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Abstract

of some key intermediates (e.g. butyryl-phosphate).

Background: Comprehensive kinetic models of microbial metabolism can enhance the understanding of system
dynamics and regulatory mechanisms, which is helpful in optimizing microbial production of industrial chemicals.
Clostridium acetobutylicum produces solvents (acetone-butanol-ethanol, ABE) through the ABE pathway. To
systematically assess the potential of increased production of solvents, kinetic modeling has been applied to
analyze the dynamics of this pathway and make predictive simulations. Up to date, only one kinetic model for

C. acetobutylicum supported by experiment has been reported as far as we know. But this model did not integrate
the metabolic regulatory effects of transcriptional control and other complex factors. It also left out the information

Results: We have developed an improved kinetic model featured with the incorporation of butyryl-phosphate,
inclusion of net effects of complex metabolic regulations, and quantification of endogenous enzyme activity
variations caused by these regulations. The simulation results of our model are more consistent with published
experimental data than the previous model, especially in terms of reflecting the kinetics of butyryl-phosphate and
butyrate. Through parameter perturbation analysis, it was found that butyrate kinase has large and positive
influence on butanol production while CoA transferase has negative effect on butanol production, suggesting that
butyrate kinase has more efficiency in converting butyrate to butanol than CoA transferase.

Conclusions: Our improved kinetic model of the ABE process has more capacity in approaching real circumstances,
providing much more insight in the regulatory mechanisms and potential key points for optimization of solvent
productions. Moreover, the modeling strategy can be extended to other biological processes.

Background

System modeling for metabolism of industrial microor-
ganisms is important in metabolic engineering, as a
comprehensive model can reveal relevant factors related
to high yield of target products. Based on such analyses,
system modeling can further enhance developing
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operation strategies, or help optimizing cultivation
processes [1-4]. C. acetobutylicum is an extensively stu-
died organism used for industrial-scale production of
important solvents acetone and butanol, through the
acetone-butanol-ethanol (ABE) pathway (Figure 1) [5,6].
The ABE pathway of C. acetobutylicum comprises two
distinct branches: acidogenesis and solventogenesis.
During acidogenesis, cells grow exponentially, acetate
and butyrate are vigorously produced and the solvents
(butanol, acetone and ethanol) are not obviously gener-
ated. While shifting to solventogenesis, the cells arrest
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Figure 1 The acetone-butanol-ethanol (ABE) pathway of C. acetobutylicum. Reactions are represented by bold arrows and denoted
by symbols from R1 to R21. The acidogenic reactions are R9 and R18 (catalyzed by PTA-AK and PTB-BK, respectively), generating acetate and

butyrate respectively. The two acids are reassimilated through R7 and R17 (the reverse paths of R9 and R18), or directly converted to acetyl-CoA
and butyryl-CoA through R8 and R15 (catalyzed by CoAT). The solventogenic reactions are R11, R16 and R19 (catalyzed by AAD, AADC and BDH,
respectively), generating ethanol, acetate and butanol respectively. And R14 is a lumped reaction consisted of reactions catalyzed by BHBD, CRO

and BCD [14]

their growth at stationary phase, solvents are produced
and acids are reassimilated [5].

So far, multiple models have been established to simu-
late the ABE pathway, which mostly apply the metabolic
flux analysis (MFA) and flux-balance analysis (FBA)
approaches [5,7-10]. Although stoichiometric models
can simulate the overall flux distributions based on lim-
ited kinetic data by using physicochemical constraints,
they cannot appropriately reflect the dynamics in real-
time scale. In contrast, kinetics models integrated with
biochemical information are more efficient in reflecting
system dynamics. By perturbing a kinetic model, system
states that deviate from the normal state can be simu-
lated and it is possible to reveal which reactions have
potential impacts on target products’ productions. To

date, many experiments have explored the kinetic
features of the ABE process of C. acetobutylicum[11-13]
and a kinetic model was recently developed by Shinto et
al. [14]. However, as most current models did, this
model did not integrate the metabolic regulatory effects
of transcriptional control and other complex factors
[15-17]. Moreover, Shinto’s model did not include the
information of some key metabolites, e.g. butyryl-phos-
hate (BuP), which has proved to be important in solven-
togensis [16-19].

