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Abstract

Background: Various computational models have been of interest due to their use in the modelling of gene
regulatory networks (GRNs). As a logical model, probabilistic Boolean networks (PBNs) consider molecular and
genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs.
This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease
development and progression. The applications of PBNs, however, are hindered by the complexities involved in the
computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N
Boolean networks, the complexity to compute the state transition matrix is O(nN2%") or O(NN2") for a sparse matrix.

Results: This paper presents a novel implementation of PBNs based on the notions of stochastic logic and
stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network
(SBN). An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation.
The state transition matrix is computed in an SBN with a complexity of O(nL2"), where L is a factor related to the
stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy
approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks,
N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number
of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not
directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an
efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of
a simplified p53 network, several randomly generated networks and a network inferred from a T cell immune
response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a
hybrid approach in combination with a continuous or single-molecule level stochastic model.

Conclusions: Stochastic Boolean networks (SBNs) are proposed as an efficient approach to modelling gene
regulatory networks (GRNs). The SBN approach is able to recover biologically-proven regulatory behaviours, such as
the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response
network. The proposed approach can further predict the network dynamics when the genes are under
perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs.
The algorithms and methods described in this paper have been implemented in Matlab packages, which are
attached as Additional files.
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Background

Biological systems are inherently noisy, yet robust in the
presence of noise. The function and malfunction of a sys-
tem are regulated through the interactions among genes,
proteins and other molecules in the cellular network. For
instance, the tumour suppressor gene p53 controls cell
growth and plays an important role in preventing the de-
velopment and progression of tumour cells [1-4]. There-
fore, it has been of great interest to understand the
regulatory mechanisms of genes, and various computa-
tional models have been developed for a better under-
standing of gene regulatory networks (GRNSs) [5].

These models can be classified into three broad cat-
egories: logical models, continuous models and stochas-
tic models at the single-molecule level [6]. Boolean
networks (BNs) are logical models that utilize discrete
state levels and usually assume synchronous and discrete
time steps in the evolution of a network [7], whereas
continuous models, such as those using linear or ordin-
ary differential equations [8], employ real-valued state
variables over a continuous timescale. Although continu-
ous models are in principle more accurate and may de-
scribe the dynamics of a system in more detail, they
require extensive high-quality experimental data that
may not always be available to modellers. As a single-
molecule level model, Gillespie’s stochastic simulation
algorithm (SSA) [9,10] is based on the chemical master
equation; it describes the interactions among single
molecules and accounts for noise and stochasticity in
the regulation of a genetic network. While the SSA pro-
vides the most accurate description of the regulatory be-
haviour, it requires a large number of parameters and a
detailed understanding of the regulatory mechanism.
Despite the development of approximate SSAs that trade
off accuracy for efficiency [11,12], algorithms using
single-molecule level models are generally slow to run,
especially in the modelling of large genetic networks.

Albeit simplistic, BNs have been shown to be efficient
in the modelling of GRNs by taking advantages of low
complexity and a minimum requirement on the quality
(and quantity) of experimental data [13]. To account for
the intrinsic noise in genetic and molecular interactions,
probabilistic Boolean networks (PBNs) have been devel-
oped as a generalization of BNs [14-16]. In a PBN, the
inherent stochastic nature of molecular and genetic
interactions dictates that the next state of target genes is
predicted by several BNs with various probabilities. The
evolution of such a system is thus a Markov chain and
the state transitions can be described by a transition
probability matrix. A steady-state analysis further tells
whether a PBN will evolve into a stable target state in
the presence of random gene perturbations, thereby pro-
viding valuable information for developing intervention-
based therapeutic approaches [17-21].
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The computation of the steady-state distribution of a
PBN, however, presents a challenge. In a PBN with #
genes and N Boolean networks, the complexity to com-
pute the state transition matrix is O(#N2>") [15] and it is
more difficult to compute the steady-state distribution.
This complexity is reduced to O(nN2") for a sparse state
transition matrix [22] and can further be reduced (to the
same order, but with a smaller N) by ignoring the Bool-
ean networks with probabilities below certain threshold
[23]. Methodologies have also been developed by elimin-
ating genes [24] and using optimal control policies [25]
to increase computational efficiency. State reduction
techniques have been used for network intervention [26]
and to reduce the model complexity of context-sensitive
PBNs [27]. Nevertheless, it remains a difficult problem
to reduce the computational complexity of a PBN with-
out a compromise on the accuracy of an evaluation.

Although synchronicity is usually assumed in the state
transitions of PBNs, asynchronous PBNs have been con-
sidered by accounting for different updating periods of
genes in the constituent BNs. Asynchronous PBNs are
potentially more accurate in describing the regulatory
behaviour of genetic networks and may provide a better
vehicle for investigating intervention strategies that lead
to optimal therapeutic methodologies [28,29].

As an application of BN, logic circuits have been used
to simulate genetic networks [30]. Recently, circuit diag-
nosis techniques have been utilized to identify the most
vulnerable molecules in cellular networks [31]. Syn-
chronous simulation of Boolean networks has been pro-
posed for the analysis of biological regulatory networks
[32]. An unreliable logic circuit usually behaves probabil-
istically and thus becomes an instance of PBNs. Initially
proposed for reliable circuit design [33,34], stochastic
computation has been demonstrated in several physical
and biological applications [35,36].

In this paper, a stochastic computational model is pre-
sented for an efficient representation and simulation of
PBNs; this implementation of a PBN is referred to as a
stochastic Boolean network (SBN). It is shown that in an
SBN, the complexity to compute the state transition
matrix is O(nL2"), where L is a factor related to the
minimum sequence length required for obtaining an
evaluation accuracy. In a network with a large number
of genes, L is usually significantly smaller than N. By
using a time-frame expanded structure of the SBN, the
steady-state distribution can be efficiently computed.
Asynchronous PBNs can also be modelled by SBNs for
studying the state dynamics of GRNs. With the recent
development of BN models [13,37,38], the SBN tech-
nique is potentially useful in the modelling of large gen-
etic networks. The accuracy and efficiency of the
proposed techniques are demonstrated through exten-
sive simulation results. Albeit proposed on the
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formalism of PBNs, the SBN framework is potentially
applicable in improving the simulation efficiency of con-
tinuous models (using linear or ordinary differential
equations) and single-molecule level models such as
those based on SSAs. These aspects are further dis-
cussed in the Results and Discussion section.

Methods

Probabilistic Boolean networks (PBNs)

In a PBN, genes are represented by a set of binary-
valued nodes and the state transitions of genes are
described by a list of Boolean functions. Following [15],
a PBN is defined by G (V, F), where V={X;, X5, ... X,,},
a set of binary-valued nodes, F=(F;, Fs, ... F,), a list of

D) (O f,§§} and (i)
is the number of possible functions for gene i, i € [1,n].
Each node X; represents the state of gene i, denoted by
x; and x;=1 (or 0) indicates that gene i is (or not)
expressed. The set F; contains the rules that determine
:{0,1}" — {0,1}, for
1<j(i)<l(i), is a mapping or a Boolean function deter-
mining the state of gene i.

