
RESEARCH ARTICLE Open Access

Set membership experimental design for
biological systems
Skylar W Marvel and Cranos M Williams*

Abstract

Background: Experimental design approaches for biological systems are needed to help conserve the limited
resources that are allocated for performing experiments. The assumptions used when assigning probability density
functions to characterize uncertainty in biological systems are unwarranted when only a small number of
measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately
characterized in a bounded-error context. Additionally, effort must be made to improve the connection between
modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error
experimental design approaches that can assess the impact of additional measurements on model uncertainty are
needed to identify the most appropriate balance between the collection of data and the availability of resources.

Results: In this work we develop a bounded-error experimental design framework for nonlinear continuous-time
systems when few data measurements are available. This approach leverages many of the recent advances in
bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and
state bounds consistent with uncertain data measurements. We devise a novel approach using set-based
uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated
measurements at the candidate time points to evaluate which candidate measurements furthest reduce model
uncertainty. A method for quickly combining multiple candidate time points is presented and allows for
determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to
predict when new data measurements should be acquired, which system components should be measured and
how many additional measurements should be obtained.

Conclusions: The practicability of our approach is illustrated with a case study. This study shows that our approach
is able to 1) identify candidate measurement time points that maximize information corresponding to biologically
relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant
information. This framework can be used to balance the availability of resources with the addition of one or more
measurement time points to improve the predictability of resulting models.

Background
Costly materials, limited resources, and lengthy experi-
ments are constraints that hinder our ability to acquire
quantifiable measurements from biological systems.
Experimental design approaches are computational tech-
niques for extracting the most useful information from
experiments yet to be performed [1]. These techniques
are needed for the study of biological systems to con-
serve the limited resources that are allocated for per-
forming experiments. Application of these techniques to

biological systems has introduced novel mathematical
algorithms and models to life sciences, while also requir-
ing the development of new mathematical theories and
programming tools [2]. An important aspect of experi-
mental design for biological systems is model calibra-
tion, which requires the estimation of parameters such
as kinetic and diffusivity constants [3]. The development
of accurate biological models is constrained by the
financial costs and time required to perform biological
experiments, often leading to a collection of sparse data-
sets with which to estimate the parameters of proposed
model structures. Experimental design provides a
method to yield the best estimates from data given the
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limitations in data collection, component observability
and limited system excitability.
The development and application of experimental

design has a rich history spread across a wide range of
fields. An excellent review article by Pronzato has con-
densed the underlying concepts behind the most widely
used techniques of experimental design for nonpara-
metric and parametric models [1]. The reader is referred
to the review article and the works cited therein for a
thorough understanding of statistical methods for
experimental design.
Typically, parameter estimation problems begin by

claiming that observations ŷ are perturbed from ideal
model outputs g(x, θ*) by an error ε, such that

ŷi = g
(
xi, θ∗) + εi, i = 1, · · · , k, (1)

where xi are the model states at k different times or
experimental conditions, θ* are the true parameter values
and the errors, εi, are statistically independent with zero
mean and variance E

(
ε2i

)
= σ 2 (xi). It is assumed that the

errors can be defined by probability density functions,
often assumed to be independent and identically distribu-
ted Gaussian random variables with zero mean and var-
iance s2 for mathematical convenience. The unknown
parameter vector can then be determined by the maxi-

mum likelihood estimate θ̂
k
ML

. As k ® ∞ the difference

between θ̂
k
ML

and θ* can be described by a normal distri-

bution with zero mean and covariance matrix, Σ, which is
bounded from below by the inverse of the Fisher Infor-
mation Matrix (FIM) according to the Cramér-Rao
inequality [1].
Experimental design aims to maximize information, or

minimize uncertainty, about unknown model parameters
by exploring experimental configurations such as the sam-
pling times where new measurements should be acquired,
the desired number of measurements to add, which sys-
tem components should be measured, etc. The criteria
used to evaluate the information of a design are derived
from scalar functions of the FIM [1]. A-optimal design, for
example, minimizes trace(FIM-1), or equivalently mini-
mizes of the sum of squared lengths of the axes of asymp-
totic confidence ellipsoids for θ. E-optimality refers to
designs where the longest axis of asymptotic confidence
ellipsoids for θ is minimized, which is equivalent to maxi-
mizing the minimum eigenvalue of the FIM. D-optimal
design maximizes det(FIM) and corresponds to minimiz-
ing the volume of asymptotic confidence ellipsoids for θ.
Although there is a large body of work dedicated to

experimental design using statistical methods [1], several
problems arise when using these approaches for the
modeling of biological systems [4]. Kreutz and Timmer
state several of the difficulties in using experimental

design for biological systems: i) models are often large
and the number of measurements is very limited, ii)
relative noise levels of 10% or more are standard for
biochemical data, iii) little prior knowledge exists. These
considerations make it difficult to correctly characterize
the distribution of uncertainty in the model, which is
the primary pillar upon which FIM approaches for
experimental design are based. Even if the correct distri-
bution is obtained, accurate parameter estimations using
the FIM are usually valid only when a large number of
data points are available, which is not often the case for
biological systems [5]. Rather, the finite range of values
that system component concentrations can take on at a
given time more appropriately characterizes the uncer-
tainty in biological systems. This bound can be inferred
based on the experimental technology, the characteris-
tics of limited replicates, and/or first principles knowl-
edge. Therefore, a set membership framework is more
appropriate for the development of experimental design
for many biological systems, where the error is bounded
with no other hypothesis given regarding its distribution
[6].
A key aspect of experimental design for bounded-error

