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Abstract

Background: Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study
transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network
analysis based on small-sample inference of graphical Gaussian model (GGM).

Results: Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes
that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch
metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF). A starch-clock-TF gene regulation
network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that

are potentially related to the diurnal control of starch metabolism. From this network, we found that 3-amylase

3 (b-amy3: At4g17090), which participates in starch degradation in chloroplast, is the most frequently connected
gene (a hub gene). The robustness of gene-to-gene regulatory network was further analyzed by TF binding site
prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs,
indeterminate domain 5 (AtIDD5: At2g02070) and constans-like (COL: At2g21320), were identified as positive
regulators of starch synthase 4 (554: At4g18240). The inference model of AtIDD5-dependent positive regulation of
5S4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants
during the light period of both short and long day conditions. COL was also shown to positively control $54 mRNA
accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained
starch granules. This deformity also affected the number of starch granules per chloroplast, which increased
significantly in both knockout mutant lines.

Conclusions: In this study, we utilized a systematic approach of microarray analysis to discover the transcriptional
regulatory network of starch metabolism in Arabidopsis leaves. With this inference method, the starch regulatory
network of Arabidopsis was found to be strongly associated with clock genes and TFs, of which AtIDD5 and COL
were evidenced to control S54 gene expression and starch granule formation in chloroplasts.
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Background

Starch is an insoluble glucose polymer stored in seeds
and storage organs of plants. The starch molecule is
composed of two types of glucose polymers—amylose
and amylopectin—and is organized to form a distinct
structure called a starch granule. It is commonly
accepted that biosynthesis of starch takes place during
the day using an excess sugar residue from photosyn-
thesis as a substrate. At night, starch granules in leaves
are decomposed to sugars to be transported to seeds or
storage organs and stored as reserved carbohydrates or
used as precursors in other metabolic pathways [1-3].
Besides starch synthase, various enzymes and proteins
have been identified to play unexpected roles in starch
biosynthesis, metabolism and granule formation [4-11].

With regard to regulation of starch biosynthesis and me-
tabolism, post-translational protein modifications have
major impacts on controlling the enzyme activities [12-14].
Allosteric regulation of ADP-glucose pyrophosphorylase
(AGPase) [15-17] and redox modulation of pullulanase-
type debranching enzymes [18,19], glucan-water-dikinase
(GWD) [20] and B-amylase [21] indicate the significance of
post-translational regulatory mechanisms. Protein phos-
phorylation and formation of multi-protein complexes of
starch synthase (SS), branching enzyme (BE), debranching
enzyme (DBE), and starch phosphorylase (SP) suggest tight
linkages of metabolic pathways through modification and
physical interactions of the enzymes (reviewed in [12]). In
addition to post-translational mechanisms, genes encoding
starch metabolic enzymes are also known to be regulated
under transcriptional control. In barley, a sugar-inducible
transcription factor (TF) in the WRKY family, SUSIBA 2, is
reported to act as an activator in endosperm starch biosyn-
thesis [22]. In rice, a complex of a MYC protein (OsBP-5)
and an EREBP protein (OsEBP-89) is proposed to be a
transcriptional regulator of the rice Wx gene, whose prod-
uct, namely the granule-bound starch synthase (GBSS), is
responsible for synthesis of amylose in mature seeds [23].
Additional finding in Arabidopsis indicates that expression
of the GBSS-I gene is controlled by 2 main clock TFs, cir-
cadian clock associated 1 (CCA1l: At2g46830) and late
elongated hypocotyl (LHY: At1g01060) [24]. The roles of
these TFs suggest the significance of transcriptional
mechanisms, although gene regulatory networks of starch
metabolism remain largely uncharacterized.

Inference methods for construction of gene regulatory
networks have been extensively developed after genome-
wide microarray repositories became publicly available
[25-31]. Reverse-engineering approaches of Arabidopsis
gene regulatory network reconstruction utilizing large-
scale microarray experiments have been previously pro-
posed and revealed the Arabidopsis regulatory network
models from different viewpoints [28-32]. Carrera and
colleagues [30] applied a qualitative network model based
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on a probabilistic model and linear regression to 1,436
Arabidopsis microarrays, and analyzed topological para-
meters of the network. Their result showed that genes
having cellular functions involved in responses and adap-
tation to environmental changes tended to have higher
connectivity than genes not related to stress responses.
Another approach of the gene network reconstruction
from large-scaled Arabidopsis microarrays is proposed by
Mao et al. [32]. They constructed a genome-wide co-ex-
pression network of Arabidopsis from 1,094 microarrays
based on Pearson correlation and analyzed modular
structures of the networks that are functionally related.
Significantly enriched pathway terms were then analyzed
for the predicted modules. One module was defined to
be enriched in starch metabolism; 9 out of 10 genes con-
tained in this module were related to starch metabolism.
Since the genes in the same module were predicted from
co-expression across various conditions, it is suggested
that these starch metabolic genes are potentially co-regu-
lated. The other method successfully utilized to construct
a regulatory network is gene expression analysis using a
modified graphical Gaussian model (GGM) [33,34]. The
modified GGM is considered appropriate for analysis of
microarray data that usually has a high-dimensionality
problem (i.e. the number of genes is much higher than
the number of measurements). This technique has been
applied to 2,045 Arabidopsis microarrays to construct a
gene network which can be subdivided to sub-network
structures [29]. A number of sub-networks identified
through this approach are suggested to be related to me-
tabolism and stress responses. One of them is considered
as a starch catabolism sub-network, where 7 out of 15
genes present in the network are apparently relevant to
starch degradation pathways [29].

Given these backgrounds, systematic analysis of micro-
array data appears to provide insights into gene regula-
tory networks of starch metabolism in Arabidopsis. In
this work, an inference model was constructed from a di-
urnal cycle microarray dataset to identify candidate tran-
scriptional regulators of plant starch metabolism. This
approach is based on evidence that biosynthesis and deg-
radation of leaf starch is completed within 24 hours
[3,35-37], and hypothesizes that regulators of our inter-
ests are co-expressed and oscillated with genes involved
in starch metabolic processes under a day-night cycle
[24,36-38]. Firstly, we identified genes whose expression
profiles changed over an observed 24-hr time period.
Among these temporally regulated ‘significant’ genes, a
set of starch metabolic genes, TFs, and clock genes was
utilized for the construction of gene association networks
using the small sample inference framework of GGM
[33,34]. Subsequently, a few pairs of TFs and starch
metabolic genes were selected based on their correlation
coefficients from global co-expression profiles. Finally,
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validation of the relationships between the selected TFs
and starch metabolic genes were carried out using TF
loss-of-function mutant lines. The results obtained from
this study have led us to identify the involvement of TFs,
indeterminate domain5 (AtIDD5: At2g02070) and
constans-like (COL: At2g21320), in transcriptional regu-
lation of an Arabidopsis starch metabolic gene. The work
presented here provides a model for systematic under-
standing of regulatory networks of starch metabolic path-
way applicable for modification of starch synthesis and
accumulation.

Results and Discussion

Initial screening of significant genes in a diurnal cycle

A time-series significant analysis was performed using
the Extraction of Differential Gene Expression (EDGE)
software package. This software can identify differentially
expressed genes from both typical and time-course
microarray experiments [39,40]. In this research, the soft-
ware was applied to detect changes in Arabidopsis gene
expression occurring within a 24 hour period [36]. This
data set is the time-course measurement of transcripts
extracted from fully-expanded leaves of Arabidopsis
grown under a 12-hour-light and 12-hour-dark (12 L/12D)
condition. The samples are taken after 1, 2, 4, 8 and 12
hours in darkness or light, starting from the end or
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beginning of the light period, respectively. The concept of
EDGE is based on the hypothesis testing of differential gene
expression patterns fitted by natural cubic spline
interpolation. Genes whose expression patterns deviate
from a standard line within a 24-hour period would be
detected as differentially expressed genes under a diurnal
cycle. From approximately 22,000 Arabidopsis genes on the
ATH-1 Affymetrix genome arrays, 1,480 genes were
detected as significant genes (Q <0.01). These significant
genes were clustered by k-means clustering, then function-
ally classified in MapMan, a visualization tool for functional
classification of Arabidopsis [41]. Genes encoding TFs and
those related to starch metabolism were used as inputs for
GGM network construction.