Due to the noise in genetic networks, the functions in
a PBN occur with certain probabilities. The next state of
gene i is determined by all the /(i) functions in F; i.e., by

f1 . f2 . fl<i with probabilities c(l),cg) . cl<) Thus, the
next state of genes is totally determined by the possible
functions and the present state of genes. This indicates
that a PBN is modelled as a Markov chain. The fact that
all genes are supposed to be updated synchronously also
suggests a finite state machine (FSM) model for a PBN.
A PBN is independent if the functions from F; are in-
dependent. This means that the selection of Boolean
functions for gene i has no influence on the selection of
Boolean functions for gene j (i # j) [39]. As a first study,
the discussions in this paper are limited to independent
PBNs. For an independent PBN of # genes, there are a

sets of Boolean functions: F; = {

the next state of gene i. Each ]jgi;

total number of N = H [(i) possible BNs, each of which
i—1

is a possible realization of the genetic network.
For the jth BN (l1<j<N), let f = [/ ,f(2 f ()

(n)
where 1<j(i)</(i) and i=1, 2 ... n. The probability that
the jth BN is selected is:

R X0
b= H%w (1)

x,(t)) with probability c;(i%7
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where c]( is the probability that the Boolean function j(i)

is selected for gene i. By a different selection of the BNs
during a state transition, the genes can reach a different
state from their present state. This property of a PBN can
be described by a state transition matrix as:

p(0[0) p(10) ... p(2" —1/0)

p(0[1) p(y) . p(2" = 1]1)
A=| ...

p02" —1) p(122—1) ...... p(2n — 127 — 1)

(2)

where each entry is a conditional (transition) probability
that the genes transfer from a given present state into a
next state. Since each BN results in a unique next state,

N
= ZP/A-, where P; is

=1
the probability that the jth BN occurs and A; is the state
transition matrix due to the jth BN. This way of comput-
ing A results in a complexity of O(nN2*") [14]. Random
gene perturbation, which can occur in an open genome
system, is caused by random inputs from outside under
external stimuli [17]. By a perturbation, a gene flips its
state from 1 to O or vice versa. Since a PBN with perturb-
ation is an aperiodic and irreducible homogeneous Mar-
kov chain [15], any PBN with perturbation will reach a
steady state in a long run. A variant of the state transition
matrix A can be used to model the effect of perturbation;
however the analysis of its steady-state distribution is
complex [17].

Usually, synchronicity is assumed in the state transi-
tions of PBNs. However, a gene-level asynchronous
model considers different updating periods of genes in
the constituent BNs. In a deterministic-asynchronous
Boolean network (DA-BN), a gene is assumed to have a
fixed updating period [16]. A PBN that uses DA-BNs as
constituent networks is defined as a deterministic-
asynchronous probabilistic Boolean network (DA-PBN).
More rigorously, a DA-PBN of n genes consists of a set
of {X;};_,, where X; represents the expression level of
the ith gene, denoted by «; and x; € {0,1} [16]. In a DA-
PBN, a gene updates its state by its updating period
using the DA-BN involved. At time ¢, a binary variable
0,(t) can be used to indicate whether the state of gene i is
updated or not, by a value of 1 or 0 respectively. The next
state of gene i, x{t+ 1), is then determined by:

the matrix A can be obtained by A

if 6;(t+1)=1

otherwise
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where ]:8 is a function in the DA-BN for gene i, selected
with probability c;(ll)) (1<j(i)<l(iQ)).

Stochastic Boolean networks (SBNs)

1. An SBN without perturbation

In stochastic computation, real numbers are represented
by random binary bit streams and information is carried
in the statistics of the binary streams [40]. A stochastic
processing element is typically implemented by a logic
gate. Stochastic logic processes information encoded in
the random binary bit streams. Probability is represented
by a proportional number of bits, usually the mean
number of 1’s in a bit sequence. Given independent
inputs, for example, an inverter computes the comple-
ment of a probability while the multiplication of prob-
abilities is implemented by an AND gate. Hence,
stochastic computation transforms Boolean logic opera-
tions into probabilistic computation in the real domain.
Signal correlations can be efficiently handled in a sto-
chastic network by the bit-wise dependencies encoded in
the random binary streams, so making it an efficient ap-
proach to computing probabilities [41].

Figure 1 shows an inverter (NOT), an AND, a buffer,
an OR, an XOR gate and a multiplexer. While an XOR
gate performs a controlled inversion, a multiplexer takes
one of its inputs as output according to the values of the
control bits. For the 2-to-1 multiplexer of Figure 1(f),
for example, its output takes the value of its input ‘@’ or
‘b’ when the control bit ‘¢’ is 0 or 1. Similarly, a stochas-
tic multiplexer chooses one of its inputs as output
according to the distributions of 0’s and 1’s and thus the
probability of 0 and 1 encoded in the random sequences
of the control bits. For a sequence length of 1000 bits,
for example, an input probability of 0.4 indicates that ap-
proximately 400 1’s are in the random sequence of the
input ‘a; as shown in Figure 1(f). If the random input
sequences are independent, the output of the multi-
plexer is expected to be P,(1-P.) +P,P.=0.34, which
means that approximately 340 1’s are expected in the
output sequence. Note that this number is only approxi-
mate due to the stochastic fluctuations inherent in the
representation of the random binary bit streams. This
is an important feature in stochastic computation as
probabilistic values are propagated rather than deter-
ministic ones, which results in inevitable random fluc-
tuations in the representation of probabilities. It has
been shown, however, when non-Bernoulli sequences
of random permutations of fixed numbers of 1’s and 0’s
are used for representing initial probabilities, these
fluctuations are significantly smaller than using Ber-
noulli sequences, which is equivalent to a random sam-
pling based simulation [41]. It is shown later in the
Result section that these fluctuations are generally
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negligible when reasonably long random bit sequences
are used. See Additional file 1: Stochastic Logic using
non-Bernoulli Sequences. Also see Additional files 2
and 3: Matlab programs that implements the functions
of two-input and four-input stochastic multiplexers.

A general structure of the stochastic Boolean network
(SBN) is defined as follows. As shown previously, the
next state of genes in a PBN is updated by a set of Bool-
ean functions according to their occurring probabilities.
In an SBN, these probabilities are represented by
random binary bit sequences and the selection of the
Boolean functions is implemented by a stochastic multi-
plexer with properly generated control sequences. A
general structure of an SBN for a single gene is shown
in Figure 2.

Generally, if a total number of /(i) Boolean functions
are needed to determine the next state of gene i, an [(i)-
input multiplexer is used to simulate the selection of
functions in the PBN for gene i. The number of control
bits is given by m = | log,(I(i))]. In fact, the number of
possible Boolean functions for one gene is usually
small—between 1 and 4 for 93% of genes [23,42]. This
indicates that one or two bits are usually sufficient to
control a multiplexer in an SBN. By using a stochastic
multiplexer with the control bit streams S;~S,, as
shown in Figure 2, a function in the jth BN is selected

with probability c}% for gene i. When all the genes are

accounted for, therefore, an SBN accurately implements
the probabilistic functions of a PBN, as dictated by (1).

2. An SBN with perturbation

While a switch of Boolean functions may indicate a
structural change in the network, a random perturbation
could cause a transient change of a gene’s state under
external stimuli. In a PBN with perturbation, a gene may
change its value with a small probability p during each
state transition.

Assume x = (x1, X0, ... x,) represents the current state
of an n-gene network at time ¢ and y is the vector that
indicates the effect of random perturbation, the next
state x” is given by [17]:

, _ Jx@y with a probability of 1 — (1 — p)”
Ji(%) with a probability of (1 — p)"

(4)

where @ is the modulo 2 of additions and f;(-) represents
the function of the kth Boolean network at time £ The
effect of perturbation to the state transition matrix can
then be described by a matrix called the perturbation
matrix [23]. The perturbation matrix is determined by
the number of genes and the gene perturbation
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1010001001 0101110110

Pout=1-Pa=0. 6

(2)

1010001001

1010001001

Pout=Pa=0. 4

(©

Pout=(1-Pa) Pb+(1-Pb) Pa=0. 46

(e)

Figure 1 Stochastic logic. (a) a NOT gate, (b) an AND gate, (c) a buffer, (d) an OR gate, (e) an XOR gate and (f) a multiplexer. Stochastic logic
performs arithmetic operations on the input probabilities encoded in the random binary bit streams. A probability is represented by a
proportional number of bits, i.e, the mean number of 1's in a binary sequence. For illustration, a sequence length of 10 bits is used from (a) to
(d); however longer sequences are typically needed in a practical application, as shown in (e) and (f).