models is how to characterize the set of parameter
values that are consistent with all data measurements.
Initial methods for constructing this set use conservative
bounding approaches based on ellipsoids to characterize
the parameter sets. More precise parameter set estima-
tions can be obtained using interval analysis [7,8], but
these interval techniques have not previously been
applied to experimental design approaches. Apart from
the method used to bound the parameter set, proper
experimental design metrics are important because they
provide a logical link between physical resources and
mathematical constructs. Traditional experimental
design criteria for bounded-error models minimize the
volume of parameter sets that are consistent with the
data [6,9-11]. However, the information provided by this
metric may not be useful to a biologist. Other metrics
that are related directly to the uncertainty of specific
parameters or the effects on unmeasurable model states
may be of more interest. Such biologically relevant
information can be obtained from simple criteria func-
tions previously not used in experimental design for
bounded-error models. Set membership experimental
design methods have recently regained attention. Hase-
nauer et al. have developed a set-based experimental
design method using semidefinite programming with
V-optimality as the only design metric [12]. The
expected information content from additional measure-
ments is determined using a Monte-Carlo approach to
simulate different parameters, input sequences and mea-
surement errors. While this method demonstrates the
usefulness of bounded-error techniques, there is a lack
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of connection between the design metric and biological
interpretation. Additionally, the use of a Monte-Carlo
approach to simulate the effect of additional measure-
ments requires a large number of simulations and can
be very time consuming. Bounded approaches, such as
the one we outline in this paper, allow for the impact of
uncertainty to be assessed without needing to perform
Monte-Carlo simulations.
In this work, we develop an experimental design fra-

mework that utilizes interval analysis to generate the set
of parameters and state bounds consistent with all data
measurements. This approach leverages many of the
recent advances in bounded-error parameter and state
estimation methods [7,8], including increased accuracy
through the use of interval analysis instead of bounded
ellipsoids, as the base of our experimental design frame-
work. Our novel framework uses parameter and state
estimations based on initial data measurements, which
may provide data for only a subset of the model states,
to estimate measurement bounds at candidate time
points of interest to the experimenter (times when mea-
surements have not been taken). We then use these esti-
mated measurements at the candidate time points to
evaluate which candidate measurements furthest reduce
model uncertainty. We propose a method for combining
candidate time points to determine the effect of adding
multiple measurements. We present biologically relevant
design metrics to evaluate candidate designs in order to
address issues associated with making a better connec-
tion between modelers and experimentalists. These con-
tributions comprise a bounded-error experimental
design framework that can be applied to nonlinear con-
tinuous-time systems when few data measurements are
available. This framework can be used to balance the
availability of resources with the addition of one or
more measurement points to improve the predictability
of resulting models.

Methods
In this section, we define a specific experimental design
problem and outline how our framework is used to
determine the number of additional measurements that
are warranted and at what time points these measure-
ments should be taken. The relevant interval arithmetic
algorithms for parameter and state estimation used
throughout this process are briefly presented. We show
how to select a set of candidate time points based on
the estimated state bounds of a proposed model given
initial data measurements and provide a method to esti-
mate the corresponding candidate measurement bounds.
Techniques for determining the effect of adding multi-
ple candidate time points on parameter and state esti-
mations are discussed. We define several biologically
relevant metrics, which are scalar functions of the

parameter and state estimations after incorporating esti-
mated candidate time point measurements. These
metrics can convey information such as the activity of
specific enzyme kinetic parameters or bounding values
for the estimation of unmeasured component
concentrations.

Problem statement
Consider the following ordinary differential equation
(ODE) model of a biological system:

ẋ = f (x( t), θ)

y = g(x(t), θ),
(2)

Where x Î ℝn is an n-dimensional vector of compo-
nent concentrations, y Î ℝm is an m-dimensional vector
of measurements, and θ Î ℝp are the p model para-
meters. An initial set of bounded data measurements
has been obtained at k different times:

Y :=
{
ŷi|yi ≤ y (ti) ≤ ȳi; i = 1, · · · , k

}
, where i is the

index corresponding to time ti and y
i and yi are the

lower and upper measurement bounds, respectively. The
problem under study is to determine at what time
points to collect new data measurements for minimizing
or maximizing specific parameter and/or state informa-
tion metrics.
We use the method outlined in the left half of Figure 1

to solve this problem using a set membership approach
by applying biologically relevant information metrics to
evaluate candidate time points. First, we perform
bounded parameter estimation using the initial bounded-
error measurements. Estimated state bounds are then
generated from the resulting parameter space. Second, a
set of candidate time points is selected from locations
where relatively large uncertainties exist in the estimated
model states. We propose a novel approach to estimate
the measurement bounds at candidate time points using
a set-based approach that incorporates the initial
bounded-error measurements adjacent to each candidate
time point. Third, we perform bounded parameter and
state estimations that incorporate the candidate measure-
ments to predict the possible effects of adding a measure-
ment at the corresponding time point. We also assess the
impact of adding multiple measurements on the resulting
estimates. As a proof of concept, we compare the perfor-
mance of our estimated measurements and true measure-
ments at each candidate time point, assessing the ability
of estimated measurements to predict which candidate
time point most reduces a given uncertainty metric. We
assess this for single and combinations of candidate time
points. We also use our estimated measurements at each
candidate time point to identify the ‘point of diminishing
return’ where additional measurements no longer provide
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additional information, leading to no further decrease in
estimate uncertainty.