To overcome the drawbacks of Shinto’s model, we
developed an improved kinetic model for C. acetobutyli-
cum ABE process. The simulation results based on our
model were consistent with published experimental
observations and more comprehensive than those of
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Shinto’s model. Furthermore, a series of perturbed
circumstances were simulated as well, getting results
which might provide insights for metabolic engineering
aiming at increasing solvent productivity.

Results

All the following results were based on our new model
(Equation (1), section “Methods”), and they were com-
pared with an experimental study (Zhao et al., 2005)
that was independent of Shinto’s model or our work.
The new model was established by integrating experi-
mental information and knowledge not included in
Shinto’s model (section “Methods”), and we applied
some optimization methods to fix the unknown para-
meters introduced by integrating these information and
knowledge. The parameter fitting was done only under
the conditions described in Shinto’s work, only with
respect to the metabolites contained in Shinto’s model,
and we didn’t use any information related to BuP or the
experimental study for comparison (Zhao et al., 2005).
After these parameter values were derived, we first
implemented dynamic simulation with respect to the
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conditions in Zhao et al.’s work and compared the
results with experimental observations. We then carried
out perturbation analysis to detect which reactions had
large impacts on the overall butanol production in the
system.

Dynamical simulation

The initial value of our model was set according to the
conditions described in the experiment by Zhao et al.
(2005) [16], and the simulation results of metabolites’
kinetic profiles were shown in Figure 2A and 2C. Since
our model parameters were fitted under Shinto’s experi-
ment conditions, the metabolites’ kinetic profiles were
naturally consistent with those in Shinto’s experiment
when Shinto’s conditions were substituted in. So the
comparison with Shinto’s experiment was not shown
and we only focused on comparing with Zhao et al.’s
experiment here. These simulation results were shown
to be quite consistent with experimental observations
(Figure 2B and 2D). The metric units in Figure 2A and
2B were different (Figure 2A: mM; Figure 2B: pmol/
gDW), since the measurement of BuP in Zhao et al’s
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Figure 2 Comparison of simulation results with the experimental observations of Zhao et al. A is the simulation results of BuP kinetics, in
which data spots are concentrations and represented in blue. B is the experimental observation of BuP kinetics, in which data are
concentrations and represented in black [16]. C is the simulation results of the kinetics of butanol (black), butyrate (light pink) and acetone
(brown). D is the experimental observations of the kinetics of butanol (black), butyrate (light pink) and acetone (brown) [16]. In A, C and D, the
metric unit of vertical axis is mM; in B, it is pmol/gDW. In A, B, C and D the unit of lateral axis is hr. The figure shows that the simulated curves
are consistent with the experimental ones, both in quantity scale and shape.
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experiment accepted the unit of pmol/gDW. It was
impossible to exactly know the conversion between mM
and pmol/gDW because there was no such relationship
established in the SI metric unit system. But the
quantity scale could be approximated given the size of
an ordinary C. acetobutylicum cell, and this scale was
consistent with that in our simulation results. Since bac-
teria cells might vary in their sizes, we could not give a
general estimation that could represent all the others, so
we just showed the original quantities on the vertical
axis in Figure 2B.

In our simulation results, the first peak of BuP was
shown to coincide with the onset of solvent production
(Figure 2A, 2C). This was a phenomenon that was
reported in experimental literatures and had biological
implications [16-19]. Besides BuP, we also demonstrated
that we had a more precise simulation on butyrate, one
crucial product in cell growth and solvent production [5]
(Figure 3). In Shinto’s model, when substituting in Zhao
et al’s conditions, the quantity scale of butyrate curve
(Figure 3B) didn’t resemble precisely with the experimen-
tal curve in Zhao et al.’s experiment (Figure 2D). This
further demonstrated that our model had more capability
in approaching real biological events.

