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Abstract

Background: Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for
several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also
considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well
studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current
knowledge about its metabolism.

Results: Combining in silico tools and expert manual curation, we have produced an accurate genome-scale
metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but
phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added
species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific
expansion of protein families. We used physiological measures obtained under lab conditions to validate our
predictions.

Conclusions: Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast,
providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other
species in the Yarrowia clade and other oleaginous yeasts.
Background
Even if lipid metabolism is common to all microorgan-
isms, we call oleaginous those that can store at least 20%
of their dry mass as lipids. It is possible to find oleagin-
ous organisms among plants, algae, bacteria and yeasts.
Plants and algae are technically difficult (and controver-
sial) to modify genetically, while oleaginous bateria
present a low growth rate. On the other side, oleaginous
yeasts enjoy well-developed genetic tools for their im-
provement and grow quickly. Also, oleaginous yeasts can
accumulate up to 70% of their dry mass as lipids [1],
making them the best candidates for industrial lipid pro-
duction such as microbial oil for biodiesel.
One of those oleaginous yeasts, Yarrowia lipolytica, nor-

mally found as a food contaminant, has been extensively
studied experimentally. It is easy to modify genetically, and
presents many opportunities for metabolic engineering.
For example, Y. lipolytica has been used as a food
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supplement, given its easily modifiable lipid composition.
It is also studied as a potential source of biodiesel [2-4], be-
cause lipids producedby this species are similar to vege-
table oils and fats. While Y. lipolytica is a hemiascomycete
yeast, it is phylogenetically distant from S. cerevisiae and
other well-studied yeasts, manifesting many metabolic dif-
ferences: it is an obligate aerobic yeast, that can use normal
hydrocarbons and various fats as carbon sources; it secretes
diverse hydrolytic enzymes (proteases, lipases, RNases); its
perixosome is constitutive.
Metabolic models are an important tool for metabolic

engineering. Their uses include the guidance of metabolic
engineering, the contextualization of high-throughput data
and helping hypothesis-driven discovery.
Genome-scale metabolic models have up to now been

principally produced for bacterial species and for a few
higher organisms (see [5] for a review). This focus
on model organisms is in part due to the great cost of
obtaining high-quality annotated complete genome
sequences, which requires considerable human effort re-
gardless of the relative low cost of obtaining the genome
sequence. A further need is to produce new experimental
. This article is published under license to BioMed Central Ltd. This is an Open
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data to verify and improve the reconstructed model. Most
models are reconstructed starting from the genome anno-
tation, assembling known reactions into connected net-
works [6]. This requires a lengthy and expensive period of
manual curation. Software has been designed to deal with
process, although most existing tools are designed for
bacteria.
Y. lipolytica is an ideal species for metabolic recon-

struction in eukaryotes through comparative genomics.
As one of the hemiascomycetous yeasts completely
sequenced in the Génolevures program, it enjoys a high
quality manual annotation by a network of expert cura-
tors [7,8]. Careful analysis of conservation and species-
specific expansion and contraction of families of protein-
coding genes makes it possible to identify orthologs with
known genes in the clade as well as functionally import-
ant paralogous families. The conservation of core metab-
olism with other yeasts is enough to allow the use of
existing metabolic models from S. cerevisiae as a tem-
plate, into which species-specific reactions and secondary
metabolism can be assembled.
In this work we present the first genome-scale functional

metabolic model for Y. lipolytica, built with an iterative
process of automatic reconstruction and manual curation.
We started from a scaffold derived from existing S. cerevi-
siae models, extracting information about enzymatic reac-
tions, molecular species, transport reactions, and
compartments. With this scaffold we built an in silico draft
by mapping known enzyme-encoding genes, using gene
homology information obtained from Génolevures protein
families [8,9] and complemented with other in silico meth-
ods, and filled network gaps in order to make it functional
(i.e. to be able to predict growth from available metabolites
in the media). We performed a manual curation of the ini-
tial draft model, adding species-specific metabolic reac-
tions, in particular those related with central carbon and
fatty acid metabolism. To assess the predictive power of
our model, we compared our predictions against published
experimental results of growth under different media con-
ditions and gene knockouts. This comparison shows high
degree of agreement between predictions and experimen-
tal results.