Bounded estimation
These methods use interval analysis to computationally
guarantee a valid bounded-error solution to the system
of ODEs by employing interval box enclosures that
bound the states during integration steps. Methods have
been introduced in the literature to address overestima-
tion due to wrapping effect [13-15] and to help reduce
the computational burden for estimating parameters of
complex, higher dimensional models [16], which are
typical for biological processes.

Uncertainty propagation
Interval analysis is a form of guaranteed computing and
can be used to generate solutions to ODEs through the
use of interval boxes and inclusion functions [17]. Con-
sider the model function g, which maps a state interval
box [x] to the corresponding image in the data space g
([x]). Here the interval box [x] represents the Cartesian
product of n scalar intervals [x] = [x1] × [x2] × ... × [xn],
where [xi] represent the interval xi ≤ xi ≤ xi. A non-
minimal inclusion function, G, is a non-unique mapping
from state space to data space and contains the smallest
interval box that encloses the image g([x]).

Computing the solution of ODEs for t0 ≤ t ≤ tN with
time step h is done using Taylor expansions [17-19].
This method involves an inflation step where the
bounds of the remainder term for the kth-order Taylor
expansion of the model ODEs are inflated by 1 ± a.
Evaluation of the Taylor expansion is performed using
the Extended Mean Value (EMV) algorithm proposed
by Rihm [19] using mean value forms [20] and matrix
preconditioning. Whenever the EMV algorithm gener-
ates state values, [x], at a time where data measure-
ments, [ŷ], are available, Set Inversion Via Interval
Analysis (SIVIA) [21] is used to compare the two.

Set inversion
SIVIA is able to determine solution sets for unknown
quantities u from a functional relationship q(u) = [y].
An a priori search space for u is recursively explored
using SIVIA to determine a guaranteed enclosure of the
solution space. The resulting solution space is com-
prised of feasible and indeterminate boxes. These boxes,
[u], are determined from the following relations: if q
([u]) ⊆ [y] then [u] is feasible; if q([u]) ∩ [y] = j then
[u] is unfeasible; else [u] is indeterminate. Indeterminate
boxes are bisected and tested again until its widest
dimension reaches a user specified threshold ε > 0.

Parameter and state estimation
The methods presented in this paper leverage the works of
Jaulin for state estimation [7] and Raïssi et al. for para-
meter estimation [8]. Parameter estimation combines the
EMV and SIVIA algorithms to systematically evaluate can-
didate boxes in the parameter space. Our framework uses
these two algorithms to build our set-based experimental
design approach. We perform parameter estimation by
evaluating hypercubes in the partitioned parameter space
to identify if each hypercube or box produces trajectories
that are consistent with the measurements obtained from
the system. A parameter box that produces trajectories
that are inconsistent with any data measurement is classi-
fied as unfeasible and discarded. Any parameter box that
produces a trajectory determined by SIVIA to be comple-
tely contained within all data measurements is labeled as
feasible. All other parameter boxes are labeled as indeter-
minate. These indeterminate boxes are bisected and
retained for further evaluation. We apply this bisection
process recursively to any indeterminate box where the
width of the widest dimension is larger than a user-defined
length, ε > 0. We implemented the augmented estimation
method presented by Marvel and Williams to enable its
application for systems where few data measurements are
available (Marvel S, Williams C: Set Membership and
Parameter Estimation for Nonlinear Differential Equations
Using Discrete Measurements, Submitted). We estimate

r × kp

Figure 1 Experimental design method. This figure outlines a
block diagram of the experimental design approach. The process is
outlined in four major steps (shown on the left). A novel approach
for estimating measurement bounds at candidate time points is
implemented.
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bounds on the resulting component concentrations con-
sistent with the data measurements by executing the EMV
algorithm using the parameter boxes classified as feasible
and indeterminate. This state estimation will not only pro-
duce bounds between data measurements of measured
states, but also provide bounds for unmeasurable states.
We parallelized this method using the Message Passing
Interface (MPI) protocol to distribute the boxes across
multiple processors to effectively distribute computations
across available processing resources [22].

Estimating candidate measurements
The measurements at a given time are characterized by
an upper and lower bound such that y ≤ y ≤ y. Mathe-
matically, this measurement can be defined by three
values: 1) the time tj at which the measurement was
observed, 2) the center point Cj, and 3) its range Rj

such that |Cj - y (tj)| ≤ Rj/2. We estimate the center
points and ranges of candidate measurements using the
bounds of adjacent data measurements and the esti-
mated bounds on component concentration trajectories
generated by the EMV algorithm. Once estimated, each
candidate measurement is added to the original k data
measurements to assess the impact of the additional
measurement information on our ability to estimate the
parameters and unmeasured states. We describe below
how tj, Cj, and Rj are estimated for candidate
measurements.
To simplify notation in this subsection, we assume

that one or more of the states can be directly measured
(y = x). This will allow for direct comparison between
estimated state bounds and measurement values. This is
a common assumption made for biological systems
[7,8]. In a more general case, comparisons would require
use of the inclusion function G to compare G(x) and y
via SIVIA.

