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Abstract

Background: The /JO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete
and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-
studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible
errors. There are a total of 208 blocked metabolites in JO1366, representing gaps in the network.

Results: A new model improvement workflow was developed to compare model based phenotypic predictions to
experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was
obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict
the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of
metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of
the model to the experimental dataset, and genes were predicted for the most feasible reactions.

Conclusions: Numerous improvements to the JO1366 metabolic reconstruction were suggested by these analyses.

annotation

Experiments were performed to verify several computational predictions, including a new mechanism for growth
on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means.
Validating all of the predictions made here represents a substantial but important undertaking.
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Background

Constraint-based modeling is a widely used systems biology
method and is particularly well suited for predicting the
phenotypes of microbial organisms after gene knockouts or
when grown on different substrates [1-3]. These variable
conditions are simply represented as additional constraints
on a model, and growth can be predicted by flux balance
analysis (FBA) [4]. Because not every realistic constraint is
represented in a typical metabolic model, it is quite possible
for such a model to predict growth under conditions where
growth does not really occur. The actual organism may not
express a required gene for growth, or fluxes may be limited
by kinetic or thermodynamic constraints, for example. This
case is called a false positive prediction. On the other hand,
false predictions of no growth can be taken as indications
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that the model is missing an essential reaction [5]. This pre-
diciton is called a false negative. No current metabolic net-
work reconstruction is entirely complete and realistic
because our knowledge of the metabolism of no organism
is complete. Even in very well-studied model organisms
such as Escherichia coli there are still many genes with un-
known functions [6,7]. The result of this is that there are
gaps in metabolic network reconstructions. These gaps take
the form of dead-end metabolites, which have either no
producing or no consuming reactions [8].

Several different types of gaps can exist in reconstructed
metabolic networks [8,9]. These gaps result in blocked
reactions, which are unable to carry flux at steady state,
and blocked metabolites, which exist only in blocked reac-
tions and can never be produced or consumed. Root no-
production gaps are metabolites that have consuming
reactions but are blocked because they have no producing
reactions. Metabolites that can only be produced from
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root no-production metabolites are also blocked, and are
referred to as downstream gaps. Likewise, root no-con-
sumption gaps are metabolites with producing reactions
but no consuming reactions, and the other metabolites
blocked by these gaps are called upstream gaps. The gaps
in a metabolic network can also be classified as either
scope gaps or knowledge gaps. Scope gaps are those that
exist because the scope of most metabolic network models
does not include features like macromolecular degradation
or the use of charged tRNAs in protein synthesis. Know-
ledge gaps, on the other hand, are actually the result of
our incomplete knowledge of the metabolism of any or-
ganism [10].

The comparison of model predictions to experimental
data can be a useful way to fill network gaps and dis-
cover new genes and reactions. There are four possible
outcomes when comparing computationally predicted to
experimentally measured growth phenotypes: true posi-
tives, when the model correctly predicts growth; true
negatives, when the model correctly predicts that no
growth is possible; false positives, when the model pre-
dicts growth under a condition where growth was not
observed; and false negatives, when the model fails to
predict growth where growth was experimentally
observed. Both false positive and false negative results
can be useful for refining model content, but it is the
false negative cases that can help fill gaps. Several meth-
ods have been developed to predict the correct gap-fill-
ing reactions based on comparisons to experimental
data.

The first such method to be published was called
SMILEY [5]. This is a mixed-integer linear programming
algorithm that identifies the minimum number of reac-
tions that need to be added to a metabolic model from a
universal database of reactions in order to allow a mini-
mum defined growth rate to be achieved. The SMILEY
algorithm was first developed and used to predict reac-
tions missing from the iJR904 E. coli reconstruction [11]
that caused false negative model growth predictions
when compared to Biolog growth data [12]. Several
results were experimentally verified and new genes were
characterized [5]. SMILEY was also recently used to pre-
dict gap-filling reactions in the Recon 1 human metabolic
reconstruction [13,14]. The algorithms GapFind/GapkFill [9]
and GrowMatch [15] were later developed, and could pre-
dict missing reactions by connecting model gaps and by
comparing model predictions to gene essentiality data, re-
spectively. To date, these methods have been used to make
predictions for the E. coli and yeast metabolic networks
[15,16], but these predictions have not yet been experimen-
tally verified. Non-constraint-based methods for recon-
structing metabolic networks and filling gaps have also been
developed. One example is PathoLogic, a component of the
Pathway Tools software that has been used to assemble the
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organism specific databases of BioCyc [17]. This program
fills gaps to complete metabolic pathways and even includes
a hole-filling algorithm that assigns genes to gap-filling reac-
tions [18,19]. Another recent procedure uses network ex-
pansion to determine the minimum number of reactions
that need to be added to a network to make it compliant
with experimental data [20]. The production of metabolites
as macromolecule degradation products was considered,
and genes were predicted using hidden Markov models.
This strategy was applied to improve metabolic models of
E. coli [21] and Chlamydomonas reinhardtii [22].

The present study builds on these methods with a new
workflow that includes use of the SMILEY algorithm.
SMILEY was used instead of GapFill or GrowMatch be-
cause it could be modified to make predictions for a
wider range of experimental data than it was originally
applied to. Specifically, it was used to make predictions
using gene essentiality data and network gaps in addition
to data for growth on different substrates. The {JO1366
metabolic network reconstruction of E. coli K-12, the lat-
est and most complete genome-scale reconstruction of
this organism [10], was used in this analysis. To begin, a
large dataset of E. coli gene essentiality from the Keio
Collection [23], combined from four published datasets
[10,23-25], was assembled. Next, model growth predic-
tions made using the iJO1366 model were compared to
this dataset, and both false positive and false negative
comparisons were analyzed to identify potential errors in
the model and in the experimental datasets. The
SMILEY algorithm was then used to predict gap-filling
reactions and reactions that correct false negative model
predictions. The feasibility of these reactions was then
assessed by comparing augmented model predictions to
the experimental dataset. Finally, genes were predicted
for the most feasible putative reactions. Several sets of
gene function predictions are presented, and provide
plausible hypotheses for experimental validation. These
predictions have the potential to improve the metabolic
reconstruction and lead to new metabolic gene discover-
ies [8]. Knockout strain growth phenotyping experiments
were performed to identify a gene involved in myo-inosi-
tol metabolism, demonstrating the types of experimental
analyses that can validate these biological predictions.

