7 cap-
tures the binding of AHL2 to AHLR2 in S. cerevisiae.
This reaction is considered a fourth order reaction (this
reaction accounts for the volume of S. cerevisiae cells)

Table 2 Reaction network capturing synthetic ecosystem’s behavior

# Reaction Reaction rate Kinetic constant

1
k1��� c1 k1 · c1

(
1 − c1+c2

cmax

)
k1 = 0.234

h , cmax = 109cells [18,21]

2
k2��� c2 k2 · c2

(
1 − c1+c2

cmax

)
k2 = 0.936

h [19], cmax = 109cells [18,21]

3 c1 + Gc
k3���Gc k′3·c1

1+α·Res1 k3 = 4·106
M·h [19], α = 5·104

Molecules

4 c2 + Gc
k3���Gc k′3·c2

1+α·Res2 k3 = 4·106
M·h [19], α = 5·104

Molecules

5 c1
k4��� AHL1 + c1 k4 · c1 k4 = 5 · 10−6 1

h [18]

6 c2
k5��� AHL2 + c2 k5 · c2 k5 = 5 · 10−6 1

h [18]

7 2AHL2 + 2AHLR2
k6��� AHL2 : AHLR2

k′6·AHL22
V1·Na k6 = 3·1019

M3·h [26], V1 = 3.7 · 10−14L [49],

Na = 6.023 · 1023
8 AHL2 : AHLR2

k7��� preRes1 k7·AHL2:AHLR2n1
k
n1
7b +AHL2:AHLR2n1

k7 = 6 · 10−5 M
h , k7b = 10−8M, n1 = 1 [26]

9 preRes1
k8��� Res1 k8 · preRes1 k8 = 5

h

10 2AHL1 + 2AHLR1
k9��� AHL1 : AHLR1

k′9·AHL12
V2·Na k9 = 3·1019

M3·h [26],V2 = 10−15L [50]

11 AHL1 : AHLR1
k10��� Res2 k10·AHL1:AHLR1n2

k
n2
10b+AHL1:AHLR1n2

k10 = 6 · 10−5 M
h , k10b = 10−8M, n2 = 1 [26]

12 AHL1
k11���∅ k11 · AHL1 k11 = 1.19

h [19]

13 AHL2
k12���∅ k12 · AHL2 k12 = 1.19

h [19]

14 AHL1 : AHLR1
k13���∅ k13 · AHL1 : AHLR1 k13 = 1.386

h [26]

15 AHL2 : AHLR2
k14���∅ k14 · AHL2 : AHLR2 k14 = 1.386

h [26]

16 Res1
k15���∅ k15 · Res1 k15 = 4

h [20]

17 Res2
k16���∅ k16 · Res2 k16 = 4

h [20]
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since it has been demonstrated that a fourth order reac-
tion can capture the experimental phenotypes well [26].
Resistance protein (Res) production is calculated using
Hill type kinetics, in accordance with experimental obser-
vations [26], and is shown in reaction 8. This reaction
also accounts for gene expression differences between
eukaryotes and prokaryotes. In contrast to prokaryotes,
eukaryotic transcription requires many transcription fac-
tors to be recruited before its initiation. Moreover, the
translation process in prokaryotes is faster than in eukary-
otes [55]. These two factors introduce a delay in eukary-
otic gene expression rendering it slow compared to the
prokaryotic gene expression. In our model, we represent
this delay using reaction 8. In fact, we assume that a
complex (preRes) must first be formed before Res pro-
duction can take place. A similar approach has been used
previously to capture transcription in yeast [56]. After
performing a set of simulations, we set k8 equal to 5
h−1 since this value was found to cause a delay in our
ecosystem compared to a model lacking this intermediate
reaction (data not shown). The actual process of pro-
tein production is captured by reaction 9. Similarly to
reaction 7, reaction 10 captures the binding of AHL1 to
AHLR1 in E. coli (this reaction accounts for the E. coli
cell volume). Reaction 11 is used to describe E. coli gene
expression. Note that in this case there is no reaction
describing a delay in gene expression. Finally, reactions
12-17 represent the degradation of the species participat-
ing in this network and they are all considered first-order.