Time point and range estimation
For a given state, time points for candidate measure-
ments are chosen by first identifying all times t between
measurements at ti and ti+1, whose estimated range
(generated by the EMV algorithm) is greater than or
equal to both of the measurement uncertainties at times
ti or ti+1. This presents a worst case scenario because we
are selecting candidate time points with the most possi-
ble uncertainty. Alternative time points can be selected
based on practical experimental limitations or first prin-
ciples knowledge. The set of time intervals, T, for a cor-
responding state can be written as

T :=
{
t
∣∣∣x̄(t) − x−(t) ≥ max

[
x
(
t−

) − x
(
t−

)
,

x(t+) − x−
(
t+

)]} (3)

where t− = maxti(ti < t) and t+ = minti(ti > t). Select-
ing candidate time points from the intervals in T is an
empirical task. For example, a total of kp candidate time
points could be selected from within the interval set T
based on a collection of physically feasible time slots
where measurements can be observed. The set of candi-
date time points is denoted as T :=

{
tj; j = 1, · · · , kp

}
,

with T ⊂ T. The corresponding candidate time point
ranges are determined based on a conservative premise
that uses uncertainty information contained in adjacent
measurements. Here, we set the range of candidate mea-
surements to be

Rj = max
[(

x̄
(
t−j

)
− x−

(
t−j

))
,
(
x̄
(
t+j

)
− x−

(
t+j

))]
, (4)

where t−j = maxti
(
ti < tj

)
and t+j = minti

(
ti > tj

)
. The

amount of information available for determining appro-
priate range values is limited when no probabilistic
assumptions are imposed on the uncertainty. Here, Rj is
a relatively conservative estimate that assumes the
uncertainty of the system at a new candidate time point
is not less than that of data measurements taken near
the same time.

Center point selection
Center point estimation is conservatively implemented
to reduce the chance of erroneously eliminating valid
kinetic parameters and component concentrations. We
introduce a novel approach for estimating the corre-
sponding center point of each candidate time point.
This approach estimates the position of the center point
Cj that maximizes the resulting parameter estimate
volume at given time tj and range Rj. The three main
steps in this process are shown in the right half of Fig-
ure 1. First, r measurements are simulated at each
tj ∈ T by shifting Rj from the lower bound to the upper
bound on the estimated state bounds. For example, if r
= 3 and the estimate of state x at time t4 is bounded
between the range [3,6] with R4 = 1.5, the resulting
shifted candidate measurements at time t4 would have
bounds [3,4.5], [3.75,5.25] and [4.5,6]. Second, bounded
parameter estimation is performed for each of the r
shifted candidate measurements for each of the kp can-
didate time points. Curve fits for each set of r parameter
volumes are used to determine the center point, Cj, that
maximizes the parameter volume for each candidate
time point tj. This allows us to fully construct conserva-
tive measurement estimations for candidate time point tj
using Cj and Rj.

Combining measurements
The ability to investigate the effects of adding multiple
measurements is often desirable when designing
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biological experiments. Employing a brute-force method
for assessing the impact of all combinations of candidate
measurements at t1, t2, · · · , tkp on estimated kinetic para-
meters and component concentrations is a large compu-
tational burden. A brute-force approach for exploring
combinations of up to kc candidate time points would
require computing parameter and state estimations for∑kc

m=2

(
kp
m

)
measurement sets. This is potentially pro-

blematic even for systems of low dimension and few
unknown parameters. We hypothesize that there exists a
level of independence among candidate time points that
can be exploited to speed up our ability to evaluate the
impact of multiple measurements on parameter
uncertainty.
The estimated parameter space for a combination of

candidate time points, Pc, can be obtained by intersect-
ing the parameter estimates of the individual time
points, e.g. Pc = P1 ∩ P4 ∩ P9. Computing the intersec-
tion of a set of non identical boxes is not an obvious
task. We developed a simple approach for forming the
union of sets of nonuniformed shaped boxes by bisect-
ing the larger feasible boxes until all boxes have widths
less than Î. This approach allows boxes to be directly
compared between estimated parameter sets. More
sophisticated approaches can be applied that will pre-
serve the largest possible feasible boxes during the inter-
section process. The estimated state bounds resulting
from this combination of additional candidate measure-
ments, xc, is then determined using the resulting inter-
sected parameter boxes.

Metrics
Scalar functions of the estimated parameter set and state
bounds are used as metrics to predict the impact of
adding measurements at candidate times tj on kinetic
parameter and component concentration estimates. The
metrics in this section can be conceptually related to
traditional stochastic experimental design criteria func-
tions (e.g. D-optimality, E-optimality, A-optimality [23]).
However, the computation of these bounded-error
metrics require no assumptions about underlying sto-
chastic distributions of the model parameters or system
states and relate directly to the physical components of
the system. Thus, the biological interpretation of the
bounded-error metrics is straightforward since they can
be directly related to biological concepts instead of the
mathematical construct of the FIM.

Parameter volume
We will evaluate the parameter volume as a means to
compare our new metrics to traditional V- and D-
optimality design criteria [6]. This metric will predict

the candidate time points that minimize the volume of
the estimated parameter space. The parameter volume,
PV, can easily be calculated by summing the volumes of
the interval boxes,

PV =
∑
i

p∏
j=1

�pji, (5)

where �pji is the width of the jth dimension of the ith

parameter box. A drawback of this metric is the inability
to detect large uncertainties in potentially important
parameters if they are masked by less important but
well known parameters. To combat this, the parameters
could be weighted based on biological importance, giv-
ing more weight to parameter dimensions deemed
important by the experimenter.

Parameter bounds
This metric can be customized for predicting candidate
time points based on the uncertainty of a single parameter
or a subset of parameters. Single parameter values are
compared using the width of the uncertainty for the para-
meter of interest, e.g. Ppi = pi − pi. Multiple parameters
are compared using the Euclidean norm to produce a sca-
lar value from the widths of uncertainty for the selected

parameters, e.g. P||pi,pj||2 =
[(

p̄i − pi
)2

+ (pj − pj)
2
]1/2

.