Results
Properties of the model
Our functional genome-scale metabolic model for Yarro-
wia lipolytica iNL895 describes 2 002 reactions encoded
by 895 Y. lipolytica genes, the 1 847 metabolites con-
sumed and produced by those reactions, the 16 compart-
ments in which those reactions take place and a biomass
function which describes the metabolic requirements for
growth.
From the total of reactions, 139 (7%) are transport

reactions with a gene association, 286 (14.3%) transport
reactions that are spontaneous or without a known
gene association, 171 (8.5%) are exchanges with the
media, 1 055 (52.7%) enzymatic reactions with a gene
association and 351 (17.5%) without.
The 1 055 enzymatic reactions with associated genes

in the curated model were distributed into 39 biological
processes, based on the associated GO Slim annotation
of the closest ortholog in S. cerevisiae.
Gains
For alkane degradation we have introduced the ω-oxidation
pathway including cytochrome P450 oxidases (12 genes
ALK1–ALK12) and the cytochrome P450 reductase (CPR)
reaction from each alkane (decane, dodecane, hexadecane,
etc.) to the corresponding alcohol. We added reactions
from alcohols to aldehydes then aldehydes to correspond-
ing fatty acids, following [10].
For triglyceride degradation Y. lipolytica secretes

lipases that are either extracellular (Lip2p) or mem-
brane-bound (Lip7 and Lip8). These are part of a 19-
gene multi-gene family [3].
For fatty acid synthesis we have included in reaction

r_2008 the effect of a new gene that codes a member of
the type 1 acyl-CoA:diacylglycerol acyltransferase family
(DGAT1), which has not previously been identified in
yeasts, but is commonly found in mammals and plants,
and proposed in [11] to give the oleaginous character.
For transport and export of hydrophobic substrates we

have included reactions for binding, export (by an ABC
transporter, the gene ABC1 for alkane utilization [10]),
and metabolite transport. The latter transport is neces-
sary to explain growth of the TCA cycle mutant and the
malate dehydrogenase mutant..
Losses
For oleaginous character, we have taken into account the
loss in Y. lipolytica of genes linked to glycerol 3 phos-
phate (G3P), following [12], specifically in reaction
r_0528 reported in Additional file 1: Table S1.
For galactose and sucrose substrates we verified the

absence of reactions that are not present in Y. lipolytica
due to missing genes (compared to S. cerevisiae), in par-
ticular Y. lipolytica cannot use sucrose as a sole carbon
source due to the lack of the corresponding invertase.
Note that transformation of Y. lipolytica strains is made
possible through the inclusion of a selective marker built
from a fusion of the S. cerevisiae SUC2 gene with the
promoter and signal sequence of Y. lipolytica alkaline
extracellular protease XPR2 [13].
For ethanol production, unlike S. cerevisiae, Y. lipolytica

uses ethanol only with difficulty and does not produce it.
These losses are reflected in reactions r_0176 through
r_0190 concerning acetaldehyde to ethanol transformation.
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Validation of the model
The draft model was verified by experts in Y. lipolytica,
and approved in terms of agreement with the literature:
This model is not capable of producing ethanol, it can-
not grow anaerobically, fatty acid metabolism presented
expansions and contractions of protein families, and new
species-specific reactions for the intake of alkanes were
automatically detected.
Also, to assess the completeness of our model, we com-

pared its phenotypic predictions in terms of growth/no
growth, against published experimental results of observed
growth, under several carbon sources and gene knockouts
(Additional file 2: Table S2). We used flux balance analysis
(FBA), and a constraint based optimization approach [14]
to predict whether a phenotype was present. After defining
restrictions in the intake capacity of the organism, based on
a selection of experimental data, we used FBA to predict
biomass production, and thus the capacity of the organism
to grow under those restrictions. Gene knockouts were
modeled as deletions in the reconstructed metabolic
network.
Media conditions, in particular different carbon

sources, were extracted from the literature (See Table 1).
Alas, not all experiments were well documented in terms
of molecular species present in the media, so a rich
media (YPD) was assumed and modified based on the
general description of the media. See [15] for a discus-
sion about uncertainty in media conditions.
In order to facilitate comparison, quantitative results

from experiments and from simulations of biomass pro-
duction were simplified into binary values (growth/no
growth). Corresponding binary results were obtained for 98
experiments paired with simulations, with exact agreement
in 64 cases (39 true positives and 25 true negatives). The 18
false negatives we observed may be attributed to missing
reactions, corresponding to Y. lipolytica genes that are still
Table 1 Experimental conditions used for validation