Results and discussion
Testing synthetic ecosystem’s functionality
Initially, we explored whether S. cerevisiae cells can with-
stand Gc in the absence of E. coli cells and vice versa. We
simulated the behavior of 50,000 yeast cells and 50,000
bacterial cells in the absence of Gc. Our simulations indi-
cated that both S. cerevisiae and E. coli grow normally
(data not shown). However, when each of the two popula-
tions is placed in a simulated bioreactor separately, in the
presence of Gc, neither population is able to survive (data
not shown).
Subsequently, we simulated the behavior of bacteria and

yeast when both are present to test whether communi-
cation and cooperation between these two species can
be successfully achieved. We simulated stochastically 100
different population colonies containing 50,000 E. coli
and 50,000 S. cerevisiae cells. The results are depicted in
Figures 2A (yeast cells) and 2B (bacterial cells). The differ-
ent lines correspond to the cell population size in different
trajectories. The evolution of all the species is provided in
the Additional file 1.
In both cases, the two different species exploit commu-

nication with one another for successful survival in the
presence of Gc. Our simulations demonstrate that yeast
can successfully induce the expression of the resistance
gene found in bacteria and vice versa. This is a common
characteristic of ecosystems called obligatory mutualism.
In other words, S. cerevisiae and E. coli cells are not able
to survive separately but they are able to grow in concert.

Figure 2 Behavior of coexisting S. cerevisiae and E. coli cells.When the two species are placed together, obligatory mutualism is observed, i.e
they benefit from each other and survive from Gc. The inset represents part of Figure 2B and shows the fluctuations of E. coli population size.
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As expected, we observe that the number of E. coli cells
is always higher than the number of S. cerevisiae cells. As
discussed before, the reason for this is the high growth
rate of bacteria relative to yeast.
Variation regarding the number of cells is observed

when different colonies are simulated and is attributed
to the stochasticity underlying biological functions. The
average S. cerevisiae population (calculated over 100 tra-
jectories) is around 4.90· 105 cells and the standard
deviation is equal to 5.77· 104 cells. The mean E. coli
population is about 9.99·108 cells and the standard devi-
ation is approximately 6.68·104 cells. Note that the total
number of cells cannot exceed 109. Both bacteria and
yeast require approximately 16 hours to reach steady state.
In every single bioreactor, neither bacteria nor yeast die
from the presence of Gc. This demonstrates that commu-
nication can take place between S. cerevisiae and E. coli
allowing for the survival of the two species.
Even though Figure 2 establishes cell communication

and obligatory mutualism between E. coli and S. cere-
visiae cells, this refers only to the case described by this
set of parameters. Thus, in order to investigate which
parameters promote successful communication and coop-
eration between E. coli and S. cerevisiae cells, and to
explore the dynamics of different parameter sets, a sen-
sitivity analysis was performed. To implement this, we
systematically modified different parameters within rea-
sonable ranges andmonitored the dynamics of the system.
In what follows, we present the evolution of the average
S. cerevisiae and E. coli population over 100 trajectories.
In some cases, we further provide all the 100 trajectories
with variation in the values of key parameters examined in
our analysis.

Ecosystem’s sensitivity to parameter α

As discussed in the previous section, α represents a cor-
relation between the molecule controlling growth and the
resistance protein. More specifically, the larger the α, the
smaller the amount of Res required for cells to survive
from Gc (see Table 2). Since this parameter is of high
importance for our model, and because it was the only
parameter not acquired from previously published mod-
els, we explored the influence of α on the system’s behav-
ior. To this end, we performed multiple computational
experiments modifying α and investigating our ecosys-
tem’s dynamic behavior. Our simulation results showed
that when α is larger than 100 nM−1, the total system’s
behavior does not change appreciably (data not shown).
For values of α smaller than 0.07 nM−1, the ecosystem
is driven to extinction (data not shown). Importantly, our
simulations’ data demonstrated that for values of α in
the range of 0.07 nM−1 to 100 nM−1, the dynamics of
the system, and specifically the time the system needs to
reach steady state, becomes remarkably slow. Figures 3A
and 3B show the mean values, along with the standard
deviation, of 100 trajectories from the stochastic simula-
tions for α equal to 25 nM−1 (red), 75 nM−1(green) and
5· 104 nM−1(blue). As observed in Figure 3, when the
value of α is lower than 100, the system cannot reach
steady state even after 10,000 hours. To our knowledge, no
synthetic ecosystem exists that reaches steady state after
such a long time suggesting that in order for this sys-
tem to be realistic, the value of α in our model should
be higher than 100 nM−1. This is confirmed by the fact
that our system reaches steady state approximately as
fast as previously published synthetic ecosystems systems
did [18-20].