State bounds
This metric utilizes estimated state bound information
and allows the experimenter to see how estimated
ranges of unmeasured states are affected by additional
measurements. This may be of interest when constrain-
ing the range of state values is more important than
parameter information. Also, the information provided
by this metric is biologically meaningful because it pro-
vides a predicted limit on state values such as compo-
nent concentrations. This metric is computed similarly
to the parameter bounds metric but with the parameter
uncertainties replaced by the maximum ranges of esti-
mated states. Other custom metrics are also possible;
for example, designing a metric to select the time points
that minimizes the maximum value of a specific state.

Results and discussion
In this section, the proposed experimental design
method is applied to an example problem. We evaluate
our set-based experimental design approach by perform-
ing a proof of concept on a model that has been used in
the literature to evaluate several other set-based
approaches [7,8,14,15]. Our problem set-up is more
stringent than the approach outlined in [8] because we
assume only a small set of data measurements from a
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single state is available as opposed to assuming data
measurements are available at every time step. We use
our approach to predict at what time additional mea-
surements should be made in order to identify the can-
didate measurements that maximize information
corresponding to previously defined metrics and to
determine the number at which additional measure-
ments begin to provide insignificant information.

Problem setup
The model under examinations is the Lotka-Volterra
predator prey model, which is a canonical biological
ODE model [24] and serves as a key model for testing
algorithms in this field. This is a two-state model and is
described by the following differential equations:

ẋ1 = x1(p1 − p2x2)

ẋ2 = −x2(p3 − p4x1),
(6)

where x1 is the prey population, x2 is the predator
population, p1 is the prey birth rate, p2 is the decrease
in prey population due to encounters with predators, p3
is the predator death rate, and p4 is the increase in pre-
dator population due to encounters with prey. This
model was used by Raïssi et al. to demonstrate their
bounded parameter estimation algorithm when data
measurements of the prey population are available for
all N = 1,400 time points between t0 = 0 and tN = 7.
Initial data measurements were simulated by first gen-

erating model state values using exact inputs to the
EMV algorithm and then adding uncertainty. The
underlying state values, x*, were generated using the
same initial state values, model parameters and EMV
algorithm settings as those used by Raïssi et al.: x1(t0) =
50, x2(t0) = 50, p1 = 1, p2 = 0.01, p3 = 1, p4 = 0.02,
a =0.005, h = 0.005 and k = 4 for 0 ≤ t ≤ 7. Three initial
data measurements were generated by adding random
uncertainty to the true state values in order to create
interval bounds at discrete time points, far fewer than
the N ≥ 1,000 measurement time points used in prior
literature involving this model [8,15]. The seconds state,
x2, was assumed to be unmeasurable while for the first
state, x1, measurements were generated by adding error
intervals as follows: x̂1 (ti) = x∗

1 (ti) + εi, where εi =
[-8.2190, 13.6065], [-11.3067, 14.9691] and [-7.6254,
10.5414] at ti = {2, 4 and 6}, respectively.
The assigned task is to determine at what times addi-

tional measurements would provide useful information
with regards to the previously defined metrics and how
many measurements would be beneficial. It was
assumed that the initial conditions of both populations
and parameters p1 and p3 were exactly known. We first
wish to estimate the set of parameters p2 and p4, along
with the range of the unmeasured state x2 for 0 ≤ t ≤ 7,

that are consistent with the uncertain measurements of
x1.

Initial parameter and state estimation
Bounded estimates of parameters p2 and p4 and states x1
and x2 were calculated using the initial measurements
Y := {x̂1(ti); i = 1, 2, 3} Parameter estimation was per-
formed assuming an a priori search area of [-1, 1] for
both p2 and p4 and indeterminate boxes were bisected
until a minimum box width of ε = 10-5 was obtained.
This resulted in the generation of ~20 k indeterminate
and feasible boxes shown in Figure 2 where no distinc-
tion is made between the two box types. Each box was
then used in the EMV algorithm to produce the esti-
mated state bounds, xest, shown in Figure 3 where x*
are the grey waveforms, x̂i are the intervals and xest are
the black dashed waveforms.

Estimating candidate measurements
The initial data measurements were compared to
the estimated state bounds for x1 to generate the
interval set T from which the candidate time
points will be selected. Here, kp = 10 candidate time
points were chosen from within T, namely
T = {1.25, 1.5, 1.75, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75} as
indicated in Figure 3. The corresponding values of Rj

and Cj were estimated for each candidate time point tj
using the approach described above. The ranges Rj

were shifted along the estimated state bounds for each
corresponding tj using r = 15 steps, where r was deter-
mined empirically to obtain curve fits with large R2

Figure 2 Initial parameter estimate. This figure shows the feasible
and infeasible boxes in the parameter space that result from the
SIVIA algorithm. No distinction between feasible and infeasible is
shown.
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values. Bounded parameter estimations were performed
for the kp × r = 150 shifted candidate measurements.
The estimated parameter volumes were fit to quadratic
curves with resulting R2 values greater than 0.99. We
were then able to identify an estimate of the center
point that maximized this curve.

Combining time points
We were able to establish independence between candi-
date time points by showing that the brute-force esti-
mates using all possible permutations and the
intersected parameter sets cover identical parameter
regions. The brute-force combinations and the intersec-
tions of parameter sets for all combinations of two can-
didate time points were compared and found to
produce both the same parameter volumes and para-
meter bounds with a tolerance of 10-12. Parameter inter-
sections were then computed for combinations of up to
kc = 5 candidate time points. An example parameter
intersection is shown in Figure 4 where the parameter
estimates of t2 = 1.5 and t6 = 2.75 were combined. The
parameter box colors correspond as follows: dark grey
for P2, which corresponds to t2, light grey for P6, which
corresponds to t6, and black for the brute-force combi-
nation which is used to depict the intersected parameter
space.