Reference Gene KOs

BioloMICS [16] –

Thevenieau,2007 [10] 15 gene KOs

T van den Temple, 2000 [17] –

Jardon, 2008 [18] FBP1

Flores, 2005 [19] PYC1, ICL1

Yamagami, 2001 [20] PAT1

Haddouche (PC) [21] ACL1

Kabran, 2010 [22] ICL1, MLS1, CIT

Beopoulos, 2008 [23] GUT2, POX1-6

Jiménez-Bremont, 2001 [24] OCD1

Cheon, 2003 [25] TRP1

Literature sources used for validation of the Y. lipolytica model. Overall, 60 different
Y. lipolytica gene loci, in 152different experiments. Only those cases where evident
unannotated, or to gaps in understanding of redundancy in
the network. These 18 cases are currently being used to tar-
get improvements in gene annotation. The remaining
cases, 16 false positives, are likely the product of over-opti-
mistic flux simulations and can be reduced through param-
eter tuning. Overall, using this simplified binary
comparison we obtain an accuracy (geometric mean of sen-
sitivity and specificity) of 0.65.
We stress that this qualitative validation does not sub-

stitute for quantitative comparison, but does show that
each of the tested conditions is connected from uptake
through to the biomass function. It thus serves to valid-
ate the completeness of the model, in particular with re-
spect to overall network topology.

Conclusions and discussion
Combining in silico tools and expert manual curation, we
produced an accurate genome-scale metabolic model of
the oleaginous yeast Y. lipolytica, using a functional meta-
bolic model of the phylogenetically related yeast S. cerevi-
siae as a scaffold for the reconstruction. The method
developed in the present work can be used for genome-
scale metabolic model reconstruction of other organisms,
making it a useful tool for biotechnology and research.
We noticed that, even if the list of S. cerevisiae reac-

tions not present in Y. lipolytica was short, there was an
important number of changes in the gene associations
between both organisms. Also, the loss of some pheno-
types in Y. lipolytica, compared to S. cerevisiae, was
characterized by a loss of a small number of genes.
Thirteen new transport reactions were added to the new

model in order to connect enzymatic reactions inside the
peroxisome with molecular species in the cytosol, and to
import species from extracellular space to the cytosol. We
could not find genes encoding for all those transports, but
we expect that the eventual characterization of the 1 034
Media conditions

46 different carbon sources

YNBD, YNBO, YNBC10, YNBC16, YNBT

Lactose, D-Galactose

YNBD, Ethanol, Glycerol, Acetate

YNBD, Ethanol, Aspartate, Glutamate

YNBC10, YNBD, Glycerol

YNBD, YNBO

2 Acetate, YNBO, YNBD

YNBD, Glycerol, YNBO

YNBD, YNBD + putrescine

YNBD, YNBD + tryptophane

media conditions were tested. Gene knockouts were assessed for 29 different
growth/no growth was observed were included in this analysis.
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(16%) Y. lipolytica genes with unknown function, will pro-
vide evidence for some of them. The lack of accuracy at
predicting some experiments could be explained by miss-
ing reactions in the model, especially regarding the trans-
port of specific carbon sources. This gives us hints about
possible ways to improve our model.
The modifications to the draft model performed by the

manual curators allowed us to formalize a set of edit opera-
tions over metabolic models. This facilitated an automatic
iteration process, from improvements to the reconstruction
method, to improved draft models, to automatic applica-
tion of curator edits, to automatic assertion of accuracy.
The present model can be used to predict growth under

different media conditions and gene knock-outs. It can
also be used as a general description of the state-of-the-art
in Y. lipolytica metabolism. Data from high-throughput
experiments, like microarrays and metabolomics, can be
mapped to this model to have an overview of metabolic
changes under different media conditions.
Current understanding of Y. lipolytica is constantly im-