Figure 3 Average values and standard deviation of S. cerevisiae (A) and E. coli (B) population for different values of α.Mean values and
standard deviation (grey shade) of 100 trajectories of S. cerevisiae (A) and E. coli (B) population size for different values of the parameter α.



Biliouris et al. BMC Systems Biology 2012, 6:58 Page 7 of 13
http://www.biomedcentral.com/1752-0509/6/58

Importance of Gc concentration
Previous studies describing similar synthetic ecosystems
have demonstrated the importance of the concentration of
the molecule controlling growth on the system’s dynam-
ics [20]. Guided by this, we conducted a set of simulations
where we modified Gc’s concentration. We monitored the
dynamics of the system for three different Gc concentra-
tions. The average population values (over 100 trajecto-
ries) for each concentration are shown in Figures 4A and
4B. 100 trajectories of the two species population for the
different Gc concentrations are provided in Figures 4C
and 4D.
As Figure 4 indicates, an increase on Gc’s concentra-

tion from 60 nM to 250 nM is followed by a decreased
yeast population and an increased bacterial population.
In other words, upon increasing Gc concentration in the
bioreactor, E. coli cells benefit whereas S. cerevisiae cells
are harmed. Based on the way our model was built, this
is likely ascribed to the fact that yeast grow much slower
than bacteria and can therefore resist only low Gc concen-
trations. As the antibiotic concentration increases, yeast
die faster than bacteria and the latter, even though they
grow slower than they would in the absence of Gc, take
advantage of the higher nutrient levels in the bioreactor.
This is an interesting characteristic and could be used
as a means for controlling the bioreactor’s population,

obviating the need of adding or removing cells. However,
when Gc concentration is significantly high (e.g. 10 μM),
the average value (of the 100 trajectories) of both popu-
lations decreases dramatically as many single trajectories
reach zero.
Further analysis of the system’s behavior indicated

that changing the Gc concentration leads to an intrigu-
ing behavior commonly exhibited by natural ecosystems.
More specifically, when Gc levels are low, each species can
survive even in the absence of the other species. In partic-
ular, bacterial cells can withstand up to 250 nMGc. On the
other hand, yeast cells cannot survive even these Gc levels
and they can only withstand Gc concentrations lower than
60 nM. Having said this, the behavior of the system for Gc
levels up to 60 nM is analogous to facultative mutualism,
i.e. both species benefit from but are not dependent on
each other. However, when Gc’s level lies between 60 nM
and 250 nM, the behavior of the system is similar to com-
mensalism for bacteria, i.e. bacteria can survive without
yeast but yeast are not able to survive without bacteria.
The lethal Gc concentration for cultures with both cell

types present is 20 μM. Based on this, we conclude that
when Gc’s levels are between 250 nM and 20 μM, the
behavior of the system is homologous to obligatory mutu-
alism as both species are completely dependent on each
other and unable to survive individually. Finally, for Gc

Figure 4 Average values and single trajectories of S. cerevisiae and E. coli population for different Gc concentrations. Average (over 100
trajectories) values (A,B) and 100 single trajectories (C,D) of S. cerevisiae and E. coli population size for Gc concentration equal to 60 nM (red), 250 nM
(black) and 10 μM (blue). The synthetic ecosystem adopts different behaviors, that are commonly observed in natural ecosystems, in response to
different Gc concentrations.



Biliouris et al. BMC Systems Biology 2012, 6:58 Page 8 of 13
http://www.biomedcentral.com/1752-0509/6/58

levels higher than 20 μM, we observe ecosystem’s extinc-
tion. Such behaviors have been observed previously in
similar synthetic bacterial ecosystems [20] and are shown
in Figure 4. The concentrations used in Figure 4 repre-
sent the boundaries between different system’s behavior
(note that instead of 20 μM Gc, which is the boundary
between obligatory mutualism and extinction, we consid-
ered 10 μMGc). The population dynamic behavior for Gc
concentrations between the ones used here lies in the area
between these lines.
Figures 4C and 4D demonstrate deviation among the

different cell density trajectories. Note that this deviation
could not be captured using deterministic simulations.
The standard deviation (calculated over the 100 trajecto-
ries) of the population size at 50 hours and for 60 nM, 250
nM, and 20 μMGc is shown in Table 3.