Pa=0. 4
1010001001

0010001000

0110101100
Pb=0. 5 Pout=PaPb=0. 2
(b)
Pa=0. 4
1010001001

Pout
1110101101

0110101100
Pb=0. 5
Pout=1-(1-Pa) (1-Pb)=0. 7

(d)

00101 -

Pc=0.6
10101+
Pout=(1-Pc)Pa+PcPb=0. 34

®

probability p. It is usually computed by a (complex) ana-
lytical approach.

However, the effect of perturbation can be readily
accounted for in an SBN. Figure 3 illustrates a general

s Y

Figure 2 A stochastic Boolean network (SBN) without
perturbation (for a single gene). Only the Boolean functions for a
single gene i are shown. The control sequences 'S; ~ Sy, to the
multiplexer (MUX) probabilistically determine the selection of
Boolean functions for gene i. When an SBN is constructed for all the
genes in a GRN, it accurately implements the probabilistic function
of (1).

model of SBNs with perturbation. As perturbation intro-
duces a probabilistic inversion to the state of a gene,
XOR gates are used to implement the addition modulo
2 of the perturbation vector and the present state. The
probability that either a Boolean function works or a
perturbation works (given in (4)) is computed by a sto-
chastic n-input OR gate. This probability is then
encoded into the output sequence of the OR gate and
used as the control sequence of a bus multiplexer. If the
perturbation vectors (‘Pert 1’ ... Pert n’ in Figure 3) are
all 0’s, which means there is no perturbation, then the
output sequence of the OR gate contains all 0’s, which
subsequently determines that the next state is given by
the original SBN without perturbation; otherwise, the
next state is determined by the perturbation probability
encoded in the output sequence of the stochastic OR
gate. Per the stochastic functions of XOR, OR and the
multiplexer, the next state is given as the output of the
SBN with perturbation, by:

¥=@x0y) - 1-01-p)")+h®- -01-p" (5
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Original SBN
without
perturbation
1 1
[ — ——
2 2
== ——>
n n
= ——>
Present Next
State State

Figure 3 An SBN with perturbation. A perturbation network is implemented by the stochastic XOR logic of the perturbation vector and the

present state. The probability that either a Boolean function works or a perturbation works is given by the output sequence of a stochastic
n-input OR gate, which in turn determines the selection of a BN (without perturbation) or a perturbed network by a bus multiplexer.

.

which is equivalent to (4). This indicates that a PBN
with perturbation can be accurately implemented by an
SBN with perturbation.

3. An SBN for asynchronous PBNs
In contrast to synchronous PBNs, each gene in an asyn-
chronous PBN has a different period of updating time.
Mathematically, this is described by (3) for the so-called
deterministic-asynchronous probabilistic Boolean networks
(DA-PBNs). In a DA-PBN, the state of each gene is inde-
pendently updated according to its own updating period.
While the deterministic asynchronicity changes the
temporal sequence of state transitions, it has no impact
on the logic relationships among genes, so the Boolean
functions are preserved for each gene in a DA-PBN. To
model this asynchronicity, an SBN can be constructed
by considering the timing information as follows:

(1) Construct the Boolean functions for each gene using
the proposed SBN structure.

(2) Sort the genes by the updating period and record
the sequence. For example, a sequence can be
created as G, = {gV,&®,..., "}, where the

updating periods of g;1), g/ ... g are in an
ascending order.

(3) Consider the current first gene, i.e., the gene with
the smallest updating period in G,, denoted by g,

Since the state of g’ will first be updated while the

states of the other genes remain unchanged, the
BN at this stage consist of the Boolean functions of
® and buffers for the other genes. A buffer is a

logic element with a delayed input as its output. In
this structure, a buffer is used to preserve the state
of a gene that is not being updated.

(4) Delete g?) from G,.

(5) Repeat steps (3) and (4) until G, is empty.

An SBN for a DA-PBN is shown in Figure 4. Since the
state transition of a fast-response gene may occur several
times before a slow-response gene updates its state, the
Boolean functions for a fast gene may appear in a num-
ber of times in the network of Figure 4.

Applications of SBNs

1. Computation of the state transition matrix

In an SBN, each input combination yields output
sequences that contain information about the transition
probability from this input state to an output state.
Therefore, the statistics, i.e., the proportions of the num-
ber of each state encoded in the output sequences return
the transition probabilities in a row in the state transi-
tion matrix. This row corresponds to the given input
state and thus all the transition probabilities from this
input can be generated in a single run. For a PBN with #
genes, the SBN needs to be run for each of the 2" input
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Figure 4 An SBN for a deterministic asynchronous PBN. Buffers are used to preserve the states of the genes that are not being updated.

states and an O(n) number of sequences need to be gen-
erated for the control signals of the multiplexers.

The accuracy in the computed state transition probabil-
ities is determined by the sequence length of the random
binary bit streams. In general, longer sequences are
required in a larger network for achieving an evaluation ac-
curacy. To consider the overhead incurred in the use of a
larger sequence length, a factor, L, is introduced and there-
fore, a complexity of O(nL2") results for computing all the
entries in the state transition matrix for a desired accuracy.

It has been shown that the required sequence length is
related to the reliability and thus the size of a combin-
ational network [41]. In an SBN, the network size is typ-
ically on a polynomial order of the number of genes.
This is in contrast with the number of BNs, N, which
generally increases exponentially with the number of
genes. As a result, the complexity of using an SBN to
compute the transition matrix, i.e, O(nL2"), is signifi-
cantly smaller than the analytical result of O(nN2"),
especially for a network with a large number of genes.
This is demonstrated later by simulations using several
measures to determine the minimum sequence length
required for certain accuracy.

The procedure of computing the state transition
matrix using an SBN is summarized as follows:

(1) Construct an SBN by inserting a multiplexer for
each gene in a PBN;

(2) For each input state, generate initial random binary
streams encoding the control signal probabilities for
each multiplexer;

(3) Propagate the binary streams from the present state
(inputs) to the next state (outputs) and obtain a
random bit sequence for each output;

(4) Obtain the statistics, i.e., the proportions of the
number of each state encoded in the output
sequences as the transition probabilities for this
input state;

(5) Repeat steps (2), (3) and (4) for all 2" input states to
compute all the entries in the state transition
matrix.

For an SBN with perturbation, the state transition
matrix can be similarly computed using the procedure
outlined above with an exception in the construction of
the SBN in step (1).

2. Estimation of the steady-state distribution

Given the size of the state transition matrix of a PBN,
the analysis of the steady-state distribution is challenging
for using both analytical and simulative approaches. The
Markovian nature of a PBN makes its analysis similar to
that of a finite state machine (FSM). An FSM is equiva-
lent to a sequential circuit implementation. By a time-
frame expansion, a sequential circuit can be unrolled
into a series of identical combinational modules con-
nected in the spatial domain. Using a similar technique,
the temporal operation of an SBN can be transformed
into a spatial operation of identical SBNs connected in
series. This is shown in Figure 5. This spatial extension
of an SBN can be used for the steady-state analysis and
the required iterations of the SBN are determined by the
number of state transitions before reaching a steady
state.