Co-expression analysis of 1,480 significant genes using
k-means clustering

Since the leaf starch content of Arabidopsis increases in
the light period and decreases in the dark period [36], we
hypothesized that the high expression levels of genes in
the starch biosynthetic pathway would be observed dur-
ing the day, while those in the degradation pathway
would occur at night. To test this hypothesis, the expres-
sion profile of all the significant genes were examined by
k-means clustering (k = 30). All clusters were subjectively
divided into 4 groups (Figure 1). Group A includes the
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Figure 1 Thirty clusters of 1,480 significant genes using k-means clustering (k=30). The number of gene members is shown at the top left
of each cluster. The clusters where starch genes are present are indicated by red boxes. Four groups of 30 clusters were categorized by their
expression patterns affected on light. (A) Tightly dark-positively and light-negatively regulated genes: the clusters of genes induced in the dark
and repressed in the light periods. (B) Tightly dark-negatively and light-positively regulated genes: the clusters of genes repressed in the dark and
induced in the light periods. (C) Light-positively regulated genes: the cluster of genes whose expressions are constant but the levels are elevated
at dark to light phase transition. (D) Light-negatively regulated genes: the cluster of genes whose expressions are constant but the levels decline
at dark to light phase transition. The black and white bar on the top of the figure corresponds to the dark and light period.
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genes whose mRNA levels are increased in the dark and
decreased in the light. In contrast, the group B members
showed their mRNAs increased in the light and
decreased in the dark. Group C consists of the gene
members whose expression remains relatively stable ex-
cept their mRNA levels were observed to increase at the
dark-to-light transition phase. Group D is similar to
group C but the expression goes down at the dark-to-
light transition phase. According to our hypothesis, the
starch biosynthetic genes are expected to be clustered in
group B and C since the gene expression increases when
the light period starts. On the other hand, the genes in
starch degradation whose expression are expected to in-
crease in the dark period should be the members of
group A and D.

According to Smith et al [36], there are 48 genes
related to starch metabolism. In the group of 1,480 sig-
nificant genes identified in this study, 21 out of 48 starch
metabolic genes were present, 9 of which are related to
starch synthesis and 12 of which are known to function
in starch degradation pathway (Table 1). By using k-
means clustering, these starch metabolic genes were clas-
sified into 11 different clusters (Figure 1). Most of the
starch synthesis genes (7 out of 9 genes) are observed in
the clusters of groups B and C. This result supports the
hypothesis that starch biosynthetic genes should be up-
regulated during the day time. The two starch biosyn-
thetic genes that do not follow this rule are those coding
for granule-bound starch synthase (GBSS: At1g32900)
and starch synthase 2 (SS2: At3g01180). The expressions
of both genes show distinct diurnal patterns distinguish-
able from other starch synthase genes [36]. Since their
products are reported to be embedded in the starch gran-
ules that are daily destroyed at the night period [36], their
high expression levels after the onset of the light are con-
sidered necessary to regenerate GBSS and SS2 proteins
for starch biosynthesis during the light period. In con-
trast, only 2 of 12 total genes encoding for enzymes in
starch degradation pathways, a-amylase 2 (a-AMY2:
Atlg76130) and B-amylase 9 (b-AMY9: At5g18670),
showed expression patterns correlated with the starch
content profile. One explanation is that starch degrading
enzymes might need a lag time in post-transcriptional or
translational processes to become catalytically functional.

Functional categories of 1,480 significant genes

The 1,480 significant genes were categorized according to
the functions defined in MapMan (Table 2). The largest
functional group containing 471 genes, which accounted
for ~32% of total significant genes, was classified as “Not
assigned”. Out of the 471 genes in this group, 276 genes
(~59%) were identified as unknown expressed proteins.
The second largest group was the “RNA” group. This
group contains 177 genes whose functions are related to
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Table 1 Twenty-one differentially expressed starch genes
(Q<0.01) under the diurnal condition

AGI Name Description Cluster Group
At1932900 GBSS Granule-bound starch 19 A
synthase
At1g76130 a-AMY2 a-amylase, putative 8 A
At3g01180 SS2 Starch synthase 2 8 A
At5g18670 b-AMY9 B-amylase, putative (BMY3) 19 A
At1g03310 ISA2/DBET  Isoamylase, putative 2 B
At1g10760 GWD1 Glucan water dikinase 10 B
At1g69830 a-AMY3 a-amylase, putative 6 B
At2g36390 SBE2-1/BE3  1,4-a-glucan branching 22 B
enzyme
At2g40840 DPE2 Glycoside hydrolase 23 B
family 77 protein
At3g29320  StP, Plast Glucan phosphorylase, 6 B
putative
At3g46970  Stp, Cyt Starch phosphorylase, 6 B
putative
At4g09020 1SO3 Isoamylase, putative 6 B
At4g18240 SS4 Starch synthase 4 22 B
At5g11720  AGLU a-glucosidase1(AGLU1) 20 B
like-4
At5g24300 SS1 Starch synthase 1 2 B
At5g26570 GWD/ Glycoside hydrolase 10 B
PWD starch-binding
domain-containing
protein
At5g51820 PGM Phosphoglucomutase 22 B
At5g64860 DPE1 disproportionating 10 B
enzyme, putative
At2g32290 b-AMY6 B-amylase, putative 13 @
At2g39930 ISAT Isoamylase, putative 16 C
At4g17090 b-AMY3 B-amylase (CT-BMY) 24 C

Cluster indicates the cluster number analyzed by k-means clustering (k=30).
All clusters were subjectively divided into 4 groups—A, B, C, and
D—according to the expression pattern in each cluster (Figure 1).

RNA processing, transcription process, and regulation of
transcription. As a result, 106 TF genes were assigned in
the RNA group. Among 24 significant genes in the “Major
carbohydrate metabolism” group (Table 2), 21 genes are
starch-related, while the other 3 are related to sucrose
metabolism. Additionally, our significant gene set also
includes both clock and clock-regulated genes such as
circadian clock associated 1 (CCAIL: At2g46830), late
elongated hypocotyl (LHY: Atlg01060), early-flowering 3
(ELF3: At2g25930), phytochrome B (PHYB: At2g18790),
timing of cab expression 1 (TOCI: At5g61380), and ca-
sein kinase II beta-chain (CKB3: At3g60250). These TF,
clock, and starch metabolic genes whose mRNA levels
are significantly modulated during a diurnal cycle were
used for reconstruction of transcriptional regulatory net-
work of starch metabolism.
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Table 2 Functional categories of 1,480 significant genes
defined by the MapMan tool

Functional category

Number Group
of genes A B

cC D
Photosynthesis 33 9 8 12 4
Major carbohydrate metabolism 24 6 15 3 0
Minor carbohydrate metabolism 17 6 3 4 4
Glycolysis 10 0 9 1 0
Fermentation 2 0 2 0 0
Gluconeogenesis/glyoxylate cycle 3 1 0 o0 2
Oxidative pentose phosphate pathway 4 0 30 1
TCA / organism Transformation 11 3 4 3 1
Mitochondrial electron 7 3 2 0 2
transport /ATP synthesis
Cell wall 19 6 6 2 5
Lipid metabolism 41 3 122 9 7
N-metabolism 2 1 0 0 1
Amino acid metabolism 38 4 13 5 6
S-assimilation 2 2 0 0 0
Metal handling 7 3 31 0
Secondary metabolism 32 21 5 5 1
Hormone metabolism 36 1M 13 8 4
Co-factor and vitamin metabolism 8 2 4 0 2
Tetrapyrrole synthesis 6 3 2 1 0
Stress 61 11 24 16 10
Redox regulation 26 9 11 3 3
Polyamine metabolism 6 4 T 1 0
Nucleotide metabolism 16 3 9 2 2
Biodegradation of xenobiotics 4 1 o 1 2
Cl-metabolism 6 1 4 0 1
Miscellaneous 73 200 30 14 9
RNA 177 5 57 37 28
DNA 29 5 17 5 2
Protein 157 41 64 17 35
Signalling 74 25 24 12 13
Cell 53 9 26 5 13
Development 37 9 12 10 6
Transport 81 40 19 15 7
Not assigned 471 159 148 67 97

Groups A, B, C, and D correspond to classifications in k-means clustering
analysis presented in Figure 1.