Results

Comparison of model predictions to experimental data

By applying the developed workflow to analyze the JO1366
model gaps and compare model predicted phenotypes to
experimental data, new biological hypotheses were gener-
ated (Figure 1). First, the experimental datasets were
assembled and combined. Each dataset consisted of a large
set of E. coli gene knockout strains grown on different types
of media. All of these gene knockout strains were from the
Keio Collection of E. coli BW25113 single gene knockouts,
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allowing them to be analyzed together. The first dataset,
from Baba et al. [23], contained phenotypes from the entire
Keio Collection grown on glucose MOPS minimal media.
This defined media contains the buffer MOPS (3-(N-mor-
pholino)propanesulfonic acid), a potential sulfur source.
The second dataset was another growth screen of the entire
Keio Collection, but on glycerol M9 minimal media [25].
The third dataset was a screen of 1075 Keio Collection
strains, all for genes included in the iAF1260 E. coli meta-
bolic reconstruction [21], grown in four different media
conditions [10]. The strains were grown on glucose M9
media under both aerobic and anaerobic conditions, on lac-
tate M9 aerobically, and on succinate M9 aerobically. The
fourth dataset consisted of phenotypes from 1440 Keio Col-
lection strains grown on Biolog GN2 plates [24]. It was
found that wild-type E. coli could grow on 38 different car-
bon sources on this Biolog plate, so the dataset only
included these 38 substrates.

The four datasets were combined together into one large
phenotypic dataset. From the screens of the entire Keio
Collection on glucose and glycerol, a growth phenotype was
included for each of the 1366 genes in {JO1366. For the
screen on four conditions, phenotypes were available for
1075 of the 1366 genes. For the screen on Biolog plates,

only 259 of the 1440 genes were also in {JO1366, so only
these genes were included. Five of the 38 substrates were
not included in the JO1366 model or in the KEGG com-
pound database, so these were not included since they
could not be connected to the model content using the
methods presented here. The phenotypes in this combined
dataset were adjusted slightly from their original publica-
tions based on a more recent analysis of the Keio Collection
genotypes [26]. Several new genes were classified as essen-
tial, and these were added to the essential genes on glucose
and glycerol. One gene, b0103, was removed from the Bio-
log screen data based on this analysis. The screen of 1075
strains on four conditions was performed after the Keio
Collection update, and thus already accounted for these
changes. Some of the datasets contained phenotypes on the
same substrates. For example, the Biolog data contained
strains grown on glycerol, succinate, and lactate. In these
cases, only one data point was included for each gene
knockout strain grown on each substrate. If any one of the
datasets included a “growth” phenotype, then the phenotype
was set to “growth” in the combined dataset. Only if a strain
had a “no growth” phenotype in all datasets was it classified
as essential in the combined dataset. After making these
adjustments, the final combined dataset contained 13,470
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experimental phenotypes. There were 12,120 “growth” phe-
notypes and 1350 “no growth” phenotypes.

The iJO1366 E. coli metabolic network model was then
used to predict growth phenotypes for these 13,470 condi-
tions. This model of E. coli K-12 MG1655 metabolism was
first modified slightly to match the genotype of E. coli
BW25113, the parent strain of the Keio Collection. FBA [4]
was then used to predict growth rates using the JO1366
core biomass objective with each gene knockout and on
every substrate in the experimental dataset. Any growth rate
above zero was classified as a computational “growth”
phenotype, while a growth rate of zero was classified as “no
growth”. An in silico dataset of 13,470 phenotypes was thus
generated, and was compared to the in vivo dataset. Each
model prediction was classified as either a true positive, true
negative, false positive, or false negative. See Additional file
1 for the complete sets of computational and experimental
phenotypes. A total of 11,855 true positives, 639 true nega-
tives, 711 false positives, and 265 false negatives were identi-
fied (Figure 2 a). The Matthews Correlation Coefficient
(MCCQ) of these predictions, a measure of the accuracy of
binary classifications, was 0.5418. Overall, the in silico
screen predicted more growth phenotypes than were found
in the experimental data (93.3 % and 90.0 %, respectively).
This result can largely be explained by the nature of con-
straint-based modeling and FBA. Because the iJO1366
model does not contain regulation, FBA may use any reac-
tion in the network to produce biomass. In an E. coli cell,
different levels of regulation may make certain enzymes un-
available under certain conditions, even if they may have
allowed for growth. Other real constraints, such as kinetic
or thermodynamic constraints [27], may not be accounted
for in the model and also may be the cause of false positive
predictions.

The genes in the JO1366 model have been classified into
11 functional categories, according to the metabolic func-
tions they serve [10]. The different categories were found to
contain genes with varying levels of predictive accuracy
(Figure 2 b). Genes in the “Others” category, including
mainly tRNA charging genes and genes that could not be
placed in the other categories, were found to lead to false
positives in 23.7 % of cases. This is due to the known tRNA
charging gaps in the iJO1366 model [10]. These tRNA char-
ging genes are essential in vivo. There were also many false
positives among the “Energy Production and Conversion”
genes (12.4 %). This outcome may be partly caused by miss-
ing thermodynamic constraints, and partly by the fact that
disruptions to cellular energy generation can cause E. coli to
grow very slowly, so that these strains would have been
found to be essential in the experimental screens even
though they were actually slowly growing. The computa-
tional screen classified all growing strains as non-essential,
even if they grew slowly. False negatives were most com-
mon among the genes in “Amino Acid Metabolism” and
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“Cofactor and Prosthetic Group Metabolism,” at 7.4 % and
7.7 % respectively. These false negative cases indicate the
likely presence of currently unknown isozymes and alterna-
tive pathways.

False positive model predictions
The set of false positive predictions were investigated in
more detail to determine why they occurred. Every gene
that had a false positive prediction on at least one sub-
strate and had no experimental growth on any substrate
was tested. It was found that there are several possible
reasons for a false positive prediction to be made by the
iJO1366 model. First, it is possible that the model may
contain an error such as an unrealistic reaction (Table 1).
In the model, the reaction CBPS (carbamoyl phosphate syn-
thase (glutamine-hydrolyzing)) converts L-glutamine to car-
bamoyl phosphate, an essential precursor of L-arginine.
This reaction is catalyzed by a complex of carA (b0032) and
carB (b0033), which were experimentally found to be essen-
tial on glucose, glycerol, succinate, and lactate minimal
media. In the model, these genes are non-essential due to
an alternate reaction that produces carbamoyl phosphate,
CBMKr (carbamate kinase), catalyzed by the products of
yahl (b0323), arcC (b0521), or ygeA (b2874). This putative
reaction is included in {JO1366 based only on physiological
data [28], and the functions of these genes are not well
characterized. It is therefore likely that the CBMKr reaction
is unrealistic. False positives may also be caused by errors in
the iJO1366 core biomass reaction. The gene pdxH (b1638)
catalyzes the reactions PDX5PQOi (pyridoxine 5-phosphate
oxidase) and PYAMSPO (pyridoxamine 5-phosphate oxi-
dase), required for the synthesis of pyridoxal 5-phosphate
(vitamin Bg). This vitamin is not included in the core bio-
mass, so these reactions are not essential in the model.
However, the essentiality of this gene on glucose and gly-
cerol minimal media indicates that vitamin Bg is in fact es-
sential to E. coli, and should be included in the model
biomass reaction.