A steady-state analysis using a time-frame expanded
SBN starts with an initial input state, generates the ran-
dom bit sequences for the inputs and control bits of
multiplexers, and then propagates the stochastic signals
through the expanded SBN structure. This process is
equivalent to an analytical procedure of multiplying the
input probabilities with the powers of the state transition
matrix. Finally, a small variance threshold is used to de-
termine whether the system has reached a steady state.
The steady-state distribution is then obtained from the
output sequences at the end of the operation.
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Time frame 1 Time frame 2 Time frame N
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Initial Steady
State State

Figure 5 A time-frame extended SBN. Each module is an implementation of the original SBN without or with perturbation (as in Figure 3). A
time-frame extended SBN can be used for an efficient analysis of the steady-state distribution of a GRN under perturbation.

In the above process, the speed of convergence to a
steady state is dependent on a number of factors, includ-
ing the length of random bit sequences, the variance
threshold value and the perturbation rate. In practice, a
sequence length that is long enough to have a resolution
of at least two magnitudes smaller than the threshold
value, is used to guarantee that the convergence is not
dominated by stochastic fluctuations. It is shown later
that the analysis using an extended SBN structure pro-
vides an alternative and efficient way of estimating the
steady-state distribution of a PBN without resorting to
the state transition matrix.

Example: the p53-Mdm2 network

In a p53 network, signaling pathways are triggered by
DNA damages and external factors such as chemothera-
peutic drugs and ultraviolet light. For instance, DNA
double strand breaks (DSBs) activate pathways that in-
volve the p53 and Mdm?2 genes (Figure 6) [3,4]. In re-
sponse to DSBs, the ATM kinase is first stimulated and

DNA |darnage

i\//l->ﬂ

N

~

Figure 6 The p53-Mdm2 network (adapted from [3]). Under
DNA damage, p53 promotes the expression of the Mdm2 gene,
which in turn causes the degradation and destruction of p53.

the Chk2 is then stimulated by ATM. These activated
kinases subsequently induce an increase in the concen-
tration level of p53 and a decrease in the interactions be-
tween p53 and Mdm2. The increase in the p53 protein
level and its transcription activity promote the expres-
sion of the Mdm2 gene, which in turn proceeds to trig-
ger the degradation and destruction of p53. This prior
knowledge enables us to come up with the transition
rules for the p53-Mdm2 interactions, as shown in
Table 1. Based on these rules, an independent PBN of
the two genes p53 and Mdm2 can be established:

V= (Xl’ Xz) with  the Fl =

{flm, 2<1>7f3<1)7ﬁ<1>} and F, = { 2) () 3(2)’f4<2>}. The
state transitions of this PBN are given in the truth table
of Table 2.

In Table 2, the leftmost column indicates the present
state of the genes p53 and Mdm2. The internal entries
in the table indicate whether a function will result in a
logical 1 or O at the next state of each gene. The row on
the bottom shows the probability of each transition by a
function. Given an initial state of ‘01, for example, the
next state of the genes can be ‘00" with a probability of
(0.09 + 0.01) x (0.5 + 0.4) = 0.09, ‘01" with a probability
of (0.09 + 0.01) x (0.09 +0.01) =0.01, ‘10’ with a prob-
ability of (0.5+0.4) x (0.5+0.4)=0.81 or ‘11’ with a
probability of (0.5+0.4) x (0.09 +0.01)=0.09. A PBN is

function classes

Table 1 State transition probabilities of the p53-Mdm2
network

Present State Next State Probability

p53, Mdm2 p53 Mdm2
(or, X1X3) 0 1 0 1
00 0.01 0.99 0.99 0.01
01 0.1 09 09 0.1
10 09 0.1 0.1 09
11 0.5 0.5 05 0.5
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Table 2 Truth table of the PBN for the p53-Mdm2
network
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(transition) probabilities. With a sequence length of
10000 bits, the state transition matrix is obtained as
follows:

0.0097 0.0003 0.9803 0.0097

Agpy — 0.0899 0.0101 0.8101 0.0899 ™
0.0904 0.8096 0.0096 0.0904
0.2511 0.2489 0.2489 0.2511

O N A S O A A . i
00 1 1 1 0 0 0 0 1
01 1 1 0 0 0 0 1 1
10 0 0 1 1 1 1 0 0
1 0 1 1 1 1 0 0 0
Il 05 04 009 001 05 04 009 00

determined by the truth table of Table 2 and its state
transition matrix can be computed as:

0.0099 0.0001 0.9801 0.0099

Appy — 0.0900 0.0100 0.8100 0.0900 . (6
0.0900 0.8100 0.0100 0.0900
0.2500 0.2500 0.2500 0.2500

For this PBN, an SBN can be constructed using sto-
chastic multiplexers and random binary bit streams as
information carriers, as shown in Figure 7. As discussed
previously, the control binary sequences determine the
probability that each Boolean network is selected. For
example, as the Boolean functions for the p53 gene
occur with probabilities 0.5, 0.4, 0.09 and 0.01, the bin-
ary bit sequences for the control vectors ‘S1S2’ to the
multiplexer are generated with a probability of 0.5 to be
‘00, a probability of 0.4 to be ‘01, a probability of 0.09 to
be ‘10" and a probability of 0.01 to be ‘11.” Then the out-
put bit sequences are read out and decoded into

ps3 p53
| — ==
Present,| Next
State State
Mdm2 M Mdm2
| — | —

S3 sy

Figure 7 An SBN for the p53-Mdm2 network (without
perturbation). This SBN implements the truth table of the PBN
defined in Table 2 for the network in Figure 6. It has 2 genes and 16
Boolean networks in total.

The difference between (6) and (7) is evaluated using
the following norms: ||.||; and |.||.,, which specify the
maximum absolute value of the summed differences of
columns and rows of the two matrices respectively, and
II.l,» which is a measure on the average difference of all
the entries in these matrices. For (6) and (7), we obtain
||ASBN — APBN”I = 0.0018 , ||ASBN _APBN||2 = 0.0024
and |[Asgy — Apgn |0 = 0.0044, which indicate that the
SBN structure accurately computes the state transition
matrix of the PBN.

With random gene perturbation, an SBN with perturb-
ation can be constructed, as shown in Figure 8. If the
stochastic OR outputs a ‘1’ (indicated by S5 in Figure 8),
which means that at least one of the p53 and Mdm?2 are
perturbed, the multiplexer is then switched to the per-
turbation network. If the output of the OR is 0, the
multiplexer is switched to the original SBN and the net-
work works as the one in Figure 7 without perturbation.

A similar procedure can be used to compute the state
transition matrix of the SBN with perturbation—the
result is shown in (8) for a perturbation probability
of 0.01:

0.0097 0.0100 0.9705 0.0098

Agen — 0.0975 0.0106 0.7946 0.0973 . (8)
0.0998 0.7921 0.0082 0.0999
0.2444 0.2565 0.2551 0.2440

Compared to the analytical result by a method based

on (4):
0.0097 0.0100 0.9705 0.0098
A, _ |0.0981 00098 0.7940 0.0981 ©)
PBN ™ 10.0981 0.7940 0.0098 0.0981 |’
0.2451 0.2549 0.2549 0.2450

the differences between (8) and (9) are revealed in the mea-
sures of ||ASBN — APBNHI = 00032, ASBN — APBN||2 =
0.0030 and ||Asgy — Appn ||« = 0.0042. This shows that
the proposed approach using an SBN can accurately and ef-
ficiently compute the state transition matrix. The differ-
ences in these results come from the stochastic fluctuation,
which is an intrinsic property of stochastic computation.
More simulation results are presented in the Results and
Discussion section, which show that the fluctuations are
generally small. A steady state analysis using (8) further
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Original SBN

without
perturbation

p53 p53

[ —
Mdm2 Mdm?2
[ —
Present Next

State State

Perturbation

Figure 8 An SBN for the p53-Mdm2 network (with perturbation).
-

confirms the p53-Mdm2 oscillatory dynamics observed in
experiments.