Gene regulation network of starch metabolism in
Arabidopsis leaves

To further investigate the transcriptional regulation of
starch metabolic pathway, only metabolic genes in starch
metabolism and all possible regulators (i.e. TF and clock
genes) were focused in this research. The 133 significant
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genes —composed of 21 starch metabolic genes, 106 TF
genes, and 6 clock genes— were subjected to GGM net-
work construction [33]. Since GGM generates a condi-
tional network depending on an input genes set,
different sets of input genes are influent to the resulted
network. Preservation of the TF-starch relationships in
the networks constructed from expanded gene sets indi-
cated the robustness of the network reconstructed by
the focused set of starch metabolic and regulator genes
(discussed in the following section).

The gene association network of starch metabolic path-
way was constructed using small sample inference of
GGM implemented in the R package ‘GeneNet’ [33]. The
transcript profiles of 133 significant genes were retrieved
from the original microarray data [36], and transformed
to log-base 2 scales before inferring the gene association
network. In the resulting network, a node represents a
gene and an interaction between 2 genes is called an
edge. Each edge indicates a correlated expression of any
2 genes after removing effects of other genes in a study
set. The hypothesis testing of non-zero partial correlation
and false discovery rate (FDR), multiple testing correc-
tion were employed to obtain significant correlation coef-
ficients (i.e. significant edges) in the final network. From
a total of 133 genes, the final network derived from
GGM analysis at Q<0.05 consisted of 117 nodes (or
genes), corresponding with 16 starch (7 synthesis and 9
degradation), 97 TF, and 4 clock genes, and 266 edges
(or, an association between 2 genes) (Figure 2). These
edges could be the associations between 1) regulator and
regulator genes (i.e. TF-TF, clock-TF, and clock-clock), 2)
regulator and target genes (i.e. TF-starch and clock-
starch), and 3) target and target genes (i.e. starch-starch).
There are 215, 42, and 9 edges for the first, second, and
third edge types, respectively.

Since 80% of the genes used in the network recon-
struction are TF genes, predominant interactions in the
final network represent those between TFs. To verify the
significance of these TF-TF interactions and the robust-
ness of the starch genes association network, especially
the TF-starch relationships shown in Figure 2, another
gene association network was reconstructed by expand-
ing a set of metabolic genes from only genes in starch
metabolism to genes in broader carbon-related metabo-
lisms. The same set of 106 TFs, 6 clock genes, and 171
metabolic genes selected from 11 carbon-related func-
tional groups categorized to be related to photosynthesis,
major carbohydrate metabolism, minor carbohydrate
metabolism, glycolysis, fermentation, gluconeogenesis/
glyoxylate cycle, oxidative pentose phosphate pathway,
TCA/organism transformation, mitochondrial electron
transport/ATP synthesis, cell wall, and lipid metabolism
by MapMan (Table 2) were utilized for network recon-
struction. It should be noted that all 21 starch genes
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HFR1/REP1/BHLH26

Figure 2 The gene association network of starch metabolism inferred from GGM (Q < 0.05). The network contains 117 nodes and 266
edges. A pink rectangle represents a TF gene; an orange diamond represents a clock gene; a green circle represent a starch gene; a black solid
line represents an association with positive correlation; and a blue broken line represents an association with negative correlation.

are present in the major carbohydrate metabolism cat-
egory, thus included in the metabolic gene set. The
gene association network of carbon-related metabolisms
is shown in Additional file 1: Figure S1. In this
expanded network, 151 out of 215 regulator- regulator
edges (70%) and 26 out of 42 TF-starch or clock-starch
relationships (62%) were identical with the starch net-
work shown in Figure 2. All 6 TF candidates and their
relationships to 5 starch genes that will be further ex-
perimentally validated (discussed in the following sec-
tion) exist in the expanded network. The result
indicates that most of the regulatory relationships of
the starch gene association network are robust and pre-
served even when expanding an input gene set to
carbon-related metabolic genes.

According to Figure 3A, the node degree of TF and
clock genes ranged from 1 to 14 connections. Among
the starch metabolic genes, PB-amylase 3 (b-AMY3:
At4g17090) was detected as the most-connected node
or a hub gene with 15 neighbors (Figure 3B). This re-
sult may indicate the importance of b-AMY3 in the

starch metabolism. The b-AMY3 represents a chloro-
plastic p-amylase [21,36,42] with a possible role in the
leaf starch degradation process [3,43-45]. In the b-
AMY3 sub-network (Figure 3B), there are 2 starch
metabolic genes, starch synthase 4 (S§4: At4gl8240)
and B-amylase 6 (b-AMY6: At2g32290), that showed
positive correlations with b-AMY3. There are reports
indicating that SS4 involves in the starch granule initi-
ation process [6,11], and b-AMY6 is repressed under
heat shock stress [46]. However, no functional correl-
ation among these 3 starch metabolic genes has ever
been reported.

In addition to gene-to-gene association with two starch
metabolic genes, b-AMY3 was also observed to have
positive correlation with various TF genes and a clock
gene, TOCI1. TOCI is an evening gene expressed during
the night period with a major role in circadian rhythm
[47-49]. From the k-means clustering, expression of b-
AMY3 increased slightly during the night period,
decreased at the dark-to-light transition phase, then
increased again a few hours later. Our findings are not
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Figure 3 B-amylase 3 is the most frequently connected gene (a hub gene). (a) The node degree distribution of starch and TF genes in the
gene association network. The gene with the highest degree of connection is 3-amylase 3 (b-AMY3: At4g17090) as indicated by a black arrow.

(b) Sub-network of the most-connected node (a hub gene), -amylase 3 at Q <0.05. A pink rectangle represents a TF gene; an orange diamond
represents a clock gene; a green circle represents a starch gene; a black solid line represents an association with positive correlation; and a blue

only in agreement with the results indicating regulation
of b-AMY3 expression under diurnal and circadian
rhythms [36,50,51], but they also suggest the circadian
control of b-AMY3 via TOCIL.