Some false positive predictions likely occurred because
a gene was incorrectly identified as essential in one of
the experimental screens (Table 2). This the case with
several genes involved in energy production. The cyto-
chrome oxidase gene cydA (b0733) knockout strain does
not exist in the Keio Collection, and is presumed to be
essential. A viable knockout strain for this gene has been
produced, however, along with knockouts for other
cytochrome oxidases [29]. The ATP synthase genes
atpCDGAHFEB (b3731-8) were classified as essential on
minimal media, but inspection of the actual growth mea-
surements from these experiments [10,23,25] reveals that
these knockout strains did actually grow, albeit slowly.

Many false positive cases occurred for gene knockout
strains that have known isozymes or alternative pathways
(Table 3). In the iJO1366 model, these knockouts are
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overcome by using the isozyme or alternative pathway to
synthesize biomass components. In vivo, these genes may
be essential because isozyme genes are not expressed under
the experimental conditions, or they may not be capable of
catalyzing the same reaction at a sufficient rate for growth
to occur. These types of false positive model predictions
cannot be overcome through standard FBA using a meta-
bolic model. A model including regulation or other add-
itional constraints is required. Many more false positives
occur when tRNA charging genes are knocked out in the
model (Table 4). Since the iJO1366 tRNA charging

reactions are blocked by scope gaps, these important reac-
tions cannot be used in the model. Finally, several false
positives cannot be explained by the model alone. For ex-
ample, the gene spoT (b3650) is required to synthesize the
signaling molecule guanosine tetraphosphate (ppGpp).
Since the metabolic model does not require signaling, this
gene is found to be non-essential. Experimentally, spoT is
essential on rich media, and this is likely due to its non-
metabolic function. The other false negatives that cannot be
explained by the model are ftsI (b0084), adk (b0474), mrdA
(b0635), cydC (b0886), gapA (b1779), ligA (b2411), suhB
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Table 1 False positive model predictions that indicate
model errors

Gene Error

carA (b0032)

alternate pathway (CBMKr) gene functions not
confirmed

carB (b0033) alternate pathway (CBMKr) gene functions not

confirmed

proB (b0242) alternate pathway (NACODA) gene function not

confirmed

proA (b0243) alternate pathway (NACODA) gene function not

confirmed
folD (b0529)
entD (b0583)
pyrD (b0945)
pdxH (b1638)
pgsA (b1912)
nrdA (b2234)

5fthf{c] and methflc] may be essential

enter[c] may be essential

alternate pathway (DHORDfum) is an orphan reaction
pydx5plc] may be essential

pgp120[p] - pgp181[p] may be essential

alternate pathway (RNDR1b — RNDR4b) gene functions
not confirmed

nrdB (b2235) alternate pathway (RNDR1b — RNDR4b) gene functions

not confirmed

ptsl (02416) alternate pathway (GLCt2pp) glucose transport not

confirmed
waak (b3623)  colipale] may be essential
wzyE (03793) ecadcolipale] may be essential
ubiF (b3833) reactions AMMQLT8 and OMBZLM are blocked by gaps

ubiB (b3835)
ppa (b4226)

alternate pathway (OPXHH3) is an orphan reaction

isozymes, ppx (02502) and surk (b2744), may be
incorrect

(b2533), eno (b2779), fbaA (b2925), pgk (b2926), dut
(b3640), psiB (b4041), and alsK (b4084).

False negative model predictions

All genes with false negative predictions for at least one
substrate and no computationally predicted growth on any
substrate were investigated in more detail. If a constraint-
based metabolic model fails to predict growth under a con-
dition where growth was observed experimentally, it is an

Table 2 False positive model predictions that indicate
incorrectly identified essential genes

Gene Reason for incorrect phenotype

cydA (b0733) knocked out successfully by Portnoy et al. [29]
atpC (b3731) ATP synthase knockout causes low growth rate
atpD (b3732) ATP synthase knockout causes low growth rate
atpG (b3733) ATP synthase knockout causes low growth rate
atpA (b3734) ATP synthase knockout causes low growth rate
atpH (b3735) ATP synthase knockout causes low growth rate
atpF (b3736) ATP synthase knockout causes low growth rate
atpE (b3737) ATP synthase knockout causes low growth rate

atpB (b3738) ATP synthase knockout causes low growth rate
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indication of missing metabolic reactions or pathways in
the model. In the next section, use of the SMILEY algorithm
to predict likely missing reactions is presented. There are
several other possible explanations for false negative predic-
tions. First, it is possible that the model biomass reaction
being used as an objective is incorrect (Table 5). Several
false negative cases occurred with knockouts of genes
involved in molybdenum cofactor synthesis, including m0g
(b0009), moaA (b0781), moaC (b0783), moaD (b0784),
moaE (b0785), moeA (b0826), moeB (b0827), and mobA
(b3857). In the iJO1366 model, these genes are essential
because they are required to produce bmocogdp|c] (bis-
molybdopterin guanine dinucleotide), a component of the
core biomass formulation. Because these gene knockout
strains are experimentally viable on most conditions, it is
likely that this cofactor is not essential for growth, and

Table 3 False positive model predictions caused by
isozymes or alternate pathways

Gene

thrA (b0002)
carA (b0032)
carB (b0033)
folA (00048)

Isozyme or alternate pathway reactions
metL (b3940) or lysC (b4024)

alternate reaction: CBMKr

alternate reaction: CBMKr

folM (b1606)

can (b0126) cynT (b0339)
pyrH (b0171)  cmk (b0910)
int (b0657) Ipp (b1677)

fldA (b0684)
fabA (b0954)
nrdA (b2234)
nrdB (b2235)
cysK (b2414)
ptsl (02416)
cysA (02422)
cysP (02425)
guaB (b2508)
glyA (b2551)
acps (b2563)
serA (b2913)
metC (b3008)
arof (b3281)
ilvA (b3772)
metE (03829)
ubiB (b3835)
glnA (b3870)
metL (b3940)
ppa (b4226)
serB (b4388)

fldB (b2895)

fabZ (b0180)

alternate reactions: RNDR1b, RNDR2b, RNDR3b, RNDR4b
alternate reactions: RNDR1b, RNDR2b, RNDR3b, RNDR4b
cysM (b2421)

alternate reaction: GLCt2pp

modA (b0763) + modB (b0764) + modC (b0765)

modA (b0763) + modB (b0764) + modC (b0765)
alternate reaction: XPPT

alternate reaction: GLYCL

acpT (b3475)

alternate reaction: GHMT2r

tnaA (b3708) or malY (b1622)

ydiB (01692)

tdcB (b3117)

metH (b4019)

alternate reaction: OPHHX3

YK (01297)

thrL (b0002) or malY (b1622)

ppx (02502) or surE (b2744)

alternate reaction: GHMT2r
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Table 4 False positive model predictions caused by tRNA
charging reactions