An SBN for an asynchronous p53-Mdm?2 network can
also be constructed, as in Figure 4 and following the
aforementioned procedure. Due to space limitation, how-
ever, this is not further discussed and will be pursued in
future work.

Results and discussion

Simulations with randomly generated networks

The state transition matrices of several randomly gener-
ated PBNs have been computed using the proposed SBN
structure. The Boolean functions of each network are
generated for a given number of genes (1) and a total
number of BNs (N). The simulation is run on a PC with

Table 3 Errors in the state transition matrices obtained
using SBNs without perturbation, compared to the
results by using the analytical approach in [22]

Number of genes (n) 2 3 4 5 6
Error Length (bits)
Error 1 1000 0.0070 00330 0.0420 0.0477 0.0649
10000 0.0027 0.0052 00105 00179 00186
Error) |, 1000 00100 00314 00408 00287 00405
10000 0.0038 00047 00102 0.0109 0.0099
Error 1000 0.0160 0.0640 0.0908 0.0735 0.1293
10000 0.0056 0.0096 0.0248 0.0303 0.0248

an Intel Core i3-2100 CPU (@3.10 GHz) and 6G mem-
ory. The results for using sequence lengths of 10000 and
1000 bits are first compared to those obtained using an
analytical approach, as shown in Table 3. While a larger
sequence length of 10000 bits produces results with a
higher precision, a sequence length of 1000 bits also
provides highly accurate results for networks of such
size.

In general, a smaller sequence length leads to a shorter
run time in the computation of state transition matrices.
However, the error incurred due to stochastic fluctua-
tions increases with the size of the network under evalu-
ation. Subsequently, therefore, a minimum accuracy
requirement is given and the length of the stochastic
sequence is increased for a larger network in order to
meet this requirement. Tables 4 and 5 show the mini-
mum sequence lengths and run time required for two
different accuracy values, given by the aforementioned
“Norm 2” that measures the average difference of all the
entries in two matrices. In this experiment, networks of
various sizes with up to 12 genes are considered. For
each size, five random networks are generated as follows.
Given the number of genes in a network, the number of
Boolean functions for each gene is initially randomly
determined; the specific functions and their associated
probabilities are then randomly generated; finally, the in-
put genes are randomly selected for each function. Since
a gene’s state is usually determined by no more than four
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Table 4 Minimum sequence length and run time required in the computation of state transition matrices for a given
accuracy, measured by Norm 2

n N SBN (Norm 2=0.04) SBN (Norm 2=0.02) Method [22]
Sequence Std. Avg. time Std. Sequence Std. Avg. time Std. Avg. time Std.
length deviation (s) deviation length deviation (s) deviation (s) deviation
2 6 150 46 0.006324 0.003315 480 84 0.013655 0.007568 0.005468 0.004100
3 8 460 89 0.019755 0.008942 800 122 0.017634 0.009536 0.011655 0.007036
4 16 520 109 0.024337 0.009108 1120 84 0.043844 0.010102 0.031391 0.009388
5 32 860 134 0.052112 0.017356 1540 182 0.118927 0.036943 0.15779%4 0.020922
6 64 1240 270 0.209416 0.030298 2460 241 0548156 0.042366 0.532971 0.037483
7 128 1340 167 0453192 0.048960 3680 239 1.208252 0.060325 2441066 0.163347
8 256 2260 378 2030217 0171125 5480 335 4.110083 0326308 9.368184 0.863544
9 512 2580 303 4.751360 0421918 6820 471 12.81050 2061854 39. 26049 4.208466
10 1024 3920 923 16.06112 4.252810 8760 1135 3860258 6.377620 2015433 10.90932
112048 4700 836 4044380 5.742303 10400 1140 9540610 7.547263 811.6358 15.88395
12 4096 5660 882 118.3426 9.031772 13000 1000 286.5043 1237633 3501.744 86.66141

(no perturbation, n: the number of genes, and N: the number of BNs). The results are obtained from five randomly generated networks, so the standard deviations
of the minimum sequence length and run time are also shown.

Boolean functions [42], the number of Boolean functions  compared to that of an approximate analytical approach

is considered no larger than 4 for each gene. For simpli-
city, each Boolean function is selected from a set of basic
functions: the buffer, NOT, AND, NAND, OR, NOR,
XOR and XNOR. In this process, pseudo-random num-
bers are generated and used in the random selections.
For these networks, the standard deviations of the mini-
mum sequence lengths and run time are also shown in
Tables 4 and 5. It can be seen that the SBN approach
requires a significantly shorter runtime than the analyt-
ical approach, especially in the evaluation of large net-

[23] for several networks with more than 10 genes. The
results are shown in Table 6.

As revealed in the tables, while an analytical approach
is fast in computing the state transition matrices of small
networks, it becomes cumbersome to use for larger net-
works. This is because an analytical approach is limited
by the number of BNs (N), which generally increases ex-
ponentially with the number of genes in a PBN. In an
SBN, however, all the state transition probabilities for
each input state are encoded in the output sequences, so

works. Next, the efficiency of the SBN technique is the computation of the state transition matrix is very

Table 5 Minimum sequence length and run time required in the computation of state transition matrices for a given
accuracy, measured by Norm 2

n N SBN (Norm 2=0.04) SBN (Norm 2=0.02) Method [22]
Sequence Std. Avg. time Std. Sequence Std. Avg. time Std. Avg. time Std.
length deviation (s) deviation length deviation (s) deviation (s) deviation
2 6 180 45 0.008052 0.005219 340 55 0.017285 0.010683 0.050477 0.010140
3 8 460 114 0.020473 0.011034 920 130 0.027358 0.010944 0.026389 0.014326
4 16 660 152 0.032089 0.023041 1220 148 0.055602 0.022138 0.053726 0.021034
5 32 880 130 0.071256 0.020862 1620 130 0.16279%4 0.047719 0.161462 0.039981
6 64 1320 228 0235628 0.038845 2460 288 0443522 0.056302 0.613840 0.047252
7 128 1480 130 0.574352 0.062129 4240 261 1.540875 0.071316 2663523 0.180211
8 256 2420 319 2124709 0228612 5620 319 4411751 0413352 11.90834 1412206
9 512 3220 650 7.248265 2301722 6940 498 14.36077 3.253704 61.45203 6.881528
10 1024 4140 882 18.09032 4.112405 9400 1140 4141356 5289815 2613189 1229343
112048 4860 606 4737403 5.822926 11800 837 120.3839 6.107372 9753821 33.25207
12 4096 5820 782 1328137 10.90686 14600 1342 373.7601 13.64551 4022.140 7842531

(perturbation probability =0.01, n: the number of genes, and N: the number of BNs). The results are obtained from five randomly generated networks, so the
standard deviations of the minimum sequence length and run time are also shown.