From the GGM network construction, we additionally
found that the sub-networks of two starch metabolic
genes encoding GBSS (At1g32900) and disproportionat-
ing enzyme (DPEl: At5g64860) and their TF neigh-
bours are entirely separated from the rest of the
network (Figure 2). These isolated modules indicate
specific correlation between starch metabolic genes and
their connected TFs. The LIM domain-containing pro-
tein (At2g39900) associated with DPEI in the network is
in fact WLIM2a, an actin-bundling protein that functions

in cytoskeleton organization [52]; its gene expression is
regulated by pickle (PKL), a member of CHD3
chromatin- remodelling protein involved in seed germin-
ation of Arabidopsis [53]. The other isolated module
represents the association between GBSS and two zinc
finger family proteins, constans-like (COL: At2g21320)
and constans-like 7 (COL7: Atlg73870). In rice, MYC
and EREBP are known to act synergistically in transcrip-
tional regulation of the rice Wx gene [23]. Since these
homologues were not included in the GBSS sub-network
of Arabidopsis, the results possibly suggest a difference
in the mechanisms controlling the biosynthesis of storage
starch (i.e. in rice endosperm) and transitory starch (i.e.
in Arabidopsis leaves).
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Sub-networks for transcriptional regulation of starch
metabolism
To identify candidate TFs that may play regulatory roles in
starch metabolism, we focused on the relationships be-
tween starch metabolic genes and their immediately con-
nected TFs. The starch sub-network excerpted accordingly
contained 49 nodes (16 starch, 1 clock, and 32 TF genes)
and 79 edges (Figure 4A). Details of the genes in the starch
sub-network are summarized in Additional file 2: Table S1.
Within the starch sub-network, we observed 5 types of
gene-to-gene interactions or edges; those were interactions
between starch metabolic genes (8 edges), between TF
genes (26 edges), between starch metabolic and TF genes
(42 edges), between clock and starch metabolic genes
(2 edges), and between clock and TF genes (1 edge).
The Arabidopsis gene networks were previously recon-
structed from global microarray conditions based on GGM
[29] and co-expression analysis [32]. Interestingly, the sub-
networks related to starch metabolism were extracted from
both studies, even though different algorithms were ap-
plied. The sub-networks derived from GGM [29] and co-
expression analysis [32] contain a total of 15 and 10 genes,
and from these gene set 10 and 9 were identified as starch
metabolic genes, respectively. There are 6 genes in starch
degradation, ie. disproportionating enzyme 1 and 2
(At5g64860 and At2g40840, respectively), glucan water
dikinase 1 (starch excessl - Atlgl0760), glucan phosphat-
ase (starch excess 4 - At3g52180), starch phosphorylase 2
(At3g46970), and a-amylase 3 (At1g69830), and one gene
in starch synthesis, branching enzymes 3 (At2g36390) that
both of these networks have in common. From total 15
starch metabolic genes identified in the sub-networks of
previous studies, 7 genes, which are starch synthase 4
(At4g18240), branching enzyme 3 (At2g36390), dispropor-
tionating enzyme 2 (At2g40840), phosphoglucan water
dikinase (At5g26570), isoamylase 2 (At1g03310), cytosolic
and plastidial starch phosphorylase (At3g46970 and
At3g29320, respectively), were also observed in our starch
sub-network (Additional file 2: Table S1). These results
suggest coherent expressions of starch metabolic genes,
especially those in the starch degradation process. It is
worth to note that the starch sub-networks derived from
those studies contain mainly metabolic genes, except
one clock-regulated gene encoding pseudo-response
regulator 3 (APRR3: At5g60100) which was identified in
the starch sub-network derived from the GGM analysis
[29]. However, this clock gene was not present in our
starch sub-network.

Prediction of TF binding sites in promoter sequences of
target genes

The 42 interactions between 12 starch and 32 TF genes
were further analyzed by searching for the presence/
absence of TF binding sites in the promoter region of
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starch metabolic genes (Table 3). The analysis con-
ducted for prediction of physical binding of TF to tar-
get genes is TF family-based, thus, it stands on the
assumption that different TFs of the same TF family
most likely attach to the same TF-binding site on the
promoter region of a target gene.

In the TF family-based comparative analysis, all pos-
sible plant TF binding sites in the 2-kb upstream region
of the 12 target genes (i.e. starch metabolic genes) were
first obtained using a web-based tool from AthaMap
database http://www.athamap.de/ [54-57]. The names of
known TFs and their relative binding locations pre-
dicted within the 2-kb upstream region of 12 starch
metabolic genes are summarized in Additional file 3:
Table S2. From the list of all possible TF binding sites,
physical binding was predicted between 10 TFs and 6
starch metabolic genes, shown as 11 starch-TF interac-
tions in the starch sub-network (Table 3). For easier
visualization, we included information on the presence
of putative TF-binding sites and re-drew the regulatory
model of genes in the starch sub-network (Figure 4B).
The results indicate that 10 TFs show only a positive
correlation with 6 starch metabolic genes and can be
classified into 7 families.

Predicted regulatory modules for a model validation

The robustness of the predicted regulatory network
model of starch metabolism was further verified using a
diverse set of “condition-independent” microarray data.
This analysis has been implemented to find how the ex-
pression patterns of any 2 genes under various condi-
tions correlate. The data representing the relationship of
Arabidopsis co-regulated genes was obtained from the
ATTED-II database http://atted.jp/ [58,59]. In ATTED-
11, the pair-wise correlation coefficients of 22,263 Arabi-
dopsis genes were calculated from 58 experiments of
GeneChip microarray (1,388 arrays in total) using
weighted Pearson correlation. The pair-wise correlation
coefficients of 12 starch metabolic genes with all Arabi-
dopsis TF genes (1,849 genes listed in this database) were
ranked from highest to lowest value (Table 3).

The pair-wise correlation coefficients between given
target genes and all TFs were observed as normally dis-
tributed in this condition-independent analysis. The TF
was thus considered significant when its correlation coef-
ficient with its target starch metabolic gene was higher
than the population mean with 97.5% confidence ana-
lysed by the single-sample t-test (one-tailed). From all
the TFs in the starch sub-network, 8 TF genes passed this
cut-off by being significantly and highly correlated with
their target gene expression, and they were preliminarily
chosen as candidates for experimental validation (dis-
cussed in the following section). However, among these 8
candidates, the expression patterns of 2 TF genes,
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(See figure on previous page.)

Figure 4 The starch sub-network of 16 starch genes and their first step neighbours (Q < 0.05). (a) The graphical display of the starch sub-
network. A pink rectangle represents a TF gene; an orange diamond represents a clock gene; a green circle represents a starch gene; a black solid
line represents an association with positive correlation; and a blue broken line represents an association with negative correlation. (b) The
metabolic display of the starch sub-network. A pink oval represents a TF gene; A red oval represents a TF gene predicted to have physical
binding sites in target genes according to the comparative TF family analysis; an orange diamond represents a clock gene; a green rectangle
represents a starch gene; a blue rectangle represents a metabolite; a black line represents an association with positive correlation; a red line
represents an association with negative correlation; and a blue line represents a reaction in starch metabolism.

constans-like 9 (COL9: At3g07650) and bHLH
(At1g05805), did not adhere to the simple assumption that
a TF should express at the same time, or earlier, than its
target gene. The diurnal expression patterns of both COL9
and bHLH indicated that their induction took place after
the expression of their potential target starch metabolic
genes (Additional file 4: Figure S2). Therefore, by excluding
these 2 TFs, the rest 6 candidate TF genes—A¢/DD5
(At2g02070), C2H2 (At3g50700), COL (At2g21320), COL7
(At1g73870), WLIM2a (At2g39900), and KH-CCCH
(At5g06770), each predicted as regulators for the expres-
sion of 8§84, a-glucosidase-like 4 (AGLU-like 4: At5g11720),
GBSS (co-regulated by COL and COL?), DPEI, and starch
synthase 1 (SS1: At5g24300), respectively (Table 4)—were
selected as final candidates and subsequently used in ex-
perimental validation. According to the TF family-based
prediction of binding sequences (Tables 3 and 4) of these
6 candidates, putative binding sites for zinc finger C2H2
type TFs were located in the promoter regions of their
target genes, SS4 and AGLU-like 4. Accordingly, the
gene-to-gene associations between At/DD5 and S$S4, and
between C2H2 and AGLU-like 4, gain strong support
from both the TF binding site prediction and the global
co-expression analysis.