Gene Amino Acid
ileS (00026) L-isoleucine
proS (b0194) L-proline
cysS (b0526) L-cysteine
leuS (b0642) L-leucine
glnS (b0680) L-glutamine
serS (b0893) L-serine
asn$ (00930) L-asparagine
tyrS (b1637) L-tyrosine
pheT (b1713) L-phenylalanine
pheS (b1714) L-phenylalanine
thrS (b1719) L-threonine
aspsS (b1866) L-aspartate
argS (b1876) L-arginine
metG (b2114) L-methionine
hisS (02514) L-histidine
alaS (b2697) L-alanine
fmt (03288) N-formyl-L-
methionine
trpS (b3384) L-tryptophan
glyS (b3559) glycine
glyQ (b3560) glycine
valS (b4258) L-valine

thus should not be included in the iJO1366 core biomass
reaction.

Two false positive cases could be explained by incor-
rect gene-protein-reaction associations (GPRs) in
iJO1366 (Table 6). In one, the gene hisH (b2023) is
required for the reaction IG3PS (Imidazole-glycerol-3-
phosphate synthase), along with hisF (b2025). This

Table 5 False negative model predictions caused by
incorrect core biomass composition

Gene Biomass component
mog (b0009) bmocogdplc]
moaA (b0781) bmocogdplc]
moaC (b0783) bmocogdplc]
moaD (b0784) bmocogdplc]
moak (b0785) bmocogdplc]
moeA (b0826) bmocogdplc]
moeB (b0827) bmocogdplc]
ubiX (b2311) 20hphlc]

iscS (0b2530) bmocogdplc]
cysG (b3368) shemelc]
mobA (b3857) bmocogdplc]
ubiC (b4039) 20hphlc]
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reaction is an essential part of the histidine synthesis
pathway, and is thus essential on all minimal media for
the model. In the in vivo datasets, however, hisH is not
essential under any aerobic conditions. It is not essential
because without HisH, HisF is still able to catalyze this
reaction, using NHj instead of glutamine as an N donor
[30]. hisH should therefore not be an essential compo-
nent of the /G3PS GPR. The other GPR change sug-
gested is for cyaY (b3807), a gene involved in
transferring iron during [Fe-S] cluster synthesis. In the
model, this gene is an essential component of two reac-
tions in both the ISC and SUF [Fe-S] cluster synthesis
pathways, and is essential under all conditions. This gene
is still not well characterized, and since it is experimen-
tally non-essential, it is likely not strictly required for the
reactions [2FE2SS, [2FE2SS2, S2FE2SS, and 2FE2SS2.
Other false positive cases are likely due to experimental
errors (Table 7). Several genes involved in the synthesis
of the cofactors biotin and thiamin were experimentally
classified as non-essential. These cofactors are known to
be required in small quantities [31-33], so it is likely that
there was residual biotin and thiamin in the media dur-
ing growth experiments. In the experimental screen on
four different conditions, more thorough washing proce-
dures were used to prevent carryover of preculture
media, and these genes were classified as essential. Fi-
nally, false negatives can be caused by currently unidenti-
fied isozymes (Table 8). For cases in which false
negatives could not be explained by other means,
BLASTp was used to identify possible isozymes in the E.
coli genome. One predicted isozyme has already been ex-
perimentally verified. prpC (b0333), which currently in
the model is associated with MCITS (2-methylcitrate
synthase), has been confirmed to also be an isozyme of
gltA (b0720), catalyzing CS (citrate synthase) [34,35].

Computational prediction of gap-filling reactions

One cause of model gaps and false negative phenotypic
predictions is that some realistic reactions may be miss-
ing from the i{JO1366 model. The current version of
iJO1366 contains 48 root no-production gaps, 63 root
no-consumption gaps, 52 downstream gaps, and 69 up-
stream gaps. Many of these are scope gaps, caused by
the limited scope of the metabolic network, and these
have previously been identified [8,10]. The SMILEY algo-
rithm was used to predict the most likely sets of reac-
tions missing from the model. To predict false negative

Table 6 False negative model predictions that suggest
changes to iJO1366 model GPRs

Gene
hisH (b2023)
cyaY (b3807)

GPR correction
not essential for IG3PS [30]
not essential for I2FE2SS, I2FE2SS2, S2FE2SS, S2FE2SS2
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Table 7 False negative model predictions due to
misidentified experiment phenotypes or media
compositions

Gene Explanation

mtn (b0159) essential according to Choi-Rhee et al. [36]

thil (b0423) possibly thiamin in media due to incomplete washing
bioA (b0774) possibly biotin in media due to incomplete washing
bioB (b0775
biof (b0776

) possibly biotin in media due to incomplete washing
) possibly biotin in media due to incomplete washing
bioC (b0777) possibly biotin in media due to incomplete washing
bioD (b0778)  possibly biotin in media due to incomplete washing

(
aroD (b1693)  only experimental growth under one condition,
possible error

thiD (b2103) essential according to Orth et al. [10]

cysD (b2752) only experimental growth under one condition,
possible error

argG (b3172) only experimental growth under one condition,
possible error

cysG (b3368) only experimental growth under one condition,
possible error

bioH (b3412) possibly biotin in media due to incomplete washing

ilvE (b3770) only experimental growth under one condition,
possible error

thiH (b3990) essential according to Orth et al. [1

thiG (b3991) essential according to Orth et al. [1

(101
(101
thif (63992) essential according to Orth et al. [10]
thik (b3993) essential according to Orth et al. [10]
thiC (03994) essential according to Orth et al. [10]

cysQ (b4214) MOPS is a possible alternate S source

resolving reactions, the model was constrained to match
each false negative condition, one at a time, and SMILEY
was run. For gene knockout strains which lead to false
negative predictions on all 34 tested substrates (or all
but one or two), it is likely that the same set of missing
reactions is the cause of all incorrect predictions for this
strain. In these cases, SMILEY was run on the model
with only glucose (both aerobic and anaerobic), glycerol,
lactate, and succinate as substrates. To predict gap-filling
reactions, a small lower bound was placed on the known
producing or consuming reaction for each knowledge
gap metabolite, and SMILEY was run. In order to actu-
ally carry a small flux through these reactions and satisty
all model constraints, a gap-filling reaction or set of reac-
tions would need to be added. SMILEY was run on 166
false negative cases and 49 gap reactions (Additional file
2). Only model knowledge gaps [8] were targeted, not
scope gaps. The algorithm was set to find up to 25 alter-
nate solutions for each condition, and a time limit of 2 h
was placed on each solution. The reactions added by
SMILEY were from a universal set of reactions based on
all reactions in KEGG Release 58.0 [37]. Unrealistic and
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Table 8 False negative model predictions caused by