Ecosystem’s sensitivity to various carrying capacities and
initial cell densities
We then explored the influence of cmax and the initial
cell population on the synthetic ecosystem’s behavior. As
discussed above, the carrying capacity is the maximum
number of (bacterial and yeast) cells that can exist in
the bioreactor [51]. Here, we only show average values of
the 100 trials since the single trajectories exhibit similar
behavior as in the previous cases. Figures 5A (S. cerevisiae)
and 5B (E. coli) show average population sizes for different
cmax values.
As expected, an increase in cmax causes an increase on

both yeast and bacterial steady state populations as the
nutrients in the culture suffice for more cells. Thus, both
species grow faster and consequently survive in the pres-
ence of Gc. It is important to note that aminimum amount
of nutrients must exist in the bioreactor for the cells
to grow and survive. Thus, we ran simulations decreas-
ing cmax to find this minimum threshold under which
the ecosystem goes extinct. According to our simulation
results, the minimum cmax in order for all the trajecto-
ries to end up in non-zero steady states (over a period of
3,000 hours) is equal to approximately 2 · 105 cells (data
not shown). Thus, the model suggests that our synthetic
ecosystem is fully functional only for reactor capacities
equal to or higher than 2 · 105 cells.
As in the previous cases, deviation among the dif-

ferent population trajectories was observed. The steady
state standard deviation of the population size for various

Table 3 Standard deviation of population size at steady
state for different Gc concentrations

Gc [nM] S. cerevisiae [104 cells] E. coli [104 cells]

60 1.42 3.55

250 4.93 5.61

2 · 104 3.87 2.77

reactor capacities is provided in Table 4. Notably, the
larger the reactor capacity, the higher is the deviation
among the different population trajectories.
We further explored the minimum initial number of

total cells required in order for the two species popu-
lation to cooperate favorably and survive. To do so, we
performed different simulations starting with equal E.
coli and S. cerevisiae populations and monitoring the sys-
tem’s dynamics for 1,000 hours. Our results showed that
for equal initial populations of the two species, the min-
imum number of S. cerevisiae and E. coli cells in the
reactor should be approximately equal to 15 cells for the
ecosystem to survive with Gc. Moreover, when the ini-
tial E. coli population is 50,000 cells, the minimum S.
cerevisiae initial population required in order for the sys-
tem to avoid extinction is 14 cells. On the other hand,
when the initial S. cerevisiae population is 50,000 cells, the
required E. coli initial population is 4 cells. This difference
is ascribed to the fact that bacteria grow predominantly
fast thereby quickly helping yeast to survive and therefore
only 4 yeast cells are initially required to make the ecosys-
tem functional. However, yeast grow and consequently
rescue E. coli with a slower rate and therefore larger
E. coli population is initially required for the ecosystem
to function.

Effects of E. coli cell death rates on the ecosystem’s
dynamics
It is clear from the aforementioned analysis that in most
cases bacterial cell populations dominate yeast cell pop-
ulations because of their high growth rate. We therefore
introduced a bacteria degradation term in our network
to enhance the competition between the population of
the two species. We only considered E. coli degrada-
tion as bacteria grow significantly faster than yeast. This
degradation could be achieved experimentally as bacte-
ria can be engineered to stimulate their lysis in response
to a human-defined signal. More specifically, introducing
holin and lysozome genes that are activated via AHL sig-
nals, allows for controlling cell membrane destruction and
consequently cell death [57].
Initially, we performed our analysis under the assump-

tion that the deterministic term dominates the stochastic
term, i.e. the intrinsic noise of the system is negligible. The
results presented in what follows were therefore produced
based only on the deterministic part of the equations
1-9. A similar approach has been used previously to
explore the oscillatory behavior of a synthetic ecosystem
[18].
As expected, high degradation rates cause bacterial

cell death followed by yeast wash out due to obligatory
mutualism (data not shown). In contrast, low degrada-
tion rates allow yeast domination, as bacterial popula-
tions quickly decreases due to both Gc and degradation,
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Figure 5 Average (over 100 trajectories) S. cerevisiae (A) and E. coli (B) population size for different cmax. Average (over 100 trajectories)
values of S. cerevisiae (A) and E. coli (B) population size for different reactor capacities. The higher the reactor capacity the higher the steady state
population density of the two species is.