Liang and Han BMC Systems Biology 2012, 6:113
http://www.biomedcentral.com/1752-0509/6/113

Page 12 of 20

Table 6 Run time and errors in the computation of state transition matrices for SBN and the approximate method

in [23]
n N SBN (s) Method Error), (SBN) Error |, [23]
(Lengtl? = 10000 [23] (s) Error) |, Error| |, Error) Error), Error, Error|
its) (lower
bound =10

11 2048 92367577 183.617225 0.2031 0.0268 0.1209 0.2416 0.0463 0.0221
12 4096 221.849183 1125.969347 0.3448 0.0301 0.1540 0.6387 0.0929 0.0386
13 8192 489.265478 4395.954714 04581 0.0552 0.2249 1.6583 0.1414 0.0874
14 16384 1063.892415 9415812415 1.0152 0.0825 04287 2.1642 0.2283 0.1895

(no perturbation, n: the number of genes, and N: the number of BNs).

efficient. Although a longer stochastic sequence length is
required to meet a higher accuracy, the proposed SBN ap-
proach still outperforms an analytical approach for net-
works with a large number of genes and BNs, because its
efficiency is not directly limited by the number of BNs.
The state transition matrix computed using an SBN
can be used to obtain the steady state distribution of a
network. However, the size of the network that can be
evaluated is restricted due to the exponential increase of
the size of the matrix. As an alternative and efficient ap-
proach, the time-frame expansion technique can be used
to evaluate much larger networks under perturbation.
Recently, several BN models have been developed for
GRNs with tens of genes [13,37,38]. Although the para-
meters for use in a PBN have not been obtained, the
time frame expansion technique is well suited for simu-
lating a network of such size, once the necessary para-
meters become available. In Table 7, the average runtime
for simulating networks of 20 and 30 genes is shown for
various accuracy requirements and perturbation rates.
Since the runtime for reaching the steady state is
dependent on the initial probabilities (as applicable in
the general Markov chain theory), five independent
experiments with randomly-selected initial probabilities
are performed to obtain an average result. However, it
should be noted that the run time of the time-frame
expanded SBN technique is also dependent on the
threshold value and perturbation rate. In Table 7,

therefore, the average number of periods and run time
for convergence, as well as their standard deviations, are
shown for several threshold values and perturbation
rates. It can be seen, for example, that a 20-gene net-
work with a perturbation rate of 0.01 can be evaluated
in approximately 2.6 seconds using the time-frame
expanded SBN technique for a threshold value of 0.01
(Norm infinity). These results indicate that the time-
frame expanded SBN technique is potentially useful in
the analysis of large GRNS.

Experiments on a T-cell time series dataset

A network inferred from a time series gene expression
dataset [43] is further modelled using SBNs. The dataset
was taken from an IL-2-stimulated immune response ex-
periment using a murine T cell line called CTLL-2. Cells
were collected at 12 different time points before IL-2
stimulation (0 h) and after IL-2 stimulation (15, 30 mins,
1, 2, 4, 6, 8, 10, 12, 16 and 24 h). The dataset was then
normalized to the same expression level and clustered
based on the similarities in the regulatory behaviour of
the genes. This produced simplified networks of gene
groups, referred to as meta-genes, instead of actual
genes. This result has significantly reduced the complex-
ity of the analysis and interpretation of the inferred net-
works. Finally, the dataset was discretized for the
implementation of a Boolean network inference algo-
rithm [43]. This algorithm is discussed in detail next.

Table 7 Run time of the time frame expansion technique for randomly-generated networks

Number Sequence Threshold Perturbation SBN (results from five experiments with different initial values)
of genes I?Qi%:;‘ (‘l,\lac!l:ri rate Average number Standard deviation Run time (s) Standard deviation
S of periods for of the number of of the run time (s)
infinity) .
convergence periods
20 100,000 0.001 0.0001 1648 2783 1477.8 125.1
100,000 0.001 0.001 202 213 182.65 18.62
10,000 0.01 0.01 20 49 2.5878 0.5663
30 1,000,000 0.01 0.0001 1128 1732 15536 3121
1,000,000 0.1 0.001 66 26.2 904.04 395.6
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Figure 9 A T cell immune response network inferred from a time series gene expression dataset (adapted from [43]). Solid arrows
indicate relationships occurring in all of the 901 networks, while the numbers associated with the dashed arrows indicate the fraction of networks
having that relationship. The green lines represent activation relationships and the red lines represent inhibition relationships.

1. Inference of Boolean dynamics of the GRN

PBNs have been inferred from steady-state data using
the coefficient of determination [15] and from time
series data to estimate the perturbation probabilities and
switching probabilities between the constituent BNs
[44]. Large amounts of data are usually required by these
methods due to their computational complexity. In [43],
the Boolean inference is based on the activation and in-
hibition functions of a target gene and its control genes.
This is similar to the qualitative inference method used
in [45], but it considers all possible networks rather than
a single most likely one. While the number of possible
inputs to a Boolean function is limited in this method,
the restriction on the amount of data required to perform
an inference is released. The number of possible networks
is then counted and all networks are enumerated.

For the T-cell time series dataset, a total of 161,558
networks were discovered by the inference algorithm
[43]. The inference algorithm further explores the dy-
namics of the inferred networks. This is based on the

fact that finite BNs are expected to exhibit a cyclic pat-
tern of expression [7]. During this step, the steady states
or attractors are computed to validate the inferred net-
works. It was found that 160,657 (99.4%) of these net-
works did not exhibit the fluctuations expected in the
steady-state dynamics of the IL-2 stimulated T cell net-
work [43]. Therefore, these networks were discarded and
901 (0.6%) of the networks that produced biologically
meaningful attractors were left for further analysis. The
901 networks were based on twelve meta-genes and
yielded a consensus network as shown in Figure 9. The
steady-state dynamics in the 901 networks consist of
three time points (shown in Table 3 of [43]). It has also
been shown that the computational complexity of this
inference algorithm increases exponentially with the
maximum number of inputs to a node [43]. However,
the maximum input number is limited by the size of a
network with a power law [46], so this number is
expected to be smaller than 5 for a network with less
than 100 nodes.

Table 8 Code of the 12 genes in the T cell immune response network

Gene  E-Jun-Fos L-Nsbp1l L-Foxm1 [-Blc3 [|-Myc

L-Myb12

E-Cdkn2c E-Stat1-6 I-Rpol-hnr E-stat5a E-statsb L-Mcmd

Symbol g(1) 92 903 S[CONNS (O 96)

g g8 g g(10) g(1m) g(12)
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The resulting network is not unique in that the occur-
rence of different Boolean functions results in different
BNs. In Figure 9, the activation and inhibition relation-
ships that occur in all 901 networks are indicated by
solid arrows, while the relationships that occur in a
fraction of the networks are indicated by dashed
arrows. The value associated with a dashed arrow indi-
cates the fraction of networks having that relationship.
To infer a PBN, this fractional occurrence of a function
is considered probabilistic and its associated value is
taken as the occurrence probability of a Boolean func-
tion in the network. These probabilities are then uti-
lized to obtain the switching probabilities between the
constituent BNs in the PBN. Since a solid arrow indi-
cates a relationship that exists in all 901 networks in
Figure 9, this function is considered to occur with a
probability of 1. The inferred PBN is shown in the truth
tables (see Additional file 4: Truth table of the PBN in-
ferred from the T cell microarray time series data), for
which the Boolean functions are assumed to occur in-
dependently in a BN.

2. Modeling the network with SBN

To build an SBN for the inferred network of Figure 9, each
of the 12 genes is assigned a number, as shown in Table 8.
For these 12 genes, there are 2'* or 4096 states, each of
which is indexed by the state of each gene as follows:

k=37 (i) 27 41, (10)

where i is the gene index and g(i) is the state of gene i
(ie., 1 or 0).

Since solid arrows in Figure 9 indicate regulatory
interactions found in all 901 networks, they are consid-
ered to have a priority over other interactions, i.e., any
other relationships are overruled by a solid-line inter-
action if they occur simultaneously. For the dashed
arrows, the priority is determined according to the
observations in the experiments. Take ‘E-stat5b’ for ex-
ample; the solid arrow indicates that L-Myb12 inhibits
E-stat5b in all the networks, so the activation of
L-Mybl2 overrules any other function applied on
E-statbb. When the state of E-stat5b is only affected by
the dashed arrows, the activation by E-Cdkn2c is consid-
ered to take precedence over the inhibitions by I-Blc3
and I-Myc, as the upregulation of E-stattb has been
observed in the experiments.