missing isozymes or alternate pathways

Gene Putative Isozyme E-value

purK (b0522) purT (b1849) 2.00E-12

gltA (b0720) prpC (b0333) 1.00E-41

aspC (00928) tyrB (b4054) 4.00E-94

fabH (b1091) none identified

pabC (b1096) ilvE (b3770) 7.00E-8

icd (b1136) dmiA (b1800) 3.00E-19

aldA (b1415) gabD (b2661) 1.00E-90
prr (b1444) 3.00E-80
feaB (b1385) 1.00E-69
aldB (b3588) 2.00E-66
betB (00312) 4.00E-65

ubiX (b2311) none identified

luxS (b2687) none identified

thyA (02827) none identified

zupT (03040) none identified

folB (b3058) folX (b2303) 1.00E-4

argG (b3172) none identified

folP (b3177) none identified

yrbG (b3196) none identified

kdsC (b3198) none identified

argD (b3359) astC (b1748) 1.00E-146
gabT (b2662) 3.00E-64
puuk (b1302) 3.00E-54
patA (b3073) 4.00E-52
hemL (b0154) 3.00E-32

cysG (b3368) none identified

ilvE (b3770) pabC (b1096) 8.00E-8

dapf (b3809) none identified

argC (b3958) none identified

argB (b3959) none identified

hemE (03997) none identified

ubiC (b4039) none identified

purA (b4177)

none identified

incomplete reactions were removed from this set (Add-
itional file 3).

A total of 1176 optimal and suboptimal solutions were
identified by SMILEY. Solutions were identified for 106 of
the false negative cases and for 32 gaps. Multiple optimal
solutions were found for many cases, and there were a total
of 198 different optimal solutions and 983 different subopti-
mal solutions. Five solutions were found as both optimal
and suboptimal solutions in different cases, and 385 solu-
tions were found multiple times. Most of these were for
gene knockout strains grown on multiple substrates or for



Orth and Palsson BMC Systems Biology 2012, 6:30
http://www.biomedcentral.com/1752-0509/6/30

genes that are required by the GPRs of the same reaction or
for reactions in the same pathway. For most false negative
cases and gaps, only a small number of optimal solutions
were found (Figure 3 a). No solution was found for 77 cases,
and only one or two solutions were found for 91 cases. In
four cases, all 25 solutions were optimal. These cases were
for the iscS (b2530) knockout strain grown on four different
conditions. This gene is a part of the ISC [Fe-S] cluster gen-
eration system and in the model is essential due to its role
in molybdenum cofactor synthesis. Each of these alternate
solutions involves the import of this cofactor. The average
number of optimal solutions found per SMILEY run was
2.56. Most optimal solutions included only one reaction,
and none included more than five (Figure 3 b). The average
number of reactions per optimal solution was 1.41.

As the molybdenum cofactor uptake reactions demon-
strate, not all SMILEY solutions are realistic. A computa-
tional feasibility check was performed to identify the
most realistic solutions. Each of the solutions was added
to the JO1366 model one at a time, and the augmented
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Figure 3 Properties of the 198 optimal SMILEY solutions. (a)
Number of optimal solutions per SMILEY run. For most cases,
between zero and two optimal solutions were found. (b) Number of
reactions per optimal solution. Most optimal solutions consisted of
only one reaction.
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model was then used to predict growth phenotypes by
FBA on all 13,470 conditions from the experimental
dataset. The false positive and false negative predictions
were identified by comparison to the experimental data-
set, and the number of false negatives eliminated and
new false positives created by each SMILEY solution
could be counted. The most feasible solutions would be
those that fixed the most false negatives while introdu-
cing few false positives. On average, each solution cor-
rected 7.48 false negatives and created 7.07 new false
positives. A total of 144 solutions (11 optimal and 133
suboptimal) were found that eliminate false negatives
while producing no new false positives. GapFind was also
run on the model with each solution added, to determine
if any model gaps were eliminated. 74 solutions that fill
at least one gap were found.

Predictions of genes for hypothesized reactions

The most feasible SMILEY solutions out of the complete
set of 1176 solutions were investigated in more detail.
For the most feasible solutions, BLASTp was used to try
to identify candidate genes in the E. coli genome
(Table 9). These solutions were divided into four categor-
ies. Category I solutions were optimal solutions that
eliminated at least one false negative condition while cre-
ating no new false positives. These solutions gave an
average MCC of 0.5436, slightly better than the original
model. Of the 11 category I solutions, five fixed false
negatives by adding the deleted model reaction back in
from the universal reaction list. This indicates that
uncharacterized isozymes are possible for aspC (b0928),
pabC (b1096), aldA (b1415), argD (b3359), and hemE
(b3397). Another solution suggested that false negatives
for AaspC strains could be corrected by adding the exist-
ing model reaction ASP1DC (aspartate 1-decarboxylase)
in reverse. No literature evidence was found to support
or refute the reversibility of this reaction. The other five
solutions involve the addition of new reactions to the
model. Four of these provide potential production routes
for aspartate to compliment an aspC deletion. The other
provides a new reaction to consume glycoaldehyde for
AaldA strains. None of these five reactions have asso-
ciated genes in the KEGG database, indicating that they
are global orphan reactions. Candidate genes for these
reactions could not be identified with no reference
sequences available.

The second category of SMILEY solutions to be inves-
tigated in detail was all optimal solutions that fixed more
false negatives than the number of new false positives
they created. There were 70 category II solutions (not in-
cluding the category I solutions, which also fall within
this definition). The average MCC for these solutions
was 0.5531. Most of these solutions involve the uptake of
molybdenum cofactors or their precursors. As explained
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Table 9 Predicted genes for the most feasible FN-
correcting SMILEY solutions

Hypothesized changes in directionality

Reaction Category Support

ASPIDC |

ASPT 1l reversible (Karsten and Viola [38])

ICL IV reversible (MacKintosh and Nimmo [39])