thereby allowing an increase in yeast population (data
not shown).
Importantly, and as observed in other synthetic ecosys-

tems composed of species with different growth rates [18],
there is a range of bacterial degradation rate where S.
cerevisiae and E. coli population exhibit sustained oscil-
lations. These oscillations originate from the antagonism
between the two species population and demonstrate a
predator-prey like relationship between S. cerevisiae and
E. coli cells. In particular, when the E. coli degradation
rate, d, lies between 0.30 h−1 and 0.72 h−1, sustained oscil-
lations are observed. For d smaller than 0.30 h−1, damped
oscillations are exhibited. Finally, for d larger than 0.72
h−1, the two species population goes to zero. In other
words, the ecosystem becomes extinct, since this high
degradation rate results in bacterial death which in turn
leads to yeast extinction because cell-cell communica-
tion cannot take place favorably anymore. Figure 6 shows
the behavior of the two species population for degrada-
tion parameters that lie in the aforementioned ranges.
When d is equal to 0.25 h−1 (Figures 6A, 6B), we observe
damped oscillations that end up on a stable steady state.
However, from d=0.30 h−1 to d=0.72 h−1, sustained oscil-
lations whose amplitude scales with the degradation rate
are observed. This trend is provided in Figures 6C, 6D
where d=0.50 h−1. Finally, when d is larger than 0.72
h−1 the system is driven to extinction, as depicted in
Figures 6E and 6F.

The bifurcation diagram describing our ecosystem’s
oscillatory behavior is presented in Figure 7. AHopf point,
where sustained oscillations of the two species population
initiate, is observed for d approximately equal to 0.30 h−1

(red). TheHopf point was further confirmed by eigenvalue
analysis. The lines following the Hopf point correspond
to the oscillation amplitude, as calculated from the tran-
sient analysis. Please note that for the sake of clarity, in
Figure 7B we show the upper limit of oscillations only for
d up to 0.41 h−1. The complete bifurcation diagram is
provided in the inset. The period of the oscillations was
calculated using the FFT (Fast Fourier Transform) func-
tion in Matlab and is depicted as inset in Figure 7A. As
evident, the period of the oscillations scales with the E. coli
degradation rate. This is an intriguing observation which
suggests that the E. coli degradation rate could be used to
control the period of our oscillatory ecosystem.

Table 4 Standard deviation of population size at steady
state for different reactor capacities

Cmax [cells] S. cerevisiae [104 cells] E. coli [104 cells]

106 1.14 1.14

107 1.96 1.91

108 3.20 3.10

109 5.73 6.60
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Figure 6 S. cerevisiae (A,C,E) and E. coli (B,D,F) population dynamics for different E. coli degradation rates. S. cerevisiae (A,C,E) and E. coli
(B,D,F) population dynamics for E. coli degradation rate equal to 0.25, 0.50 and 0.75 h−1. For d=0.25 h−1 (A,B) the ecosystem exhibits damped
oscillations. For d=0.50 h−1 (C,D) the population of the two species oscillates with sustained oscillations whereas for d=0.75 h−1 (E,F) goes to zero.

Figure 7 Bifurcation diagram of the S. cerevisiae (A) and E. coli (B) population versus the E. coli degradation rate. Bifurcation diagram of the
S. cerevisiae (A) and E. coli (B) population versus the degradation rate of E. coli cells. For the sake of clarity, Figure B shows only part of the bifurcation
diagram whereas the complete bifurcation diagram is illustrated in the inset. The period of oscillation of S. cerevisiae and E. coli cells for different E.
coli degradation rates is the same and presented as inset in Figure 7A.
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It should be stressed that including the stochastic terms
in our simulations, leads to the ecosystem’s extinction.
This has been observed before [18] and is caused by
the fact that during the oscillations, the bacterial pop-
ulation reaches small values and therefore noise terms
destroy the sustained oscillations by driving bacterial
population to zero and consequently the ecosystem to
extinction (since cooperation cannot occur). In fact, the
smaller the noise amplitude, the higher the probability
for the system to circumvent extinction and exhibit sus-
tained oscillations. Figure 8 shows a comparison between
deterministic and stochastic simulations. For d=0.50 h−1