proving, and a number of features of its metabolism are the
subject of ongoing work and consequently improvements
to the model. Multigene families such as POX1–POX6 in
peroxisomal β-oxidation could be modeled with better pre-
cision, since there are enzymatic specificities linked to the
length of the carbon chain (e.g. Pox2 for long chains, Pox3
for short chain fatty acids, see for example [26]). This is also
true for multigene families LIP1–LIP19 hydrolases of tria-
cylglycerides, where there also exists chain-length specificity
[3], although the specificities of the ALK1–ALK19 genes
are not completely known. In general, lipid metabolism in
Y. lipolytica is still under study and there is a lack of know-
ledge in several areas, such as transport between compart-
ments, or the link between nitrogen abundance and the
production of either lipid or citric acid [11].
Expansion of families of isozymes is detectable through

expansion of paralogous protein families, but the method
used here cannot detect these differences because FBA
does not differentiate isoenzyme activities in the same
reaction. Dynamic models that describe the kinetics of
individual enzymes in reactions must be developed. This
will require acquiring and integrating metabolic and
transcriptomic data for targeted pathways, and develop-
ing models. Alvarez-Vasquez et al. [27], for example,
used biochemical systems theory to develop a model of
S. cerevisiae sphingolipid metabolism; more recently,
Gupta et al. [28] developed a quantitative model of this
pathway in mammalian cells by combining metabolite
and transcriptome data in their estimation of kinetic rate
constants. In general, the constraint-based FBA approach
used here for validation cannot describe Y. lipolytica
metabolic pathways with the same precision as dynamic
differential equation models, but does have the merit of
permitting a whole-genome model.
The most pressing need in further iterations of the model
is refinement of alkane degradation for decane and hexade-
cane. Indeed the analysis of alkane growth of ANT1 and
ABC1 mutants were performed on n-alkane from C10 to
C16, including C11, C13, and C15, in [10]. Also, Y. lipoly-
tica is described as growing on n-alkane paraffin (petrol-
eum distillate) containing n-alkane oil (C12 to C18 n-
akanes) and also n-paraffin wax (C20 and above, solid al-
kane) in [29]. This suggests that it is necessary to introduce
all even and odd chain lengths including C1, since Y. lipoly-
tica could use very long alkane chains above C20.

Methods
Scaffold-based reconstruction
Genome-scale metabolic models describe the network of
enzymatic and transport reactions in an organism. The
main idea of most metabolic model reconstruction algo-
rithms is to look for the presence of enzymatic reactions in
the annotated genome of the organism to be modeled, and
create a network of those reactions, representing the inter-
connected production and consumption of metabolites [6].
The construction of metabolic models is costly and

time consuming, so tools have been developed to auto-
matically create initial, draft versions of the models, to
be further improved by manual curation. Some of the
current methods and platforms are Pathway Tools [30],
The SEED [31], AUTOGRAPH [32], and several ma-
chine learning methods [33].
These methods are mostly designed for bacterial organ-

isms and are not always adequate for reconstruction of
yeasts models. In particular, some of them lack proper
handling of compartments, rewriting of gene associations,
or rely on the strong functional relations provided by oper-
ons. Also, fine tuning existing programs was not always
possible, given the lack of public source code availability. To
cover these shortcomings, we implemented our own auto-
matic reconstruction method (to be published separately).
See Additional file 3: Figure S1 for an overview of our
method.
Briefly, the method developed for the present work uses

a scaffold model for the reconstruction. For each one of
the genes associated to reactions described in the scaffold,
we look for possible orthologs in the target organism. If
certain conditions are met, the reaction is considered to be
conserved, and added to the network of the target
organism.
This method of projection can be applied to any pair

of phylogenetically close species. Given a set of ortholog
maps between two genomes, and a well-annotated meta-
bolic model for one of them, it automatically produces a
draft model for the target, providing a well-documented
starting point for manual curation.
Well-curated models include information about the de-

pendency of each reaction on proteins and genes, which is
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called Gene-Protein-Reaction associations (GPR). The
Gene Association is the dependency of a reaction on the
presence of a combination of genes, described as a logical
formula between gene identifiers. For example, S. cerevi-
siae reaction R_0005 (“1,3-beta-glucan synthase”) can be
performed by either the product of gene YLR342W (FKS1)
or the product of gene YGR032W (GSC2), so its Gene As-
sociation is “(YGR032W or YLR342W)”.
During the reconstruction of the iNL895 Y. lipolytica

model, we used three functional models published for S.
cerevisiae: iMM904 [34], iIN800 [35] and the consensus
model version 4.36 [36]. The latter was used as a scaffold
for the reconstruction of the Y. lipolytica metabolic model,
and will be referenced as the ‘scaffold model’ in what fol-
lows. We used the detailed fatty acid metabolism described
in iIN800 [35] as a scaffold for Y. lipolytica fatty acid me-
tabolism. From the scaffold model, we extracted the reac-
tions predicted to be present in Y. lipolytica, the
metabolites consumed and produced by them, the cellular
compartments and all the non-enzymatic transport reac-
tions. To make our model functional, we produced a list
of genes that restored connectivity between the metabo-
lites imported by the organism and the metabolic require-
ments of the biomass function. This list of genes provided
as a starting point for the manual curation of the model.