Expression analysis of target genes predicted in the
regulatory modules
To experimentally verify the regulatory role of the 6 can-
didate TFs in the proposed TE-target model (Figure 4B;
Table 4), the accumulation of starch metabolic gene
transcripts was determined using homozygous knockout
lines. T-DNA or transposon inserted knockout lines—
Atidd5, c2h2, col, col7, wlim2a, and kh-ccch—were
obtained from The Arabidopsis Biological Resource
Centre (ABRC) [60] and The Nottingham Arabidopsis
Stock Centre (NASC) [61]. The homozygous mutant
plants were grown under the conditions described in
[36] (See method). Rosette leaves at 3.90 developmental
stage [62] were harvested 4 times within a 24- hour
period, and used as materials for RNA extraction. The
mRNA levels of TFs and target genes were quantified by
quantitative real-time reverse transcription polymerase
chain reaction (QRT-PCR) analysis.

AtIDDS, C2H2, COL7, and KH-CCCH mRNAs were
absent in Atidd5, c2h2, col7, and kh-ccch mutant lines,

respectively, whereas COL and WLIM2a mRNAs were
partially detected in col and wlim2a mutant lines, re-
spectively (data not shown). The mRNA accumulations
of target starch metabolic genes were then monitored in
these mutant lines to determine the effect of disruption
of TFs predicted to act as regulators. The results indi-
cated that a starch metabolic gene, SS4, showed a
decreased mRNA level in Atidd5 mutant (Figure 5A).
Significant down-regulation of SS4 was observed at the
end of the light period of both short and long days
(Figures 5A and 5B). It appears that AzIDDS plays an
important role in the regulation of SS4 gene expression.
By contrast, the mRNA levels of AGLU-like 4, GBSS,
DPE1, and SS1 genes were not different between the
wild type and mutant lines—c2h2, col & col7, wlim2a,
and kh-ccch, respectively—during the time course of
12 L/12D condition (Additional file 5: Figure S3).

In addition to the effect of direct TF-target relation-
ships, the regulatory network can be affected by the
associated modules particularly when the target genes
are in the same metabolic process. Based on this as-
sumption, the SS4 mRNA levels were determined in
other TF mutant lines. Similar to the results obtained
from the Atidd5 mutant, SS§4 was down-regulated in the
col mutant during the light period of both short and
long day conditions (Figure 5A and 5B). Alteration of
S84 expression may have resulted from (i) the negative
effect of disruption of COL on AtIDDS gene expres-
sion or (ii) the direct control of SS4 by COL. Since
the mRNA levels of AtIDDS in the wild type and the
col mutant were different only in the long day condi-
tion (Additional file 6: Figure S4), regulation of AtIDD5
expression by COL therefore remains inconclusive. Al-
though the exact underlying mechanism is unknown,
COL appears to be in part of the starch metabolic gene
regulatory network, and its relevance is further evidenced
by starch granule deformation (discussed in the following
section).

According to in silico prediction of the Arabidopsis
proteome, 176 proteins are classified in the C2H2 zinc
finger family [63]. AtIDDS belongs to this C2H2 gene
family and is further classified into the same sub-family
as the maize indeterminate 1 gene (ZmIDI), which is a
key regulator of flowering transition [63,64]. In Arabi-
dopsis, there are 16 homologues of AtIDD genes. Among



Table 3 The TF-starch relationships from the starch sub-network

Starch Metabolic Starch Metabolic  pCor / Interaction’ TF (AGI code) TF (Gene Name) TF Family AthaMap? Rank of TF-starch correlation in ATTED
Gene (AGI code) Gene (Gene Name)

2-kb Correlation Rank in all genes Ranks in all TFs Rank in specific
upstream (total =22,263 ) (total=1,849)  TF family/No. of
TFs in a family

At1g03310 ISA2/DBE1 -0.0756 / n At5g46710 zinc-binding PLATZ NA -0.05 11356 818 2/7
At1g03310 ISA2/DBE1 0.0674 / p At2g34720 CBF-B/NF-YA CCAAT-HAP2 NA 0.03 8424 557 6/10
At1g03310 ISA2/DBE1 0.0733/p At1g05805 bHLH bHLH N 0.165 4598 241 27/114
At1g32900 GBSS 00736/ p At1g73870 coL7 C2C2-CO-like NA 0.609 17 4 3/42
At1g32900 GBSS 0.0686 / p At2g21320 COoL C2C2-CO-like NA 0.608 18 5 4/42
At1g76130 a-AMY2 0.0665 / p At2g31070 TCP TCP N 0.174 3347 344 7/20
At1g76130 a-AMY2 00758/ p At1g02340 HFR1/BHLH26 bHLH N -0.019 11812 1052 56/114
At1g76130 a-AMY2 -0.1268 / n At5g65310 HB-5 HB N -0.372 21286 1809 87/89
At2g32290 b-AMY6 0.0763 / p At1g22070 TGA3 bzIP Y 0111 3654 225 4/69
At2g32290 b-AMY6 00676 / p At1g50420 SCL3 GRAS NA 0.07 4806 328 10/32
At2g32290 b-AMY6 -0.0707 / n At1g07520 scarecrow GRAS NA -0.125 18495 1527 30/32
At2g32290 b-AMY6 0.0818 / p At2g31070 TCP TCP N 0.204 2008 m 4/20
At2939930 ISA1 00917/ p At5g05090 myb GARP-G2-like Y 0.242 3728 181 6/39
At2g39930 ISA1 00763/ p At1g05805 bHLH bHLH Y 0.356 2106 81 9/114
At2g39930 ISA1 0.0783 / p At5g39860 bHLH bHLH Y 0.255 3490 164 22/114
At2g39930 ISA1 -00704 / n At1g51950 IAA18 AUX-IAA NA 0.056 8010 542 14/28
At3g46970 Stp,Cyt 0.0670 / p At1g05805 bHLH bHLH Y 0442 511 37 1/114
At4g17090 b-AMY3 0.0761 / p At2g35940 Homeo domain HB Y 0.233 2173 127 12/89
At4g17090 b-AMY3 00674/ p At1g19700 HB-ZIP HB Y 0.009 7815 644 41/89
At4g17090 b-AMY3 0.0916 / p At4g39780 AP2 domain AP2-EREBP Y -0.179 18803 1537 110/130
At4g17090 b-AMY3 00810/ p At3g58680 ethylene-responsive  MBF1 NA -0.009 8743 713 1/3
At4g17090 b-AMY3 01093/ p At1g76590 zinc-binding PLATZ NA 0015 7522 608 2/7
At4g17090 b-AMY3 -0.0871/n At1g77850 B3 ARF NA 0.026 7013 569 7/18
At4g17090 b-AMY3 0.0684 / p At5g48250 B-box C2C2-CO-like NA 0.285 1615 74 9/42
At4g17090 b-AMY3 00671/ p At3g07650 B-box C2C2-CO-like NA 0.264 1805 92 10/42
At4g17090 b-AMY3 0.1051/p At5g61380 TOCI C2C2-CO-like NA 0.181 2903 191 14/42
At4g17090 b-AMY3 -0.0941 / n At5g05090 myb GARP-G2 NA 0.015 7574 611 19/39
At4g17090 b-AMY3 -00774 / n At1g07520 scarecrow GRAS NA -0.139 16919 1385 30/32
At4g17090 b-AMY3 -00757 / n At4g39410 WRKY WRKY N 0.094 4649 365 16/63
At4g18240 SS4 0.0928 / p At2g02070 AtIDD5 C2H2 Y 0.542 158 9 1/122
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Table 3 The TF-starch relationships from the starch sub-network (Continued)

Atdq18240
Atdqg18240
Atdq18240
At5g11720
At5g11720
At5g11720
At5¢24300
At5924300
At5324300
At5g51820
At5g64860

S54

S54

S54
AGLU-like4
AGLU-like4
AGLU-like4
SS1

SS1

SS1

PGM

DPE1

-0.0671 /N
01016 / p
00720/ p
00687 / p
00837 /p
00910/ p
00961/ p
-0.0786 / n
00817/ p
-0.0829 / n
00663 / p

At3g21175
At5061380
At3g07650
At3g50700
At5g60850
At2918280
At5g06770
At3955770
At3g06160
At3g55770
At2g39900

GATTF_20_A
TOC1
B-box
C2H2
Dof
TULP2
KH-CCCH
LIM

B3

LIM
WLIM2a

ZIM
C2C2-CO-like
C2C2-CO-like
C2H2
C2C2-Dof
TLP

C3H

LIM

ABI3-VP1

LIM

LIM

NA

0.225
0.569
0514
0.295
0.135
0.213
0422
-0.079
0.241
-0.07
0.715

2276
124
201

2024

5244

3463

1194

13020
2965
1712
30

119

13
87
310
169
31
995
136
853

1716
3/42
5/42
5/122
6/32
3/11
3/172
7/13
4/45
6/13
1/13

Global-expression correlations extracted from ATTED database and the correlation ranks were shown in the table.