AKGDH IV not reversible (EcoCyc)

cITL v

Hypothesized gap-filling reactions

Reaction Category Putative gene E-value

R0O0352 R) IV sucD (00729) 2.00E-20

RO0373 (F) | global orphan

R0O0400 (F) | global orphan

R0O0507 R) IV yhfW (b3380) 047

RO0529 (F) IV cysN (b2751) and cysD (02752) *

R0O0530 (F) IV global orphan

RO0531 (R) IV global orphan

R00695 (R) | global orphan

RO0709 (F) IV dmiA (b1800) 6.00E-26
icd (b1136) 1.00E-26
leuB (b0073) 2.00E-15

R0O0732 R) Il aroA (b0908) 5.00E-32
murA (b3189) 7.00E-8

RO0733 (R) il tyrA (b2600) 2.80E-2

RO1393 R) | global orphan

RO1618 (R) IV glgP (b3428) 2.10

RO1713 (F) | global orphan

RO1731 (F) IV tyrB (b4054) *

01785 (R) Il rhaD (b3902) *

R0O1902 (R) Il rhaB (b3904) *

R02200 (F) IV global orphan

R04209 R) IV purC (b2476) 7.00E-16

RO5717 R) IV cysH (02762) 3.00E-12

RO6613 (F) I ybiU (b0821) 16

RO7164 R) Il ydiJ (b1687) 09

RO7165 (R) Il ydiJ (b1687) 09

RO7176 R) IV global orphan

RO7463 (F) IV dadA (b1189) 2.00E-18

RO7613 R) I ydbL (b0600) 7.00E-26
ydcR (b1439) 6.00E-15

RO8553 R) IV ysaA (b3573) 4.00E-5

above, the most likely explanation for these false nega-
tives is that the molybdenum cofactor is not strictly
required for growth by E. coli. Several other solutions
added deleted reactions back into the network, and two
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solutions added feasible new reactions. In one, a slightly
different reaction for producing dTMP was added to
compliment a thyA (b2827) deletion. A currently unchar-
acterized E. coli gene, ybill (b0821), was identified by
BLASTp as a candidate gene for this reaction, providing
a testable hypothesis for the function of this gene. The
other category II feasible solution added a new reaction
to convert L-glutamate to o-ketoglutarate. Two candi-
date genes with high sequence homology to known genes
from other organisms, ydbL (b0600) and ydcR (b1439),
were found.

The third category to be investigated consisted of
the suboptimal solutions that fixed at least one false
negative while producing no new false positives. A
total of 133 category III solutions were found, having
an average MCC of 0.5433. Some of these solutions
included unrealistic reactions, such as the oxygen
consuming KEGG reaction R00357 in the reverse,
oxygen producing direction. Others attempt to com-
pensate for the loss of cofactor producing pathways
by simply adding new uptake reactions for those
cofactors. Still, many realistic reactions were suggested
and BLASTp identified candidate genes. One solution
consisted of the addition of the current model reac-
tion ASPT (L-aspartase) in reverse. Experimental evi-
dence supports the reversibility of this reaction [38],
which is currently listed as irreversible in iJO1366.
The fourth and final category of SMILEY solutions to
be examined was all other optimal solutions that were
not in categories I and II. There were 62 solutions in
this category and they had an average MCC of
0.5304, slightly worse than the unmodified JO1366
model. Most of these solutions were simply new up-
take reactions for blocked essential biomass compo-
nents, but 14 new realistic reactions were suggested,
as well as three current model reactions running in
their opposite directions. One of these new reversible
reactions, ICL (isocitrate lyase), was confirmed in a
published study [39], while another, AKGDH (2-Oxo-
glutarate dehydrogenase), is not actually reversible
according to EcoCyc [40]. See Additional file 4 for all
category I-IV solutions investigated.

All 72 gap-filling SMILEY solutions were also investigated
(Additional file 5), and BLASTp was used to predict genes
for the realistic reactions (Table 10). A total of 20 new real-
istic reactions were found, and candidate genes could be
predicted for about half of them. The others were global or-
phan reactions. SMILEY also suggested that 15 existing
model reactions could be made reversible to fill gaps.
According to EcoCyc, some of these reactions are not
reversible. However, evidence was found supporting the
reversibility of two model reactions, DKGLCNRI (2,5-
diketo-D-gluconate reductase) [41] and DKGLCNR2y (2,5-
diketo-D-gluconate reductase (NADPH)) [42].
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Experimental validation of predicted genes

SMILEY and other gap-filling algorithms are useful be-
cause they can use a model and existing experimental
data to generate predictions. Without performing an ex-
periment to verify these predictions, they are only hy-
potheses. The iJO1366 model was used to design simple
growth phenotype experiments to confirm some of these
predictions. Each of the 1176 solutions was added to the
model one at a time, and growth was simulated on all
combinations of a set of 115 carbon sources and 62 ni-
trogen sources under both aerobic and anaerobic condi-
tions. These substrates were selected for being readily
available chemicals for use in the laboratory. For every
substrate combination on which growth is predicted for
the model with a SMILEY solution added, but not for
the unmodified JO1366 model, an in vivo experiment
can be performed to determine if E. coli can actually
grow with those substrates, giving supporting experi-
mental evidence to the predicted reactions. For most
solutions, no new growth conditions were identified. All
realistic solutions with testable experimental conditions
are listed in Additional file 6.

One reaction for which a growth experiment was pre-
dicted to be possible was R01184, myo-inositol:oxygen
oxidoreductase. This reaction combines myo-inositol
with oxygen to form D-glucuronate and water. Myo-in-
ositol is a root-no consumption gap in the JO1366
model, and this reaction fills this gap. With this reaction
included, E. coli is predicted to grow with myo-inositol
as a substrate. An in vivo experiment was performed,
and wild-type E. coli was inoculated into 2 g/L myo-in-
ositol minimal media with no other carbon sources.
Three replicates were performed, and after 72 h, the cul-
tures had reached an ODgg, of 0.017 +0.006. This result
indicates that E. coli can grow very slowly with myo-in-
ositol as its only carbon source. Next, four candidate
genes were predicted for this reaction using BLASTp.
These genes were ydeN (b1498), yfdE (b2371), yphC
(b2545), and yhiJ (b3488). The functions of these genes
are currently unknown, and they are non-essential. The
Keio Collection knockout strains for these four genes
were then obtained and grown in both glucose and myo-
inositol minimal media. All four strains grew to a similar
ODggo as wild-type E. coli on glucose, but on myo-inosi-
tol, the knockout strains did not grow as well (Figure 4).
The yhi] knockout strain did not grow at all, indicating
this gene likely codes for a myo-inositol:oxygen oxidore-
ductase in E. coli.