Orthology
Orthology detection based on sequence similarity is the
most used approach to predict if a biological function,
encoded by genes, is conserved between two organisms [37].
Some special cases need to be treated carefully: two ortholog
genes, with originally similar functions, can mutate slightly
and change its function, or can suffer a duplication, so only
Table 2 Gene association rewriting examples

Case Reaction

M1 Gene loss S1 ! � R_0490

M2 Gene gain �! T1 R_2008

M3 Two othologs S1 ! T1 R_0240

M4 Duplication in scaffold S1 ! T1 , S2 ! T1 R_1413

M5 Expansion in scaffold S1k N ! T1 R_0439

M6 Duplication in target S1 ! T1 or T2ð Þ R_1551

M7 Expansion in target S1 ! T1 or T2 or K TNð Þ R_0415

Associations of genes to reactions in the model are useful for redundancy, and nece
the scaffold, they must be rewritten to take into account expansion and contraction
illustrate the seven cases treated by the method.
one of the two copies will keep the same biological function.
Also, a fusion or fission event can integrate or divide certain
domains into different genes. All those cases need to be inte-
grated in the study of the conservation of function between
two organisms and, in our experience, none of the current
methods of ortholog mapping is good at all of them.
Based on homology between the genome of the scaffold

(S. cerevisiae) and the genome of the target (Y. lipolytica),
we determine if the original genes that encode the protein
required for the enzymatic activity are conserved. Our
method determines a) if a reaction is conserved, b) if a re-
written gene association formula for the reaction is neces-
sary (Additional file 4: Figure S2).
For the reconstruction of the metabolic model of Y.

lipolytica, we leveraged data provided by the Génole-
vures program [38], in the form of multi-species protein
families and gene synteny. Protein families identify
phylogenetic groups of proteins sequences that are a
leading indication of functional analogy.
Génolevures protein families were further subdivided into

groups with the same protein domain architecture (DOM),
and synteny (SONS [38]) This initial high quality annotation
allowed us to map most, but not all, of the genes used by the
scaffold model, so we complemented this mapping with
orthology from Inparanoid-DB [39] and OrthoMCL-DB [40].
In the cases of divergent predictions, consensus was deter-

mined by the following election procedure: From the differ-
ent methods we produce a tally of the number of times each
paralog group appears between all existing homolog map.
Our translator, using the rules described in Table 2,

looks for the possible rewritings of the scaffold gene for-
mulas in terms of genes of the target organism. To re-
write the new gene associations, an homolog map was
Scaffold Target

YJR051W –

– YALI0E34793g and
YALI0D24431g

YPL104W YALI0F26433g

YEL006W or YIL006W YALI0E16478g

YIL009W or YMR246W or
YOR317W

YALI0D17864g

YBL064C and YCR083W YALI0F08195g and
(YALI0F01496g or
YALI0E23540g)

YGL205W and YIL160C
and YKR009C

YALI0E15378g and YALI0E18568g
and (YALI0E27654g or
YALI0F10857g or YALI0C23859g
or YALI0E32835g or
YALI0E06567g or
YALI0D24750g)

ssary for simulation of knockouts. When these associations are inherited from
of protein families defined for homologous genes. The following examples
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built with the votes between all our available methods to
detect orthologs (Additional file 4: Figure S2).
The formulas that could not be resolved where

reported to manual curation, as a possible loss of func-
tion (see Table 1). The resulting formulae were normal-
ized to conjunctive normal form, as a list of alternative
ways to encode the same reaction. Some examples of for-
mula rewriting are provided in Table 2.