(Figures 8A and 8B), deterministic solution (black) pro-
vides sustained oscillations that end up in a steady state.
Stochastic simulations (red) are consistent with the deter-
ministic ones, i.e. demonstrate oscillations, but only for
a small period of time and subsequently all the trajecto-
ries reach zero. Motivated by this observation, we per-
formed several simulations (for d=0.50 h−1) where we
systematically decreased the noise terms amplitude. Our
simulations demonstrated that when the noise terms are
1.25% or less of the current values, the stochastic behavior
matches the deterministic one, i.e. the ecosystem popula-
tion exhibits sustained oscillations. When the noise terms
are between 1.30% and 100% of the current values, there

are always stochastic trajectories that reach zero over a
period of 1,000 hours. Figures 8B and 8C show three pop-
ulation density trajectories of the stochastic simulation
(green, red, blue) compared with the deterministic simu-
lation (black) when the noise terms are reduced to 1.25%.
As evident, the ecosystem’s behavior provided by the
two approaches is consistent and stochastic trajectories
exhibit continuous oscillations.
Overall, our simulations suggest that high ampli-

tude intrinsic noise damages the ecosystem’s oscillatory
behavior. On the other hand, less noisy environments
stimulate the sustained oscillation of the two species
population.

Conclusions
We presented the in silico design of the first synthetic
bacterial-yeast ecosystem where communication between
cells is achieved using AHL signals. The model, while
developed to accurately depict these interactions, can be
adapted to characterize any cell-to-cell communication
and population dynamics mediated by diffusible chemical
signaling.
We showed that when the two species coexist, they

overcome Gc’s toxicity by inducing each other’s resistance
gene via small molecule signalling and therefore survive.

Figure 8 Population density of S. cerevisiae and E. coli for d=0.5 h−1 calculated using stochastic and deterministic simulations. A,B:
Population size of S. cerevisiae (A) and E. coli (B) for d=0.50 h−1 calculated using stochastic (red) and deterministic simulations (black). C,D:
Population size of S. cerevisiae (C) and E. coli (D) for d=0.50 h−1 calculated with deterministic (black) and stochastic (red, green, blue) simulations
with 1.25% of the current intrinsic noise terms.
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Our simulations suggest that the minimum reactor capac-
ity required for this ecosystem to evolve is 2 · 105 cells.
By varying the Gc concentration, the ecosystem adopts
different behaviors including obligatory and facultative
mutualism, commensalism and extinction. Adding an E.
coli degradation reaction, which can be experimentally
realized by engineering bacteria to induce lysis, can drive
the population of the two species to predator-prey like
dynamics, i.e. sustained oscillations. These oscillations
can, however, be destroyed in noisy environments. Over-
all, we demonstrated that such kind of heterogeneous
synthetic ecosystems could exhibit interesting dynamics.
As demonstrated here and in different studies [18],

the development of synthetic microbial consortia using
species with different characteristics (e.g. different growth
rate or volume) yields systems with intriguing dynam-
ics, such as oscillations. These systems could have various
potential applications such as the delivery of two different
drugs in dissimilar time intervals [23].
Our mathematical model may potentially drive the

experimental design of microbial consortia with a het-
erogeneous population. This and similar mathematical
models can further be used to predict interspecies biore-
actor dynamics under numerous conditions, with differing
chemical signals, and employing various population con-
trol mechanisms. Engineered interspecies system have
substantial implications for complex chemical synthesis as
well as future biorefinery design and optimization. Thus,
the dynamics analysis presented herein may be used as the
basis for the in vivo design of such promising synthetic
ecosystems.

Additional file

Additional file 1: Stochastic differential equations used to simulate
the behavior of the synthetic ecosystem. This file contains the
equations and the species used to stochastically simulate the behavior of
the synthetic ecosystem. It also includes 100 trajectories of the evolution of
all the species when S. cerevisiae and E. coli coexist (In support of Figure 2).
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