Estimates of state bounds were computed from the
intersected parameter sets. An example estimate of state
bounds is shown in Figure 5 for the parameter intersec-
tion of t2 and t6. The underlying state values x* are the
solid grey waveforms, the combined estimated state
bounds xc are the solid black waveforms and the esti-
mated state bounds x2 and x6, corresponding to the
results obtained from adding candidate measurements at
t2 and t6, respectively, are the dashed black and dashed
grey waveforms, respectively. The decrease in uncer-
tainty for state x2 during 1 ≤ t 4 is caused by the
removal of the non-overlapping parameter regions.

Applying metrics
We tested whether the estimated candidate measure-
ments generated by our algorithm could effectively be
used to predict where the most appropriate measure-
ments should be placed to reduce model uncertainty.
With this in mind, we generated a set of true measure-
ments at each candidate time point using the underlying
state values, x*, as the true center points, C*. We con-
sider estimates obtained from measurements character-
ized by the true center points to be ground truth,
corresponding to the best estimate of the measurement
at a specific candidate time point. The metric results for
estimates using the true center points C* are used as a

Figure 3 Initial estimated state bounds. The true state values
resulting from x1(t0) = x2 (t0) = 50 and p = [1, 0.01, 1, 0.02] are
shown in grey (x*). The initial measurement set is shown as
uncertainty bounds in x1 at t = 2, 4, and 6 (x̂i). Recall that
measurements are only available for x1. The dashed lines show the
results of the uncertainty propagation of the estimated parameter
boxes in Figure 2 (xest). The dotted lines show the positions of
candidate times points (tj).

P2

P6

P2 P6+ 

Figure 4 Parameter space intersection. This figure shows the
estimated parameter uncertainty assuming a candidate
measurement at t2 was added (P2, dark grey boxes) and the
estimated parameter uncertainty assuming a candidate
measurement at t6 was added (P6, light grey boxes). The black
boxes show the brute-force combination of P2 and P6. It is clear
that the intersection of P6 and P6 is equivalent to the brute-force
combination.
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reference and compared to the results obtained when
using our estimated center points Cj .

Parameter information
The prediction of the best time point locations, given
the set of candidate measurements, for several para-
meter metrics are shown in Figure 6 when using center
points C* (solid squares) and Cj (open circles). This fig-
ure shows the best candidate measurement time point
locations relative to the index of tj for the parameter
volume metric, PV, individual unknown parameter
bounds, Pp2 and Pp4, and combination of parameter

bounds, P||p2,p4||2 Consider the design approach when
there are only enough resources for a single additional
measurement. Selecting a design to minimize the uncer-
tainty of parameter p2 (Figure 6b) would suggest placing
a measurement at time t1 = 1.25. However, to minimize
the uncertainty of parameter p4 a measurement at time
t6 = 2.25 would be more beneficial. If there are
resources available for three additional measurements
they would best be placed at times t2 = 1.5, t6 = 2.75,
and t8 = 3.25 to obtain additional information on both
unknown parameters. We emphasize the established
consistency between the best candidate time points

Figure 5 Combination of estimated state bounds. This figure shows the estimated state bounds assuming a candidate measurement at t2
was added (x2, dashed black lines) and the estimated state bounds assuming a candidate measurement at t6 was added (x6, dashed grey lines).
The estimated state bounds for the combined candidate measurements, xc, are the black lines, while the underlying true state values, x*, are the
solid grey lines.
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selected based on C* and the best candidate time points
selected based on our estimate Cj. The only inconsistent
prediction between center points C* and Cj occurs when
applying the P||p2,p4||2 metric for a combination of kc = 5
time points, which results in a single time point
difference.

The point at which additional measurements will not
provide any additional information about the system can
be predicted by observing the metric values for combi-
nations of time points. This is especially beneficial for
conserving resources that would otherwise be spent on
experiments that yield no new information. The values
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Figure 6 Best candidate measurements for parameter metrics. This figure illustrates the location of the best candidate measurement (x-axis)
given the number of potential measurements that can be added (y-axis) for a given metric. The index value of predicted time points are
represented by solid squares for C*and open circles for Cj. (a) Candidate time point locations to best reduce parameter volume (PV). (b)
Candidate time point locations to best reduce uncertainty in p2(Pp2). (c) Candidate time point locations to best reduce uncertainty in
p4(Pp4). (d) Candidate time point locations to best reduce uncertainty in both p2 and p4 (P||p2,p4||2).
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of the four parameter metrics are shown in Figure 7 as
functions of the number of additional measurements.
Using this information, an experimental designer could
determine the desired number of additional measure-
ments to collect without wasting resources. Consider
selecting a set of measurements to reduce uncertainty
for parameter p4. Estimating the impact of adding multi-
ple measurements leads to the clear conclusion that a
single additional measurement is all that is required.
Similarly, reducing the uncertainty of the consistent
parameter set volume may require 2 or 3 additional
measurements. These metric value curves can be com-
bined with cost functions to determine a design that
efficiently utilizes experimental resources.