A projected model
After rewriting gene associations, we kept the correspond-
ing molecular species with its identifiers and annotations.
We kept all the relevant non-enzymatic transport reac-
tions and compartments.
A model that is able to predict growth is called a func-

tional model. To predict growth, a measure of the mo-
lecular requirements to create a copy of the organism
should be provided, in the form of a biomass function.
This is usually obtained by the analysis of the molecular
contents of live cells [41].
The biomass function of the S. cerevisiae model was

used as a starting point for the Y. lipolytica model. Some
coefficients were adjusted using the amount of DNA to
be produced and the GC contents of the target organism
[15]. G + C content and genome length of Y. lipolytica
were obtained from the Génolevures program [38].

Automatic reconstructions may produce incomplete
networks, missing the presence of some reactions that are
part of an existing path of reactions. These “gaps” may lead
to incorrect predictions, so they need to be fixed. We ana-
lyzed those gaps, generated lists of candidates, and
included them as part of the manual curation stage. We
also verified whether any of the Y. lipolytica genes were
annotated with an EC code not present in the draft, adding
new reactions to the model (see also Additional file 5).
Given the importance of compartmentalization in

eukaryotic organism, we built a model with 16 compart-
ments, allowing us to map reactions and metabolites to
different parts of the cell. We are interested in the ole-
aginous nature of Y. lipolytica, and its possible biotech-
nological applications, so it was critical to focus on the
differences in fatty acid metabolism with respect to other
yeasts. We started with the description of β-oxydation
and fatty acid elongation from iIN800, projected them to
Y. lipolytica, and manually modified to mirror the rele-
vant literature (Figure 1).
We used the diagram of iIN800 [35] as an starting point

for our own diagram of Y. lipolytica metabolism. This pos-
ter was used to discuss the draft model with the curators,
who suggested changes based on their experience with the
modeled species. These changes were translated to edits
operations, and applied to our draft model.
The feedback obtained from the simulations of growth

under different conditions (see below) and the results of
gap-filling analysis were also used as part of the manual
curation.

Validation
To assess the predictive power of our metabolic model,
we compared growth predictions, obtained using Flux
Balance Analysis (FBA) [14], against 152 experimental
results extracted from the literature. The effects of media
conditions on growth, and the effects of gene knockouts
in the system were included as constraints to the linear
programming problem solved during FBA. From the lit-
erature we manually extracted experimental evidence (a
growth/no growth indicator or a growth curve in time
for each condition/deletion).
When growth curves were provided, we calculated a bool-

ean value representing growth (true) or no growth (false),
where the threshold was decided based on 1/3 of the average
of growth in time (OD), for all mutants studied [43,44]. The
same was done with simulated results: a threshold was used
to decide between growth and no growth.
A confusion matrix and geometric mean [45] was used

to measure the accuracy of our predictions versus experi-
mental results. This approach was used to assess the qual-
ity of a model as a predictor, as it was done with the
reconstruction of S. cerevisiae iIN800 [35] and iLL672 [46].
From the list of experimental results from the litera-

ture we produced a table of experiments, summarizing
media conditions, gene knockouts, and observed growth
(See Additional file 2: Table S2).
The description of media conditions were not standard

between different works, so we defined, to the best of our
knowledge, a base condition based on YPD, where only
non-carbon sources were available (nitrogen, oxygen, etc.).
This was modified for each simulation, controlling the avail-
ability of different carbon sources. The name of media con-
ditions used in Additional file 2: Table S2, were obtained
from the literature listed in Table 1, and describe the follow-
ing combinations: YNBD: base + Glucose, YNBcas: YNBD
+ Casaminoacids, YNBO: base + Oleic acid, YNBC10: base
+ Decane, YNBC16: base + Hexadecane, YNBT: base + Try-
butirin, YNBDptr: YNBD + Putrescine, YNBDtry: YNBD +
Tryptophane.
We used FBA from COBRA Tools [47] to predict growth

rate under different media conditions and gene knockouts
that matched the available experimental results. From those
simulations and the associated experiment, we automatically
generated MATLAB tests, which generated an accuracy re-
port of our model, consisting of False Positives/Negatives,
True Positives/Negatives between the expected and pre-
dicted phenotype. The MATLAB file that simulates the 152
experiments is available as Additional file 6. The results are
also available in Additional file 2: Table S2.
We called our reconstructed model iNL895, following