An SBN is constructed for the genetic network of
Figure 9, as shown in Figure 10. The construction is
based on the following principles:

(1) An inhibited signal is considered logical “low” while
an activated signal is considered logical “high.”
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Table 9 Attractors found by the SBN approach, compared
to the experimental results in [43]

Number of States with highest Attractors found
cycles probabilities in [43]
28 1224 Attractor 1
71 Attractor 3
1768 Attractor 2
29 1768 Attractor 2
1224 Attractor 1
71 Attractor 3
30 71 Attractor 3
1768 Attractor 2
1224 Attractor 1

Therefore, an inverter or a buffer is applied to
represent an inhibition or an activation relationship
between genes. For example, L-Myb12 inhibits
E-Jun-Fos, so an inverter is used to simulate this
relationship between g(6) and g, ;(1). For the
activation of L-Foxm1 by L-Nsbpl, a buffer is
applied between g,(2) and g, ;(3).

(2) An OR gate is applied to model multiple activations
while a NOR (inverted OR) gate is applied to model
multiple inhibitions on the same gene. For example,
L-Myb12 can be activated by any one of E-Jun-Fos,
I-Rpol-Hnr, E-stat5b and L-Mcmd, so in Figure 10,
2/1), g/09), g:(11) and g,(12) are used as the four
inputs to an OR gate. However, due to the
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inhibition of L-Myb12 by E-stat5a, an inverter is
applied and its output is ANDed with the output of
the 4-input OR gate to produce the output of g, ;(6).
The use of the AND is dictated by the priority rule of
the inhibition over the activation of

L-Myb12, as explained as follows.

(3) When an inhibition and activation occur on the
same gene, the logic gate is determined by the
priority of the two functions: an AND gate is
applied if the inhibition has a higher priority,
whereas an OR gate is used if the activation has a
higher priority. For instance, an AND gate is used
to model the relationship between the activation
and inhibition of L-Myb12 in the example of (2), as
shown in Figure 10.

(4) A solid arrow indicates a relationship that exists in
all 901 networks and therefore is considered to
occur with a probability of 1. The corresponding
function then exists in every Boolean function that
produces an input to a MUX. For example, E-stat5a
inhibits L-Myb12 in all the networks, so inverters
are present in both of the two Boolean functions
that lead to g, ;(6).

3. Steady-state evaluation

For this SBN, the state transition matrix Ay is of the size
4096 x 4096 and computed in about 70s. See Additional
file 5: The Matlab program that describes the structure
of the SBN in Figure 10 and computes its state transition
matrix (for both without and with perturbation).
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Figure 11 State distributions of the SBN in Figure 10 after 28, 29 and 30 clock cycles obtained using the time-frame expansion
technique. Our simulation shows that the output distribution starts to oscillate after 20 clock cycles.
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Given an initial input, Ip = [0, 0... 0, 1, 0... 0], as indi-
cated by the vector at 7= 1 h in Table 3 of [43] that cor-
responds to the state 1730 (by (10)), the output response
after ¢ clock cycles can be computed by:

Output(t) = IyA% (11)

A clock cycle here corresponds to the time interval be-
tween two discrete time points as a period of biological
response. It has been shown that the network exhibits a
steady-state dynamics consisting of three time points
[43]. Although these steady states, or attractors, can be
computed using a BN-based method (e.g. [47]), (11) is
used here to estimate the attractors as a means to valid-
ate the constructed T-cell SBN. In this evaluation, a
periodic behaviour of state transitions has been observed
after 20 clock cycles.

As shown in Table 9, the obtained stationary states
with the highest probabilities perfectly match the three
attractors found at the time points ¢1, t2 and ¢3 in [43],
referred to as Attractors 1, 2 and 3 at states 1224, 1768
and 711.

Alternatively, and more efficiently, the aforementioned
time-frame expansion technique can be used to estimate
the attractors with a greatly reduced complexity. The
results are shown in Figure 11 for the same SBN simula-
tion of 28, 29 and 30 cycles and the largest runtime is
only 0.22s, compared to more than 70s by using the
matrix-based analysis. It can be seen that the steady
states in Figure 11 match the attractors in Table 9. This
shows the effectiveness and efficiency of the time-frame
expansion technique.
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4. Perturbation and prediction

When the genes in a network are perturbed with a small
probability, an SBN with perturbation can be con-
structed (as in Figure 3) for analyzing the stability of the
network under perturbation. Since biological networks
are usually robust and stable, the same attractors are
often expected to be among the steady states with the
highest probabilities for the same network by a small
perturbation. Assume that each gene is independently
perturbed by a probability 0.01, Figure 12(a) shows the
steady state distribution of the SBN with perturbation
for the network in Figure 9.

It can be seen that the steady states in Figure 12(a)
with the highest probabilities 0.1901, 0.1804 and 0.1750
match the known Attractors 1, 2 and 3 (or, states 1224,
1768 and 711). What is interesting, however, is that
pseudo-attractors exist in a perturbed network. Pseudo-
attractors are the steady states with relatively large prob-
abilities due to random gene perturbation, but they are
not the attractors in a network without perturbation.
The pseudo-attractors with a steady state probability
equal or larger than 0.01 are listed in Table 10. It can be
seen that most of these pseudo-attractors differ from the
closest known attractor by only one gene. In particular,
the most prominent pseudo-attractor, located at state
1736 with a probability larger than 0.1, differs from At-
tractor 2 or state 1768 by the expression of L-Myb12. L-
Myb12 is a late response gene and plays an important
role in the regulation of the T-cell network, so this result
confirms the sensitivity of L-Myb12 in the regulatory be-
haviour. Since biological experiments are not straightfor-
ward or easy to be implemented for investigating the
T-cell network under perturbation, such study may
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Table 10 Pseudo-attractors with a steady state
probability no smaller than 0.01, as found in the SBN
with perturbation

State Probability Closest attractor Difference
Number
1736 0.1099 Attractor 2 g(6) (L-Myb12)
967 0.0203 Attractor 3 g9 (-Rpol-hnr)
199 00164 Attractor 3 g(10) (E-stat5a)
3816 0.0147 Attractor 2 g(12) (L-Mcmd)
3866 0.0135 Different from all the attractors by more
than 3 genes
743 0.0120 Attractor 3 g(6) (L-Myb12)
1352 0.0101 Attractor 1 g(8) (E-Stat1-6)
9(9) (I-Rpol-hnr)
1256 0.0100 Attractor 1 g(6) (L-Myb12)

(perturbation probability =0.01; state 1224 with probability 0.1901, state 1768
with probability 0.1804 and state 711 with probability 0.1750).

provide insights into the understanding of potential
physiological implications in a perturbed network. In a
long run, this may be helpful in the development of gen-
etic therapeutic methodologies.

Application of the time-frame expansion technique
yields similar predictions for the network under perturb-
ation. For a perturbation rate of 0.01 and a threshold
value of 0.01 for Norm infinity, it only takes 3.7 seconds
to obtain the steady state distribution using a sequence
length of 10,000 bits, in contrast to 212.1 seconds using
the matrix-based SBN method and 2532.9 seconds using
the analytical method in [22]. The simulation results are
shown in Figure 12(b) for the initial state 1730 (as con-
sidered in [43]), which agree with those in Figure 12(a).
As the speed of convergence of the time frame expan-
sion technique is dependent on the initial state of the
network, several different initial states have been ran-
domly selected and all of them have resulted in a
runtime less than 100 seconds. Therefore, the time-
frame expansion technique provides a highly efficient
tool for analysing the dynamics of a network with
(and without) perturbation. See Additional file 6: The
Matlab program that evaluates the steady state dis-
tribution using the time frame expansion technique
for the T-cell genetic network with a perturbation
rate of 0.01.