1. pCor is partial correlation of a gene pair under the diurnal condition predicted by GGM. p and n represent a positive and negative interactions, respectively.
2. Y =Physical binding of TFs to target genes was predicted by the comparative TF family analysis; N =No physical binding of TFs was predicted; NA =no TF binding site information in AthaMap.
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Table 4 Six candidate TF genes and their ranks based on the global-expression correlations
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Starch metabolic gene TF gene TF family Binding Site'  ATTED Correlation’  TFrank®  Family rank®
At4g18240 SS4 At2g02070 AtIDD5 C2H2 Y 0.542 9 17122
At5g11720 AGLU- like 4 At3g50700 Q2H2 C2H2 Y 0.295 87 5/122
At5g64860 DPE 1 At2g39900 WLIM2a LIM na. 0.715 1 1713
At1g32900 GBSS At1g73870 coL7 C2C2-CO-like n.a. 0.609 4 3/42
At1g32900 GBSS At2g21320 coL C2C2-CO-like n.a. 0.608 5 4/42
At5g24300 SS1 At5g06770 KH-CCCH C3H na. 0422 31 3/172

1.Y = potential binding site of a TF was found at the 2,000-base upstream region of target gene by the comparative TF family analysis; n.a. = information of a

binding site of that TF is not available in AthaMap http://www.athamap.de/.

2. Pearson correlation calculated from the 58 GeneChip experiments including 1,388 arrays using the weighted Pearson correlation in ATTED database http://

atted.jp/.

3. Rank of TF based on the ATTED correlation of 1,849 TF genes in the database.

4. Rank of TF based on the ATTED correlation of TF genes in each specific TF family. The numerator indicates the rank and the denominator indicates the number

of genes in a specific TF family.

them, the biological functions of magpie (MGP/AtIDD3;
At1g03840), nutcracker (NUC/AtIDDS8; At5g44160), and
jackdaw (JKD/AtIDDI10; At5g03150) genes have been
characterized [65,66]. To date, there are only three
AtIDD genes—NUC/AtIDDS, AtIDDI14 (Atlg68130),
and shoot graviropism 5 (SGR5/AtIDD15; At2g01940)—

(@)
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0 4 8 12 16 20 24
Time (hr)

Figure 5 S54 gene expression in the wild type, Atidd5 and col
mutants. The relative transcript level of S$54 mMRNA was measured in
Arabidopsis grown under (a) short (12 L/12D) and (b) long day

(16 L/8D) conditions. Ubiquitin 2 (UBQ2) was used as a constitutive
control for normalization.

that have been reported to play roles, though indirectly,
in sugar and starch metabolism [67-69]. Based on
phylogenetic analysis, the AtIDD genes most closely
related to A¢tIDDS are AtIDD4 (At2g02080) and AtIDD6
(At1gl4580). AtIDD4 is reported as a TF whose expres-
sion is affected by defects in chloroplast import ma-
chinery, and it is postulated to function as a
transcriptional activator of nuclear-encoded photosyn-
thetic gene expression [70]. In addition, AtIDD4 and
AtIDD6 are identified as gibberellin-regulated genes
[71]. Based on the evidence known to date, both
AtIDD4 and AtIDD6 do not seem to have any function
related to sugar and starch metabolism.

The database of global gene expression analysis pro-
vides evidence showing that A#IDDS is abundantly
expressed in leaf tissues. The global view of A:DDS
gene expression was roughly examined using the Gene-
vestigator web-based software [72]. The expression of
AtIDD5 was observed ubiquitously in all stages, but its
level was particularly high from stages of developed ros-
ette leaves to developed flowers. In flowers, expression
pattern of AtIDD5 was classified as ‘stamen-specific lack

12
m12L/12D
10 m 16L/8D
‘g ~ 8
£F
8os
P
§2
©
&= 4
2
0
WT (Col-0) Atidd5 col col7 kh-ccch
Figure 6 Total starch content of leaves in the wild type and
Atidd5, col, col7, and kh-ccch mutants. Arabidopsis plants were
grown under short (12 L/12D; grey bar) and long day (16 L/8D;
black bar) conditions, respectively.
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(a) WT (Col-0) *

(b) Atidd5

Figure 7 Transmission electron micrographs of the wild type,
Atidd5, and col chloroplast. Length of a scale bar indicated in the
micrograph is 2 pum.

.

of expression, suggesting that its expression disappears,
especially in anthers of flowers from stage 7 to 11
[73,74].

Information on AtIDD5-interacting proteins further
suggests that AtIDD5 is associated with other signal-
ling components, such as radical-induced cell death 1
(RCD1: Atl1g32230) [75]. RCD1 is not only known as
clone eighty-one (CEOL1), which recovers the oxidative
stress-sensitivity phenotype of the Yapl™ mutant yeast
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[76], but also a major regulator of hormonal signalling
and stress-response processes [77,78]. According to the
AGRIS database http://arabidopsis.med.ohio-state.edu/
REIN/, AtIDD5 is predicted to interact with a MADS-
box domain TE sepallata 3 (SEP3), which is a global
moderator of multifunctional protein-complexes con-
trolling flowering and hormonal signaling processes,
especially responses to auxin stimuli [79].

Total starch content and granule morphology analysis
Total starch content was measured under both short
and long day conditions. Starch was extracted from fully
expanded leaves of all the mutants and the wild type,
and analyzed in the form of glucose by capillary
electrophoresis-diode array detector (CE-DAD) after en-
zymatic digestion (see method). Both the mutants and
the wild type accumulated starch at relatively similar
levels (Figure 6), even though SS4 was down-regulated
in Atidd5 and col mutants (Figure 5). It has been
reported that the size of starch granules can be signifi-
cantly altered in ss4 mutant while only 35% reduction of
the starch content could be observed [6]. Referring to
these previous findings, we speculated that changes in
starch granule morphology and number may occur in
Atidd5 and col mutants as they show reduced levels of
884 mRNA accumulation during the light period
(Figure 5).

Chloroplast and starch granule morphology of Atidd5
and col mutant lines were examined by transmitted elec-
tron microscopy (TEM). Transmission electron micro-
graphs of Atidd5 and col mutant lines and wild type are
shown in Figure 7. They were analyzed by the image
processing software Image ] (version 1.45) to obtain a
group of data sets including (i) size measured by ‘Area’
and (ii) shape measured by “Width; ‘Height, and ‘Circu-
larity’ of the chloroplast and starch granule cross-sec-
tions. Although these parameters might not represent
the actual size and shape of chloroplasts and starch
granules, we considered them suitable for a comparative
purpose. Since the data was not normally distributed, a
non-parametric statistic, the Mann—Whitney U test, was
applied for testing significant differences between the
wild type and the mutants. The relative mean ranks and
P-values from the Mann—Whitney U test are described
in Table 5. Descriptive statistics of chloroplast and starch
granule morphology of Atidd5 and col mutants are sum-
marized in Additional file 7: Table S3.