State information
Two metrics were applied to the unmeasured state, x2,
to determine how its uncertainty is impacted when can-
didate measurements are applied to state x1 using center
points Cj. The first metric, Xmax, was used to select

candidate time points that would minimize the overall
maximum value of x2. The second metric, Xrange, deter-
mines which candidate measurements will minimize the
maximum uncertainty of x2 over the simulation time 0
≤ t ≤ 7. The best time point locations and correspond-
ing metric values are presented in Figure 8. Candidate
measurement locations are fairly similar for the two
metrics with Xmax slightly favoring candidate measure-
ments located at earlier time points. A dramatic increase
in information can be seen for both metrics when
increasing from a single additional measurement to a
combination of two measurements (Figure 8c-d). Little
knowledge is gained when adding three or more mea-
surements when compared to that gained from two
additional measurements.

Comparison with FIM D-optimality
Scalar metrics of the Fisher Information Matrix (FIM)
are often used to perform experimental design for many
conventional problems [1,23,25]. We compared the

Num. of Added Meas. (kc)

Num. of Added Meas. (kc)

Num. of Added Meas. (kc)

Num. of Added Meas. (kc)

PV Pp2

Pp4
P‖p2,p4‖2

(c) 

(a) 

(d) 

(b) 

Figure 7 Parameter metric values. Plots of parameter metric values vs number of additional measurements. These plots demonstrate the
decrease in parameter uncertainty with additional measurements. The point of diminishing return is indicated by the elbow of the curve for the
respective metric. This shows that additional measurements will no longer decrease uncertainty associated with that metric.
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results of our set-based experimental design approach to
results obtained using the D-optimality metric of the
FIM. We did this to show how statistical assumptions
that are often made to calculate the FIM could poten-
tially impact the results when performing experimental
design for biological processes. As stated previously, the
number of measurements obtained for biological sys-
tems is very limited [4]. These data points are used to
impose unwarranted statistics on the uncertainty, which
are then used to calculate the FIM. Consider the sce-
nario often encountered when quantifying biological

systems where resources are available for only four
replicates of a given experiment, i.e. only four data
points are generated for a given sample time ti. The sets
{74, 75, 80, 95}1, {74, 80, 89, 95}2 and {74, 89, 94, 95}3
show three likely data sets containing four data points
from experimental replicates for sample time ti. All sets
show data in the interval range 74 to 95. The small sam-
ple size of each set, however, implies that meaningful
statistics of the uncertainty are difficult to obtain. In
fact, each set has distinctively different means, with μ1,
μ2, and μ3 corresponding to 81, 84.5, and 88,

Xmax Xrange

Num. of Added Meas. (kc) Num. of Added Meas. (kc)
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Figure 8 Best candidate measurements and metric values for state metrics. Best candidate measurements for state metrics and
corresponding metric values. Candidate time point locations are indicated by open circles for center points Cj. These metrics are used to
determine the impact of additional measurements from state x1 on the estimated state bounds of x2.
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respectively. Given that the use of the FIM inherently
assumes the use of Gaussian distributions [26], we use
our results below to assess how these imposed Gaussian
distributions, with their potentially different means,
impact the decisions associated with experimental
design.
We looked at three possible Gaussian distributions for

each of the original measurement times, ti = {2, 4, and
6}, that could result from having small numbers of data
samples (Figure 9a). Each distribution is characterized
by its mean, μti,s, and variance, σ 2

ti,s. The variable ti
represents one of the original measurement time points
and the variable s corresponds to the position of the dis-
tribution, i.e. s = l for shifted to the left, s = c for shifted
to the center, and s = r for shifted to the right. All var-
iances, σ 2

ti,s, were calculated such that the distribution
had a probability of 0.9 over the original interval uncer-
tainty range. This ensures that each distribution, even
though they have different means, has the same prob-
ability of producing population values over the uncer-
tainty interval range.
We calculated the Maximum Likelihood (ML) esti-

mate of the parameters [27] for the nine possible combi-
nations of these distributions given the three initial
measurement time points, ti = {2, 4, and 6},

θ̂
{s2,s4,s6}
ML = min

θ

∑
ti

1

σ 2
ti,s

(
x1(ti, θ) − μti,s

)2)
, (7)

where Sti corresponds to the distribution type at time

ti. For example θ̂
{l2,r4,c6}
ML

is the ML estimation resulting

from using the left shifted distribution at time t1 = 2,
the right shifted distribution at time t2 = 4, and the cen-
ter distribution at time t3 = 6. We computed the sensi-
tivity matrix, S, using the method outlined in [28] by
solving the ODE

Ṡ = JS + A, (8)

in combination with (6). Here, the (i, j)th element of
these variables are Si,j = ∂xi/∂θj, Ji,j = ∂fi /∂xj and Ai,j =
∂fi /∂θj. The FIM was then calculated as

FIM =
∑
ti∈I

1

σ 2
ti,s

∂x1(ti)
∂θT

∂x1(ti)
∂θ

∣∣∣∣∣∣
θ̂

{S2,S4,S6}
ML

, (9)

where I is the set of original measurement time points
{2, 4 and 6} in addition to the subset of candidate time
points, tj, being evaluated, e.g. ℐ = {2,2.75,3.5,4,6} where
2.75 and 3.5 would be the two candidate time points
being evaluated. The variances at candidate time points
were characterized in a way that was consistent with
our set-based approach. The variance σ 2

tj,s for candidate

time point tj was selected as the larger of the two var-
iances of the adjacent initial measurements.
We computed D-optimal designs for the 9 distribution

combinations and compared the selected candidate time
points with our set-based method. The prediction of the
best time point locations, given the set of candidate
measurements, for our method (solid squares) and sev-
eral D-optimal designs (circ1e − θ