The proposed SBN technique is more efficient than a
random sampling approach, due to the use of non-
Bernoulli sequences of random permutations of fixed
numbers of 1’s and 0’s in the representation of initial
probabilities [41]. In Figure S3 of the Additional file 1, it
is shown that smaller variations generally result in the
state transition matrices computed using the SBN
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technique compared to those obtained using the Monte
Carlo (MC) method. The time-frame expansion tech-
nique is also more efficient compared to the Markov
Chain Monte Carlo (MCMC) method. In Table S1 of the
Additional file 1, it is shown that the time-frame
expanded SBN technique converges faster to a steady
state than the MCMC method, because it requires a
fewer number of clock cycles or time frames to converge
and generates less pseudo-random numbers at each time
frame. These indicate that the proposed SBN approach
is more accurate and more efficient than a simple ran-
dom sampling approach (such as the MC simulation) in
the computation of state transition matrices and the
evaluation of steady state distributions.

Relationship to other GRN models

1. Continuous models

Continuous models based on linear or ordinary differen-

tial equations can potentially be implemented using

SBNSs, provided that the underlying principles of the dif-

ferential equations can be formulated in state transition

matrices. In this case, a network of n genes is modelled

by:

g

dt &1

dgz

@ | =T|% ] (12)
dgn gn

L dt -

where g;, (i=1, 2, ... n), indicates the level of a gene and
T is a matrix of n rows and # columns. The entries in T
are determined by factors such as the reaction rate con-
stants. If the gene level can be expressed as the occur-
rence rate of a gene, denoted by p;, (i=1, 2, ... n),
which, for example, can be obtained by the ratio between
the number of a particular type of genes and the total
number of genes, then (12) can be expressed as:

_@_
dt )41
dp,
= b2
e | =T\, (13)
dpn p”
L dt -

In an SBN, the next state of genes, X;,, is determined by

the current state, X, and the state transition matrix, 4, i.e.,
Xt+1 = AXn (14)

where A is a 2" x 2" matrix, as given by (2). Then a new
transition matrix of # rows and # columns, denoted by G,
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can be obtained by summarizing the entries in the rows

and columns of A4, such that
Py = GPy, (15)

where Py, and P, indicate the gene levels at two consecu-
tive time steps. Further assume that

AP:Pt+1 _Pt' (16)
In the limit, we obtain:

dP P, —P, G-I

dt dt dr Y (17)
where I is the identity matrix. Finally, (13) and (17) lead
to

G-I=T-dt, (18)

which describes the relationship between the transition
matrices in a continuous model and an SBN.

Page 18 of 20

2. Single-molecule level models
In a single-molecule level model, significant stochastic
effects of biochemical reactions are accounted for each
molecular species. The stochastic simulation algorithm
(SSA) tracks the number of molecular species in a bio-
chemical system, so it accurately simulates the discrete,
random biochemical reactions specified by the chemical
master equation (CME) [9,10]. Essentially, the SSA fol-
lows a discrete Markov process, in which two values are
generated from two independent random variables at
each time step. The first value predicts when the next
reaction will occur and the second decides which reac-
tion will occur. In order to characterize the evolution of
the system, repeated trials are required to perform,
which leads to a significant run time for simulating a
large network.

Due to the same underlying Markov models in the
SSA and PBNs, the SSA can, in principle, be implemen-
ted using SBNs. However, this implementation is not

rimental

With
perturbation

ate stead
stributic

Figure 13 A flowchart for the application of the SBN approach in GRN analysis.
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straightforward as the SSA simulates the function of the
CME while the SBN implements the state transitions of
Boolean functions. A challenge is therefore to formulate
the underlying principles of the CME in the form of
state transition matrices. Nevertheless, it is possible for
the SSA and SBN to be used in a hybrid method. In this
method, a logical model is first used to simulate a large
network and to identify the sensitive nodes in the net-
work. Then, a single-molecule level model such as the
SSA can be used to find out more details of the identified
sensitive genes. In this way, this hybrid method leverages
the efficiency of a logical model and the accuracy of a
single-molecule level model, so it may provide an effective
means to model large gene regulatory networks.

Application on GRN analysis

In summary, for a GRN inferred from microarray time
series data, an SBN can be constructed to analyze the
dynamics of the network with or without gene perturb-
ation. This provides the biologists an efficient tool to
evaluate the steady state distribution of a genetic network.
A general procedure for applying the proposed SBN ap-
proach in a GRN analysis is given in the flowchart of
Figure 13. Matlab packages for applications using SBNS, in-
cluding both for the matrix-based analysis and the time-
frame expansion technique, are provided as Additional files.

Conclusions

This paper proposes a novel structure of stochastic Bool-
ean networks (SBNs) for an accurate and efficient imple-
mentation of probabilistic Boolean networks (PBNs).
The application of an SBN is demonstrated through the
computation of the state transition matrix and the
steady-state analysis of a PBN. The state transition
matrix can be accurately and efficiently computed in an
SBN with a complexity of O(nL2"), where 7 is the num-
ber of genes in a PBN and L is a factor determined by
the stochastic sequence length. Since the required mini-
mum sequence length for a given evaluation accuracy
usually increases slower with # than the number of
Boolean networks, ie., N, L is typically smaller than N,
especially in a network with a large number of genes.
This result is an improvement compared to the previous
results of O(nN2%") and O(nN2"). The steady state distri-
bution can be estimated using the obtained state transi-
tion matrix or a time-frame expansion technique. The
latter approach has shown a significant speedup in the
computation of the steady state distribution.

SBNs have been constructed for the p53-Mdm2 net-
work and an inferred T cell immune response network.
Simulations of the SBNs have recovered state dynamics
that have been experimentally demonstrated for these
two networks. The proposed approach is able to discover
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network dynamics when the genes are under perturb-
ation, which is a difficult task to implement in experi-
ments or by other modeling approaches due to its
complexity. So in this case, the SBN technique can be
used to provide biologically meaningful insights for a
first understanding of the dynamics of a GRN. The rela-
tionship between an SBN and continuous/stochastic
models has also been discussed and a hybrid approach may
be useful in a more efficient modelling of a large GRN.
Finally, the SBN approach is able to account for signalling
pathway information [48], so it may provide an effective
solution to the modeling of complex genetic networks.

Additional files

Additional file 1: Stochastic Logic using Non-Bernoulli Sequences.

Additional file 2: mux2.m. ‘mux2.m’ is a Matlab program, which
implements the function of a two-input stochastic multiplexer
(MUX, with one control input) for an SBN.

Additional file 3: mux4.m. ‘mux4.m’ is a Matlab program, which
implements the function of a four-input stochastic multiplexer
(MUX, with two control inputs) for an SBN.

Additional file 4: Truth Table of the PBN Inferred from the T Cell
Microarray Time Series Data.

Additional file 5: T_cell_SBN.m. ‘T_cell_SBN.m' is a Matlab program,
which describes the structure of an SBN for the T-cell genetic
network and computes its state transition matrix for both without
and with perturbation. The programs ‘mux2.m’ and ‘mux4.m’ are
needed to run T_cell_SBN.m.

Additional file 6: time_frame_expansion.m. ‘time_frame_expansion.m’
is a Matlab program, which evaluates the steady state distribution
using the time frame expansion technique for the T-cell genetic
network. The programs ‘mux2.m’ and ‘mux4.m’ are needed to run
‘time_frame_expansion.m.’
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