the rules defined in [48]. We produced a version of our
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Figure 1 Projecting Fatty Acid β-oxidation from S. cerevisiaeto Y. lipolytica. This simplified schematic view shows how the Fatty Acid β-
oxidation scaffold pathway from S. cerevisiae iIN800 [35] was modified to adequately describe Y. lipolyticametabolism. (a) Simplified version of fatty
acid β-oxidation diagram of S. cerevisiae iIN800. (b) Fatty acid β-oxidation in the reconstructed model for Y. lipolytica, with a constitutive
peroxisome compartment and cytosol ↔ peroxisome transport reactions. Species-specific transport mechanisms for long and short fatty acid
chains (PXA1,2 and PEX11) are highlighted in green and blue. Long chains are activated (-CoA) before being transported to the peroxisome. Y.
lipolytica can directly process Octanoic (C8), Hexanoic (C6), Butyric (C4) acid, and C18:2, so they were added to our model (in yellow). Our method
predicted the family expansion of S. cerevisiae POX1/FOX1 into POX1-6, and the reduction of S. cerevisiae family FAA1-4 to FAA1 (YALI0D17864g),
which modified the genome associations of most of the pathway. POX1-6 are written in order of specificity: POX2,5,4 for long chains and POX3,5,4
for short chains [42].
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model in SBML format (Systems Biology Markup Lan-
guage) [49], in order to analyze it with compatible existing
tools, and share it with the community (see Additional file
7). An updated COBRA-compatible SBML version of
our model can be retrieved from the BioModels data-
base (http://biomodels.org), searching for the model id
MODEL1111190000.
Additional files

Additional file 1: Table S1. Manual curation of lost reactions. In many
cases, orthology results fail to associate a target gene to an enzyme-
coding gene in the scaffold model, suggesting that the reaction is
absent. Each of these predictions were manually reviewed, where a
reaction was confirmed as being absent (‘Lost’), or was upheld (‘Retained’)
when empirical evidence was available. Genes for which no ortholog
could be found are underlined in the gene association column.

Additional file 2: Table S2. Validation of the iNL895 model. This table
lists 152 experiments extracted from the literature, detailing media
conditions, gene KOs, and observed growth (as yes/no). It also includes
our simulations of the same experiments, obtained using FBA/COBRA
Tools, and the comparison between observed and the simulated growth.

Additional file 3: Figure S1. Projection pipeline from S. cerevisiae
scaffold model to Y. lipolytica iNL895. The three main parts of our pipeline
for the reconstruction of the Y. lipolytica model are: Projection, where the
S. cerevisiae scaffold model and the information from different sources of
orthology between S. cerevisiae and Y. lipolytica are used to produce a
draft model, Curation, where the expert curators revised the candidates
for gap-filling and added species-specific reactions and Validation, where
experiments obtained from the literature were compared with our
simulations, producing a detailed accuracy report.

Additional file 4: Figure S2. Gene Association rewrite from S. cerevisiae
reactions to Y. lipolytica. Pipeline for gene-association rewriting, as part of
the projection of Y. lipolytica iNL895 model. From the 4 ortholog maps
provided by different methods, a map of votes of possible ortholog
mappings is created. Then, from the scaffold model, we extracted gene
associations for each reaction, and re-wrote them based on our map of
homologs (e.g.: Reaction1: (SourceGene1 or SourceGene2) ↔
(TargetGene1)). The new reactions, this time associated with Y. lipolytica
genes, constituted the base of the reconstructed model.

Additional file 5: Selected gene annotations in Y. lipolytica. This
table lists Y. lipolytica genes used in the manual curation of the metabolic
model.

Additional file 6: Complete validation tests for Y. lipolytica. This MATLAB
file runs the validation tests of the Y. lipolyticametabolic model. It requires the
COBRA Toolbox (2.0+). Each of the 152 tests is declared as a MATLAB function,
in order to help the curation process. All tests can be ran in batch mode using:
matlab -nodisplay -nosplash -nojvm -r “model0=runTests(‘supp_2.xml’, ‘test.
results’); exit;”

Additional file 7: Y. lipolytica iNL895 SBML model. SBML representation of
the reconstructed model of Y. lipolytica. This XML file is compatible with SBML
Level 2, Version 4, and has been tested with COBRA Toolbox (2.0) and
CellDesigner (4.1). This model can also be retrieved from the BioModels
database (http://biomodels.org), under model id MODEL1111190000.
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