Perturbation analysis

Among the solvents (ethanol, acetone, butanol) pro-
duced in the ABE fermentation, butanol was considered
to be the more valuable product, since it had advanta-
geous properties over acetone and ethanol (e.g. better
value for the heat of combustion) [6]. So we implemen-
ted a series of perturbation analyses to assess which
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enzymes/reactions had relatively large impacts on buta-
nol production. Here we used Rd values to measure the
impacts (see section “Methods” for Rd’s definition). We
carried out perturbation tests both on single parameters
and double parameter pairs, the magnitude was 5% and
shift directions (upward/downward) were considered.
We traversed the entire parameter set. The result set of
single parameter perturbations included C;O x2 =100
entries (additional file 1 and 2). And the result
set of double parameter perturbations included
C?o x4 = 4900 entries (additional file 3, 4, 5, 6). Here
Table 1 and 2 showed some results with respect to the
enzymes located on or close to acidogenic/solventogenic
reactions in single and double parameter perturbations,
respectively.

Among all results, there were several interesting ones that
might provide some insights for understanding the ABE
process. Before examining the results, we could intuitively
hypothesize that BK might be relatively important in sol-
ventogensis since it connected two important metabolites
butyrate and BuP. Based on the analyses, we indeed found
that shifting BK’s V,,,,, alone or in combination with other
enzyme parameters (e.g. the apparent V,,,,, parameter of
BHBD — CRO - BCD) resulted in relatively large influ-
ences on butanol production (Table 1, 2). Actually, BK
activity had positive effect on butanol production and the
change in butanol quantity caused by shifting BK’s V.
ranked the 5th in the profile of single parameter shifts (see
Table 1 and additional file 1, 2). This suggested that BK,
which coupled PTB to generate butyrate as well as catalyz-
ing butyrate reassimilation, was important to butanol pro-
duction as compared with other enzymes such as AAD
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Figure 3 Comparison of simualtion results of butyrate kinetics with Shinto’s model under Zhao et al's conditions A is the simulation
results of butyrate kinetics based on our new model under Zhao et al’s conditions. B is the simulation results of butyrate kinetics based on
Shinto’s model under Zhao et al’s conditions. The data spots are concentrations. The metric unit of the vertical axis in A and B is mM; and the
unit of lateral axis is hr. In A and B, A is more consistent with the observation of butyrate in Zhao et al's experiment (Figure 2D). The figure
shows that our simulated curve of butyrate kinetics is more accurate than the one produced by Shinto’s model, both in quantity scale and
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Table 1 Part of the results of single parameter
perturbation analysis.

P +5% P -5%
p Enz Rd P Enz Rd
Vmax19 BDH 0.0076 Vmax19 BDH -0.0082
Vmax17 BK 0.0061 Vmax17 BK -0.0063
Vmax18 PTB -0.006 Vmax18 PTB 0.0063
Vmax14 B-C-B 0.0076 Vmax14 B-C-B -0.0082
Vmax11 AAD -0.0003 Vmax11 AAD 0.0003
Vmax7 AK 0.0054 Vmax7 AK -0.0054
Vmax9 PTA -0.0012 Vmax9 PTA 0.0012
Vmax15 CoAT® -0.0072 Vmax15 CoAT 0.0074
Vmax8 CoAT? -0.0002 Vmax8 CoAT 0.0002
Vmax1 PTS 0.0088 Vmax1 PTS -0.0088

This table lists part of the results of perturbation tests on single kinetic
parameters. Here “P” denotes the parameter perturbed. “Enz” denotes the
corresponding enzyme. “+/- 5%" indicates up/down-shifting the parameter
value by 5%. “B-C-B" stands for enzyme series BHBD-CRO-BCD. Subscripts “a”
and “b” indicate there are 2 CoA transferases catalyzing R8 and R15 and here
we took them in uniform.