Area, width, height, and circularity of 259, 176, and
368 chloroplasts of AtiddS, col, and the wild type, re-
spectively, were measured using the Image] software.
According to the Mann—Whitney U analysis, chloroplast
area of the wild type was significantly larger than that of
AtiddS5 and col mutants (P-value = 3.38E-26 and 2.99E-
10, respectively) (Table 5) with the means of chloroplast
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Table 5 The statistics from Mann-Whitney U test of chloroplast and starch morphology, and granule number

Arabidopsis Line N’ Area (um?) Width (um) Height (um) Circularity
CHLOROPLAST Relative Mean Rank?
Atidd5 259 3552 41.96 45.06 42.75
WT (Col-0) 368 60.33 55.80 53.61 55.24
col 176 3881 53.70 33.94 48.20
WT (Col-0) 5549 4837 57.82 50.99
P-value (Mann-Whitney U)?
Atidd5 3.38E-26 3.52E-09 2.60E-04 9.86E-08
col 2.99E-10 0.0442 1.90E-19 02919
STARCH GRANULE Relative Mean Rank
Atidd5 890 45.63 47.58 47.35 47.66
WT (Col-0) 895 54.40 5247 52.69 52.38
col 505 4882 54.72 3891 60.53
WT (Col-0) 50.72 4740 5631 4411
P-value (Mann-Whitney U)
Atidd5 1.38E-10 3.45E-04 9.54E-05 5.54E-04
col 0.2352 5.23E-06 2.49E-27 1.64E-24
GRANULE NUMBER Number of starch granule / chloroplast
Relative Mean Rank
Atidd5 283 53.57
WT (Col-0) 408 47.65
col 177 54.18
WT (Col-0) 4831
P-value (Mann-Whitney U)
Atidd5 0.0067
col 0.0213

1. N is a number of observed chloroplast (or starch granule) from Transmission electron micrographs. For the granule number analysis, N is a number of observed

chloroplast.

2. Relative Mean Rank was calculated from a ratio of mean rank to total rank and multiplied by 100 when the data was ranked in an ascending order.
3. The P-value calculated from the Mann-Whitney U test less than 0.05 was shown in bold letters indicating a significant difference of morphological parameters

between the mutant and the wild type.

areas at 13.18, 9.26, and 10.50 pm? for the wild type,
Atidd5, and col, respectively. In addition to the size, the
shape of chloroplasts of both mutants also differed from
the wild type. The width, height, and circularity of the
chloroplasts were significantly smaller in Atidd5 than in
the wild type. The small circularity values of AtiddS
chloroplasts indicate that they are in more oblong
shapes relative to the wild type chloroplasts. In addition,
the chloroplasts in the co/ mutant had longer width but
less height than those in the wild type. The results,
therefore, suggest that both mutants develop chloro-
plasts with altered morphology, which, particularly, ap-
pear smaller or thinner than the chloroplasts in the wild
type (Figure 7 and Table 5).

Since chloroplasts of both mutants were altered with
respect to their size and shape, we examined their effects
on the morphology of accumulated starch granules.
Reduction of starch granule size, inferred from the cross-

section area, was significant in Atidd5 (P-value =1.38E-
10), but not in the col mutant. The means of starch
granule areas of the wild type, Atidd5, and col were 0.54,
0.42, and 0.50 pm?, respectively. In contrast, the granule
shape deformity was noticed in both col and Atidd5
mutants (Figure 7 and Table 5). The decrease in width,
height, and circularity of Atidd5 starch granule most
likely suggested that the granule was small and in oblong
shapes. As compared to the wild type, the col starch
granules were observed to have greater circularity,
suggesting that they were relatively round in shape.
According to the work of Rolden and coworkers [6], a
chloroplast of the ss¢ mutant mostly contains one large
starch granule. When examined under TEM—among
283, 177, and 408 chloroplasts of Atidd5, col, and the
wild type, respectively—none of the chloroplasts were
observed to contain a single large starch granule like the
ss4 mutant. On the other hand, the majority of
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chloroplasts—corresponding to 25.4%, 27.1% and 27.5%
of observed chloroplasts in AtiddS, col, and the wild
type, respectively—normally contained 3 starch granules.
We further investigated the distribution of starch granule
number per chloroplast to find the difference between
the mutants and wild type (Figure 8). In the Atidd5 mu-
tant, 86.2% of the observed chloroplasts contained 2-5
starch granules, whereas 85.8% of chloroplasts from the
wild type contained 1-4 starch granules. Interestingly,
we observed that the number of chloroplasts containing
2 and 4 starch granules in the co/ mutant was lower than
those in the Atidd5 and the wild type, whereas the num-
ber of chloroplasts containing more than 5 granules was
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Figure 9 Relationship between granule number and chloroplast

size in the wild type, Atidd5, and col mutants.
J

higher than the other lines (Figure 8). Moreover, the col
mutant was the only line that was observed to contain
up to 10 starch granules per chloroplast. The relative
mean rank and P-value from the Mann—Whitney U test
of the mutants and the wild type shown in Table 5 indi-
cated that both Atidd5 and col mutants had significantly
higher numbers of starch granules per chloroplast than
the wild type (P-value=0.0067 and 0.0213, respectively).
The results suggest that reduction of SS4 expression in
the Atidd5 and col mutant lines leads to a significant
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increase in starch granule numbers, while their distribu-
tions of granule number per chloroplast are differently
affected among the mutants (Figure 8).

The relationship between the size of chloroplast and
the number of accumulated starch granules is shown in
Figure 9. Our results indicate that the number of starch
granules increased according to chloroplast size. Larger
chloroplasts tended to contain greater numbers of starch
granules; however the pattern of correlation was not
uniform among the wild type and mutants. In the
Atidd5 mutant, a positive correlation between chloro-
plast size and the number of starch granules was only
observed in the chloroplast containing 1-4 granules. It
appears that the chloroplasts in this mutant are unable
to expand after reaching critical size; however, they con-
tinued to store higher numbers of starch granules with-
out increasing their size. In col mutant, the positive
correlation was observed in the chloroplast containing
1-6 granules, whereas the size of the chloroplast con-
taining 6-8 starch granules tended to decrease in ac-
cordance with an increase in the number of starch
granules. The average sizes of chloroplasts containing 7
and 8 granules were the same as those having 2 starch
granules. In addition, the size of the col chloroplasts
containing 10 starch granules was similar to the size of
chloroplasts containing 6 granules, suggesting this might
be the critical size limit of the col chloroplast.

The results indicated that, in addition to having
defects in their control of SS4 gene expression, both
Atidd5 and col mutants are unable to increase the size
of chloroplasts, although they may still retain the cap-
ability to expand their chloroplast to contain relatively
small numbers of starch granules until the chloroplast
reaches its critical size limit. Particularly in Atidd5, hav-
ing relatively small starch granules can be another adap-
tive response caused by chloroplast deformity. The
observed phenomena may suggest the alternative roles
of AtIDD5 and COL in controlling chloroplast size limit,
which may synchronize with transcriptional regulation
of a starch biosynthetic enzyme, SS4. Our findings
address a question of how starch biosynthesis and
chloroplast development and/or functions are synergis-
tically controlled in plant cells. The underlying mechan-
ism of interaction awaits further investigation.