Discussion

In this study, the {JO1366 metabolic network model of E.
coli was used as a discovery tool, leading to predictions
for new metabolic gene functions. The most up to date
model represents the current state of knowledge of E.
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Table 10 Predicted genes for gap-filling SMILEY solutions

Hypothesized changes in directionality

Reaction Support

DOGULNR not reversible (EcoCyc)

DKGLCNR1 reversible (Habrych et al. [41])

DKGLCNR2y reversible (Yum et al. [42])

PGLYCP not reversible (EcoCyc)

CYSSADS

HMPK1 not reversible (EcoCyc)

4HTHRS

HETZK not reversible (EcoCyc)

NNDMBRT not reversible (EcoCyc)

ACONMT not reversible (EcoCyc)

CINNDO not reversible (EcoCyc)

MCPST

GPDDAS not reversible (EcoCyc)

APCS not reversible (EcoCyc)

SARCOX

Hypothesized gap-filling reactions

Reaction Putative gene E-value

RO1742 (F) ydiS (b1699) 0.003

R00893 (F) ygfM (b0419) 0.58

R02133 (F) yhbO (b3153) 0.069

R02721 (F) global orphan

R03472 (R) global orphan

R01297 (R) global orphan

R0O1299 (R) global orphan

R02252 (F) fadH (b3081) 7.00E-71
nemA (b1650) 1.00E-22

R00895 (R) aspC (b0928)*

R0O3530 (F) ndk (bb2518)*

R00012 (F) global orphan

R01232 (R) yjhG (04297) 0.028
yagF (b0269) 0.057

R00838 (F) chbF (b1734) 9.00E-42
melA (b4119) 2.00E-21

R0O0655 (R) global orphan

R0O7300 (F) global orphan

R00683 (F) global orphan

R00367 (F) global orphan

R02559 (F) global orphan

R02560 (F) global orphan

R05623 (F) YjiN (b4336) 0.16

coli metabolism in a structured format, and by compar-
ing model predictions to experimental data, errors and
gaps in this knowledge can be identified. A large dataset
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was assembled from Keio Collection gene knockout phe-
notypes grown on 34 different substrates. These pheno-
types were compared to model predicted phenotypes,
and the model false positive and false negative predic-
tions were identified. When analyzed, the false positive
predictions indicated several possible errors in the
current model, including pathways thought to be cata-
lyzed by poorly studied enzymes, and the uncertain
requirements of E. coli biomass formation. The false
negative cases also indicated several potential errors in
the biomass as well as several likely experimental errors.
Importantly, the false negative cases also indicated where
the model is currently incomplete. The SMILEY algo-
rithm was used to predict the most likely missing reac-
tions, and in a novel procedure, the feasibility of these
predictions was assessed through comparisons to the ex-
perimental data and through model gap analysis. Gene
predictions were made for the most feasible predicted
reactions, and experimental evidence was generated to
support the predicted function of the gene yhi/.
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Figure 4 Growth of four Keio Collection gene knockout stains
to identify a possible myo-inositol:oxygen oxidoreductase. (a)
Growth of the four strains and WT on glucose M9 minimal media.
(b) Growth of the four strains and WT on myo-inositol M9 minimal
media. Three replicate measurements were performed.
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Through careful analysis of the false positive results,
several possible model errors were identified. In some
cases, the model predicted growth when pathways with
poorly characterized genes were required. These genes
need to be investigated in more detail. If future experi-
mental evidence shows that they do not encode the
enzymes they are currently believed to encode, then the
model can be updated by removing these reactions. False
negative results, on the other hand, can indicate errors
in experimental design, rather than in the model. Several
cases were identified in which E. coli could grow on min-
imal media despite lacking genes for the synthesis of es-
sential cofactors. Biotin and thiamin are known to be
essential, but on several substrates growth was observed
for knockout strains that should not be able to produce
these cofactors. One possible explanation is that there
are alternate synthesis routes for these compounds, but
in these cases, it is more likely that trace amounts of bio-
tin and thiamin were present in the media during the
growth experiments [23,25]. Both false positive and false
negative results indicate potential errors in the {JO1366
core biomass reaction. False positives indicate a gene
that helps produce an essential compound that is missing
from the biomass reaction, while false negatives indicate
a gene that produces a non-essential compound that is
included. These biomass components may only be essen-
tial or non-essential under certain conditions, however,
necessitating the use of condition-specific biomass reac-
tions for specific model applications.

SMILEY was used to predict both gap-filling and false
negative correcting reactions that could be added to the
metabolic network. Some of these reactions were the same
as existing model reactions but in the opposite direction.
Literature data was searched to confirm or refute these pre-
dictions, and supporting evidence was found for several
reactions. Other SMILEY solutions predicted the addition
of completely new reactions to the network. All gap-filing
solutions and the most feasible false negative correcting
solutions were inspected manually, and for potentially real-
istic reactions, genes were predicted based on protein se-
quence homology. The most feasible predicted reactions
cover a wide range of metabolic functions. Many of them
corrected false negative predictions for aspC knockout
strains, which in the model are unable to produce L-aspar-
tate. Several others predicted new reactions involving TCA
cycle intermediates. New reactions were also predicted
for the metabolism of adenosine 5’-phosphosulfate,
dehydroglycine, dTMP, glycoaldehyde, L-isoleucine,
and 5-phosphoribosyl-5-carboxyaminoimidazole.

The new workflow presented here can theoretically
be applied to any organism for which a metabolic net-
work reconstruction is available. The only requirement
is that a fairly large set of experimental phenotypes,
either for growth on different substrates or for growth



Orth and Palsson BMC Systems Biology 2012, 6:30
http://www.biomedcentral.com/1752-0509/6/30

with gene knockouts, be available. It is also possible
that this workflow could be applied using only meta-
bolic network gaps, in the case of organisms without
extensive experimental data. A similar study utilizing
only gaps and not phenotypes was performed for the
human metabolic network [13]. Despite the number
of potentially useful predictions made, SMILEY did
not find solutions for nearly half of the cases on
which it was run. Part of the reason for this is that
the universal set of reactions used was based on
KEGG [37]. This database only contains reactions that
are already known to exist in at least one organism,
so completely undiscovered reactions cannot be
added. Also, not every metabolite in JO1366 can be
connected to KEGG reactions. Of the 1133 compart-
ment-independent metabolites in {JO1366, 203 do not
have KEGG compound IDs. A larger set of reactions
including more model metabolites would allow for
additional valid SMILEY solutions to be found. Many
gene predictions were made based on sequence hom-
ology, but for some reactions, no gene could be pre-
dicted because there was no reference sequence
available. These are global orphan reactions [43],
which have no known gene in any organism. The pro-
liferation of global orphans (estimated to be 30-40 %
of all known enzymatic functions [6]) makes gene
function prediction difficult, and can account for the
fact that even in a well-studied organism such as E.
coli, there are still many uncharacterized genes.