(indexed as R11). Besides, AK also had positive effect on
butanol production (but with a smaller Rd values than BK,
see Table 1), indicating acetate reassimilation had similar
influence as butyrate reassimilation in solventogenesis, but
with less magnitude.
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Also, our computation results showed that CoAT,
which also accepted butyrate as substrate, had a negative
effect on butanol production as up-shifting its catalytic
capacity (increasing V,,,, or decreasing K,,,) diminished
butanol quantity (Table 1, 2). Because up-shifting the
catalytic capacity of BK (increasing its V,,,, or decreas-
ing its K,,,) or down-shifting the catalytic capacity of
CoAT (decreasing its V,,,, or increasing its K,,) would
cause more butyrate molecules received by BK and the
reverse operations would cause more butyrate received
by CoAT, and given the fact that BK and CoAT both
accepted butyrate as substrate, we could see that if more
butyrate was received by BK, the butanol production
would increase, i.e. more butyrate molecules were
converted and acid reassimilation was more efficient;
and if more butyrate was received by CoAT, the situa-
tion would be on the contrary (Figure 4). Therefore we
could conclude that BK had more efficiency than CoAT
during acid reassimilation and solventogenesis.

There were some places where our new model’s pre-
dictions differed from those of Shinto’s model. For
instance, our model predicted that PTS had positive
influence on butanol production, as increasing its V.,
(or decreasing its K,,,) resulted in amplified Rd value.
While by Shinto’s model, PTS’s influence was negative.
Given the fact that PTS acted in nutrient uptake and

Table 2 Part of the results of double parameter perturbation analysis

P1+5%, P2+5%

P1-5%, P2-5%

P1 Enzl P2 Enz2 Rd P1 Enz1 P2 Enz2 Rd
Vmax14 B-C-B Vmax19 BDH 00153 Vmax14 B-C-B Vmax19 BDH -0.0163
Vmax14 B-C-B Vmax17 BK 00138 Vmax14 B-C-B Vmax17 BK -0.0145
Vmax15 CoAT Vmax17 BK -0.001 Vmax15 CoAT Vmax17 BK 0.001
Vmax17 BK Vmax19 BDH 0.0137 Vmax17 BK Vmax19 BDH -0.0146
Vmax18 PTB Vmax19 BDH 0.0016 Vmax18 PTB Vmax19 BDH -0.0018
Vmax7 AK Vmax8 CoAT 0.0053 Vmax7 AK Vmax8 CoAT -0.0053
Vmax9 PTA Vmax11 AAD -0.0014 Vmax9 PTA Vmax11 AAD 0.0014
Vmax1 PTS Vmax14 B-C-B 00163 Vmax1 PTS Vmax14 B-C-B -0.0171
Vmax1 PTS Vmax19 BDH 00163 Vmax1 PTS Vmax19 BDH -0.0172

P145%, P2-5% P1-5%, P2+5%

P1 Enz1 P2 Enz2 Rd P1 Enz1 P2 Enz2 Rd
Vmax14 B-C-B Vmax19 BDH -0.0007 Vmax14 B-C-B Vmax19 BDH -0.0007
Vmax14 B-C-B Vmax17 BK 0.0012 Vmax14 B-C-B Vmax17 BK -0.002
Vmax15 CoAT Vmax17 BK -0.0135 Vmax15 CoAT Vmax17 BK 0.0136
Vmax17 BK Vmax19 BDH -0.0021 Vmax17 BK Vmax19 BDH 0.0012
Vmax18 PTB Vmax19 BDH -0.0143 Vmax18 PTB Vmax19 BDH 0.0138

Vmax7 AK Vmax8 CoAT 0.0057 Vmax7 AK Vmax8 CoAT -0.0056
Vmax9 PTA Vmax11 AAD -0.0009 Vmax9 PTA Vmax11 AAD 0.0009
Vmax1 PTS Vmax14 B-C-B 0.0008 Vmax1 PTS Vmax14 B-C-B -0.0012
Vmax1 PTS Vmax19 BDH 0.0008 Vmax1 PTS Vmax19 BDH -0.0011

This table lists part of the results of perturbation tests on double parameter pairs. Here “P1” and “P2” denote the parameters perturbed. “Enz1” and “Enz2"
denote the corresponding enzymes. “+/- 5%” and “B-C-B” stand for the same meaning as in Table 1.
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many processes relating to the ABE pathway were
subjected to nutrient induction, our prediction might be
more intuitively consistent with common sense [20].