Conclusions

In this study, we proposed a transcriptional regulatory
network of starch metabolism in Arabidopsis leaves, and
examined the biological relevance of predicted network
modules. The general workflow of data acquisition, refine-
ment, and experimental validation provides a model case
for reconstruction of transcriptional regulatory network.
The present work widely utilizes publicly available bio-
logical information and resource databases, demonstrating
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how they can be integrated to find biological significance
of predicted network modules. Construction of gene-to-
gene association network models is based on diurnal regu-
lation of starch metabolism in leaves where the transcrip-
tomes oscillate during the day/night cycles. We first
grouped time-series-dependent significant genes on tran-
scriptome into four classes showing distinct patterns of
co-regulation with starch biosynthesis or degradation. A
particular focus has been placed on relationships be-
tween TFs, clock genes and starch metabolic genes, to
obtain transcriptional regulatory network model of starch
metabolism. The network constructed by the small sam-
ple inference of GGM suggests relationships between
TFs and target starch metabolic genes. Gene-to-gene
associations have been further refined by prediction of
TF binding sites in target genes and by global co-
expression analysis. Through these approaches, we finally
showed the involvement of AtIDD5 and COL in tran-
scriptional regulation of SS§4. These regulatory networks
were considered attributable to daytime starch biosyn-
thesis by SS4. In addition, AtIDD5 and COL were shown
to control chloroplast development and starch granule
formation. The present work on TF network modelling
and examination provides new insights into the regula-
tory mechanisms of starch biosynthesis and granule for-
mation in the chloroplast.

Methods

Microarray data pre-processing

This study utilized Arabidopsis Affymetrix microarray
data (CEL files) downloaded from the Nottingham Arabi-
dopsis Stock Centre's microarray database (NASCArrays)
[Experiment Reference Number: NASCARRAYS-60]
http://affymetrix.arabidopsis.info/. This microarray expe-
riment contains a set of 22 k Arabidopsis ATH-1 genome
array transcriptome data of leaves at developmental stage
3.9 taken after 1, 2, 4, 8, and 12 hours in both darkness and
light [36]. A ‘gspline’ normalization [80] and model-based
expression index [81] were carried out in the microarray
pre-processing, which was done using the Affy package in
Bioconductor http://www.bioconductor.org.

Significant analysis of time-series data

The significant test for the time-series data was per-
formed using the EDGE program (version 1.1.175) [39]
http://faculty.washington.edu/jstorey/edge/. Hypothesis
testing on time-series expression of each gene was per-
formed to test whether an average expression constitutes
a flat line. The gene expression profile was fitted under a
model based on null and alternative hypotheses. The
null hypothesis states that there is no differential gene
expression over a time period. The alternative hypothesis
states that a gene is differentially expressed over a time
period. The goodness of fit of 2 models was compared
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by F-statistic using a significant cut-off based on a false
discovery rate criterion [82,83].

The small-sample inference by graphical Gaussian model
(GGM)

The R package “GeneNet” [33]—available at the R arch-
ive (CRAN) http://CRAN.R-project.org/—was used to
construct the gene association network. The GeneNet
was developed from the small-sample inference frame-
work of graphical Gaussian model (GGM) to obtain a
partial correlation coefficient, which is a correlation be-
tween 2 variables obtained when eliminating effects of
other variables. In the case of 3 variables—x, y, and z—
the partial correlation of x and y when eliminating the
effect of z, pr,,, . can be calculated as follows

rxy_rxzryz

Pryyz =
Ja-m(-2)

where r is the correlation coefficient between 2 variables.
In the case of more than 3 variables, the partial correl-
ation can be calculated from the following equation.

Sxy
\/ SxxSyy

The pr,,, is the partial correlation between x and y
against variable 3 to g. The s, = the xy'™ element of the
inverse of variance matrix (S=V™). The element in
matrix V is v;; (i, j=1, ..., n) corresponding to a covari-
ance between variables i and j.

For microarray, the number of variables (i.e. genes) is
much higher than the number of measurements (i.e.
microarray conditions), thus making the inversion step of
matrix V invalid. In the new framework of GGM, the par-
ameter estimation techniques were used to obtain partial
correlation of small sample size. In order to decide which
edges are significant to be included in the resulting GGM
network, statistical significance was further assigned to
the edges in the GGM network by fitting a mixture
model (as shown below) to the observed partial correl-
ation coefficients [33].

The distribution of observed partial correlation coeffi-
cients f(r) is

F(7) = nofo (7 ) + (1 = 110)fa (7)

where 7 is the observed partial correlation, 7, is the un-
known proportion of null edges, f; is the distribution
under the null hypothesis of zero-partial correlation, « is
the degree of freedom, and f; is the distribution of
observed partial correlations assigned to actually existing
edges. The two-sided p-values for each edge correspond-
ing to the null distribution f; were subsequently calcu-
lated and followed by false discovery rate multiple testing

Plxyg = —
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[82,83] to obtain g-values. The edges with g-values are
equal or lower than 0.05 were presented in the resulting
GGM network in this study.

Arabidopsis lines and growth conditions

Arabidopsis ecotype Columbia-0 was used in this
study. Arabidopsis mutant lines were obtained from
the T-DNA or transposon inserted mutant collection
(Col-0 background) of The Arabidopsis Biological Re-
source Centre (ABRC) [60] and The Nottingham Ara-
bidopsis Stock Centre (NASC) [61]. Accession
numbers of Atidd5, c2h2, col, col7, wlim2a, and kh-
ccch are SALK 110990, SALK 070916, SALK 061956,
SM_3_37788, SALK 067756, and SAIL_672_A10, re-
spectively. Details of all mutant lines are shown in Add-
itional file 8: Table S4. The seeds were vernalized in the
dark for 3 days at 4°C before germination. Plants were
grown on an equal mixture of sterile vermiculite and
peat-based growing medium (PRO-MIX Bx/Microrise
Pro, Premier) in a growth cabinet (SANYO) set at 60%
humidity and 20-22°C with a light intensity of
100 pmol m™ sec™ and under 12 hr light/12 hr dark
(short day) or 16 hr light/8 hr dark (long day) cycles.
The trays of plant pots were sub-irrigated with a half-
strength Arabidopsis liquid nutrient culture [84]. Leaves
at a developmental stage of 3.90 [62] were harvested 4
times a day—1 hr before and after day break and night
break. Leaves for starch analysis were harvested at the
end of the light period.

Expression analysis by quantitative RT-PCR

Total RNA was extracted from 100-200 mg leaf material
(3 biological replicates) using Plant RNeasy kit (Qiagen),
treated with DNasel (Invitrogen), and reverse transcribed
by Omniscript Reverse Transcriptase (Qiagen). Subse-
quently, real-time PCR was carried out using SYBR®
Premix Ex Taq ™ II (Perfect Real Time) (Takara) using
ubiquitin 2 (UBQ2) as a constitutive internal control.
Details of the primer pairs used in qRT-PCR experi-
ments are shown in Additional file 9: Table S5.

Starch extraction and measurement

Starch from Arabidopsis leaves (3 biological replicates)
was extracted using the method described by Smith and
Zeeman [85]. Gelatinized starch was hydrolyzed to glu-
cose by incubation for 4 hr at 37°C with a-amylase and
a-amyloglucosidase. After the enzymatic digestion of
starch to glucose, the amount of glucose was quantified
by the capillary electrophoresis photodiode array detec-
tion (CE-DAD) system according to the manufacturer’s
protocol (Agilent) [86]. Leaf starch content was calcu-
lated from the amount of glucose measured in this
enzymatically-digested extract.
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Starch granule morphology analysis by Transmission
Electron Microscope (TEM)

Fully expanded Arabidopsis leaves were collected at end
of day, cut into 2 x 2 mm? pieces, and immediately fixed
with a cold solution of glutaraldehyde. Various para-
meters describing starch granule morphology (i.e. area,
perimeter, width, height, and circularity) and number of
starch granules per chloroplast were measured from
TEM micrographs using Image] software (version 1.45).
It was noted that circularity is calculated by the following
formula:

. , 471 X area
Circularity = ———
perimeter

A value approaches 1.0 meaning a perfect circle and
0.0 meaning an elongated shape. The morphology data
was tested for a statistically difference using a non-
parametric Mann—Whitney U statistic (P-value <0.05).
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other regulatory modules.
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