{c2,c4,c6}
ML , triangle

−θ
{c2,l4,l6}
ML

and diamond −θ
{l2,l4,l6}
ML

) are shown in Figure
9b. The fluctuations in time point selection show that
D-optimality is sensitive to our ability to correctly char-
acterize the distributions of the initial data measure-
ments, i.e. correctly characterizing the mean. Figure 9c
and 9d show the corresponding parameter estimations
for our method (solid black line) and the 95% confi-
dence ellipsoids of D-optimal designs (dashed black line

−θ
{c2,c4,c6}
ML , solid grey line −θ

{c2,l4,l6}
ML

, dashed grey line

−θ
{l2,l2,l2}
ML

after adding one and two measurements,
respectively. The true parameter values are indicated
with a point at (0.01,0.02). We are able to conclude
based on these results that the selection of the time
points for additional measurements, along with the
assessment of the parameter uncertainty, changes
depending on the characterization of the probability
associated with the measurement uncertainty. Mischar-
acterization of the probability distribution is particularly
possible when working with few data points, as is the
case when modeling biological systems. This emphasizes
the utility of our set-based experimental design
approach. We also note that Figure 9c and 9d show that
the resulting parameter uncertainty calculated using the
FIM approach can result in an under or over estimation
of the parameter range, depending on the characteriza-
tion of the measurement uncertainty. This could be an
important limitation in FIM experimental design
approaches if one was interested in metrics related to
absolute values of the parameter uncertainty (maximum
value) instead of the relative change (minimum volume).

Conclusions
Developing accurate models is crucial for understanding,
predicting and ultimately controlling biological pro-
cesses. The limitation of costly resources and lengthy
experiments associated with the study of biological sys-
tems promotes an experimental design approach for
model development. Stochastic experimental design
methods rely on correctly characterizing the distribution
of uncertainty in the model, often requiring a large
number of data measurements. This requirement is dif-
ficult to fulfill for many biological systems and alterna-
tive set-based experimental design approaches are more
appropriate in these situations. In addition to the
method used to characterize uncertainty, biological
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interpretations of experimental design metrics are
important because they provide a logical link between
physical resources and mathematical constructs.

We have developed a novel experimental design fra-
mework using bounded-error methods and biologically
relevant design metrics to select desirable time point
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Figure 9 Comparison with D-optimal design. This figure compares our set-based PV experimental design to FIM D-optimal design when
using measurements that are characterized by Gaussian distributions. (a) Figure illustrating different possible Gaussian distributions for each of
the three original measurement sample times (t1 = 2, t2 = 4 and t3 = 6). The three distributions for each sample time are characterized by left
shifted, center shifted, and right shifted means. (b) Time index of predicted time points given the number of additional measurements that can
be made. The figure shows a comparison of time point selection for the following: solid squares–set-based method, circle −θ
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, triangle
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. (c-d) Parameter estimations after adding one or two additional data measurements, respectively; black
dot–θ*, solid black line–set-based method, dashed black line −θ

{c2,c4,c6}
ML

solid grey line −θ
{c2,l4,l6}
ML

, dashed grey line −θ
{l2,l4,l6}
ML

. These results
show the importance of accurate distribution characterization when designing experiments using the FIM.
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locations where additional measurements will be col-
lected for the purpose of improving resource allocation
for biological experiments. Our method propagates the
uncertainty resulting from a small collection of data
measurements, which may contain information for only
a subset of the model states, through time to estimate
parameter and state bounds for a given system model.
We used these bounded-error results to estimate candi-
date measurement time points, center points and ranges.
We proposed a method for combining candidate time
points and present several biologically meaningful design
metrics.
Measurement estimation is an important component of

this method. We used a set-based approach to estimate
measurements at time points where no information was
available. We were able to estimate measurement bounds
at candidate time points by combining information from
the initial data measurement bounds with the estimated
state bounds generated by the EMV algorithm. Our
method resulted in a good estimate when compared to
true measurements for the purpose of identifying where
additional measurements should take place. The granu-
larity of candidate time points can be made as fine as
desirable at the cost of additional computation time. The
computational expense to search all possible time points
may make identifying globally optimal time point loca-
tions impractical using this method. However, the accu-
racy of when measurements are collected during
biological experiments is often on the order of minutes,
hours or days and locally optimal time points from an
experimentally feasible set of time points is often
sufficient.
The ability to estimate the effects of adding measure-

ments at multiple time points is often desirable. A brute
force method to explore all combinations of time points
is computationally expensive. However, we found that
the parameter estimation for a combination of time
points can be directly obtained by intersecting the indi-
vidual estimated parameter spaces. Estimated state
bounds can then be determined using the intersected
parameter space. The experimenter can determine when
additional measurements will provide little or no addi-
tional information by exploring the effects of adding
multiple measurements and will not needlessly spend
limited resources on experiments that yield no addi-
tional information.
The framework presented here can be used to predict

at what time additional measurements should be made to
maximize information based on biologically relevant
metrics and to determine the number at which additional
measurements being to provide insignificant information.
Problems of this sort are often faced by biologists when
modeling biological processes. Selecting an appropriate
metric is made more straightforward by associating it

with biologically relevant information. For example, the
uncertainty of a parameter may be associated with speci-
fic characteristics of an engineered enzyme, while the
limitations on the uncertainty of estimated state bounds
can provide critical bounds on unmeasured component
concentrations, allowing systems to maintain chemical
and physiological phenotypes.
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