Conclusions

This study utilized a genome-scale metabolic network
reconstruction as a tool for the analysis of high-
throughput experimental data. The ultimate result of
this study is that a number of valuable predictions
have been made. Some of these predictions are for
adjustments to the iJO1366 model, such as the pre-
dicted changes to the core biomass reaction and
changes to the GPRs of the reactions IG3PS, I2FE2SS,
I2FE2SS2, S2FE2SS, and S2FE2SS2. Corroborating lit-
erature evidence has been found for some of these
predictions, so they should be incorporated into fu-
ture updates of the reconstruction. The other predic-
tions made through this study are for gene functions,
both for isozymes and for reactions currently not
known to occur in E. coli. These predictions provide
hypotheses that can be experimentally tested. As an
example, the prediction of a missing myo-inositol:oxy-
gen oxidoreductase reaction led to the design of a
simple experiment in which the previously uncharac-
terized gene yhi/ was found to be essential for growth
on myo-inositol. We expect that many of the other
predictions made in this study can likewise serve as
hypotheses for experimental analysis.
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Methods

Comparison of model predictions to experimental data
The experimental gene essentiality data was obtained
from four publications [10,23-25], and the “essential” or
“non-essential” designations assigned in the original
studies were used. Several corrections to the essentiality
assignments were made based on an updated analysis of
the Keio Collection [26]. The newly identified essential
genes were added to the lists of essential genes under all
conditions, while the genes whose essentiality was identi-
fied as uncertain were not changed from their original
designations.

The iJO1366 E. coli K-12 MG1655 metabolic network
reconstruction was loaded into the COBRA Toolbox
[44], and was adjusted to match the phenotype of E. coli
BW25113, which is missing several metabolic genes
(AaraBAD, ArhaBAD, AlacZ). The associated reactions
without isozymes (ARAI, RBK_L1, RMPA, LYXI, RMI,
RMK, and LACZ) were constrained to carry zero flux.
All other model reactions retained their default bounds
[10]. Minimal media was simulated by setting a lower
bound of -1000 (allowing unlimited uptake) on the ex-
change reactions for Ca%*, CI, CO,, Co**, Cu**, Fe**,
Fe**, H', H,0, K*, Mg**, Mn**, MoO3, Na*, Ni**, NHj,
0,, HPO7F, SeO7, Se03, SO, WO7, and Zn**. A lower
bound of -0.01 was placed on the cob(I)alamin exchange
reaction. Each knockout strain was modeled by using the
deleteModelGenes function to constrain the correct
reactions to zero. Model growth phenotypes were deter-
mined using FBA with the core biomass reaction as the
objective, one at a time on each condition. Strains with
growth rates above zero were classified as non-essential,
while strains with growth rates of zero were classified as
essential. The Tomlab (Tomlab Optimization Inc., Se-
attle, WA) linear programming solver was used to per-
form FBA.

Computational prediction of gap-filling reactions

The COBRA Toolbox 2.0 implementation of the
SMILEY algorithm (growthExpMatch) was used to pre-
dict sets of gap-filling reactions for each false negative
model comparison. The universal database of reactions
was obtained from KEGG Release 58.0 [37]. All reactions
in this set listed as “incomplete reaction” were black-
listed, or excluded from possible SMILEY solutions. Any
reaction with the same compound appearing as both a
substrate and a product was also blacklisted, along with
several reactions identified in initial tests (R00090,
R00113, and R00274) as forming unrealistic energy gen-
erating reaction loops with existing {JO1366 model reac-
tions. The minimum growth threshold required by the
SMILEY algorithm was 0.05 h™'. Up to 25 alternate solu-
tions were allowed, with a single solution time limit of
2 h.
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When SMILEY was run on gaps instead of false nega-
tive cases, each producing or consuming reaction for
each gap metabolite was identified from the iJO1366
model. A lower bound of 0.01 mmol/gDW/h was applied
to each reaction, one at a time, and SMILEY was used to
predict gap-filling reactions. For gaps that have demand
reactions in the model, the demand reactions were con-
strained to zero before running SMILEY. The Tomlab
mixed-integer linear programming solver was used.

Computational feasibility analysis of all predictions

After predicting sets of false negative correcting and
gap-filling reactions, each of these sets of solution reac-
tions was added to the {JO1366 model one at a time.
The growth phenotype of each of these strains on all
13,470 experimental data conditions was then predicted
using FBA, with a threshold of zero for determining
growth or no growth. The number of new false positives
for each solution was determined from the number of
conditions that were true negatives with the wild-type
model but could grow when the new reactions were
added. The number of corrected false negatives for each
solution was the number of false negatives that became
true positives when the new reactions were added. Gap-
Find was also run on the {JO1366 model with each set of
solution reactions added to it, one at a time. The set of
network gaps was compared to the set of gaps in the ori-
ginal model to determine if any gaps were eliminated.

In order to determine which SMILEY solutions could
be tested with simple in vivo experiments, FBA was used
to test growth of the iJO1366 model with each solution
added on a set of 115 carbon sources and 62 nitrogen
sources under both aerobic and anaerobic conditions.
The growth of the unmodified {JO1366 model was first
tested on each condition using FBA. Next, the model
with each solution added, one at a time, was tested on all
3896 conditions on which the unmodified model pre-
dicted no growth. Conditions on which the modified ver-
sions of the model could grow were used to design
experiments.

Experimental validation of predicted genes
Candidate genes for SMILEY predicted reaction sets
were predicted using bi-directional protein BLAST
(BLASTp) between a gene from another organism in
KEGG and the E. coli K-12 MG1655 genome. Protein
sequences from organisms that are phylogenically close
to E. coli were used when possible. The gene with the
highest BLAST expectation value (E-value) found was
reported. When multiple genes were found with E-values
below 1072, all were reported as candidate genes.

To test the growth of E. coli with myo-inositol as a carbon
and energy source, 2 g/L. myo-inositol M9 media was made
and filter sterilized. This media contained M9 salts (6.8 g/L
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sodium phosphate dibasic, 3.0 g/L potassium phosphate
monobasic, 0.5 g/L sodium chloride, 0.24 g/L magnesium
sulfate, 0.011 g/L calcium chloride), trace elements (0.1 g/L
iron (III) chloride, 0.02 g/L zinc sulfate, 0.004 g/L copper
chloride, 0.01 g/L manganese sulfate, 0.006 g/L cobalt
chloride, 0.006 g/L disodium EDTA), and Wolfe’s Vitamin
Solution. Wild-type E. coli along with four strains from the
Keio Collection with yphC (JW5842), yfdE (JW2368), ydeN
(JW5243), and yhi] (JW3455) gene knockouts (supplied by
Open Biosystems) were grown overnight in LB. The next
day, 15 mL of each culture was centrifuged at 4000 rpm for
8 min, the supernatant was discarded, and the culture was
resuspended in an M9 salt solution with no carbon or nitro-
gen sources. The culture was centrifuged and resuspended
in new M9 four more times to completely wash out all LB.
Next, 1 pL of washed E. coli cultures were then used to in-
oculate 10 mL aerobic myo-inositol M9 cultures, which
were grown at 37°C. The optical density at 600 nm was
measured at several points during growth.
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