Discussion

Rational system modeling and comprehensive system
analysis can serve as prior guidelines for understanding
and deducing biological mechanisms. We can retrieve
quantitative knowledge for assessing an organism’s
metabolic capacity and use this knowledge for in-lab
experiments to develop new strains with advantageous
productivity [3,4], or optimizing the cultivation process
of existing strains [2].

Model improvements

Since many studies related to C. acetobutylicum ABE
pathway have been reported (including parameter values
and the rate equation formulas [14,21]), kinetic model-
ing of the ABE pathway becomes feasible and enables us
to simulate the system dynamics. Nevertheless, the pre-
vious kinetic model of C. acetobutylicum ABE process
(Shinto et al, 2007) has several drawbacks as described
in earlier context. To overcome these drawbacks, we
have established a new model featured with three
improvements over the previous one.

First, we have incorporated the key metabolite BuP,
reflecting the relevant biological events that are specific
to ABE kinetics [15-18]. The correspondence between
BuP concentration climax and solventogenesis onset is
not merely a natural consequence of the fact that BuP is
the intermediate between butyryl-CoA and butyrate.

There are implications on the genetic level as stated in
Zhao et al’s study [16-19]. There are many important
solventogenic genes, such as adhEl (CAP0162), adhE2
(CAP0035 ), ctfA (CAP0163), ctfB (CAP0164), adc
(CAPO165), bdhA (CAC3298), bdhB (CAC3299), etc.,
having expression profiles that show a strictly correlated
pattern with the kinetics of BuP. Although the detailed
mechanism of how BuP acts to regulate ABE process
has not been very clear yet, its functional importance
has been experimentally confirmed [16-19]. Our new
model accounts for this knowledge and is successful in
representing the phenomenon.

Second, we describe the regulatory effects of complex
factors using a time division pattern. In Shinto’s model,
the metabolic regulation beyond the level of substrate/
product inhibition/activation is simply defined as the
input of glucose. The shut-downs of several acidogenic/
solventogenic enzymes (like PTB, BDH, etc) are solely
due to the insufficiency of glucose. However, various
evidences indicate that even with sufficient supply of
glucose, the acidogenic enzymes are still shut down in
the solventogenic phase, and the solventogenic enzymes
are necessarily inactivated at the beginning of the acido-
genic phase [15,22,23]. Therefore, the metabolic regula-
tions are not of the simple pattern as Shinto suggested,
but a significant 2-phase mode is shown (acids are gen-
erated during the earlier phase and solvents are gener-
ated during the latter one). In our work, this mode is
approximated by considering endogenous enzyme activ-
ity variations, assuming enzymes are regulated by many
factors (e.g. transcription control) to exhibit different
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activity levels to fulfill conditional system requirements
of different periods. This assumption is equivalent to
extending the application of biochemical system theory
(BST). In BST, which is based on in vitro experiments,
enzyme concentrations and endogenous enzyme activity
levels are constant by default. Hence kinetic models
based on BST are rigorously suitable for chemical simu-
lations but may not entirely appropriate for in vivo con-
ditions. Under in vivo conditions, the rate of a reaction
does not solely depend on substrate/product concentra-
tions, because the endogenous enzyme activity itself is
regulated by many factors and its variation in turn
affects the reaction rate [15-17]. Our model divides time
into a set of periods according to the enzymes’ activity
variations, allowing enzyme activities to vary throughout
these periods.

Third, we introduce the “enzyme activity coefficient
(EAC)” to quantify endogenous enzyme activity varia-
tions caused by metabolic regulations (see section
“Methods” for EAC’s definition). For the quantification
of enzyme activity curves, numerical interpolation (e.g.
Lagrange, Legendre, etc.) should have been employed as
to obtain fully continuous functions. But measurements
in activity assays are usually not precise. If the errors
are large, interpolation may result in huge errors or mis-
takes, causing the trouble of overfitting and distorting
the original curve profile. On the contrary, the computa-
tion of EAC leaves the error just as the original error.
Hence, using EAC will at least not amplify the error or
distort the curve when the measurements are not pre-
cise. Moreover, our design of EAC is calculating a ratio
instead of the particular value at each time instance, and
this allows the error to be divided by a denominator,
thus lowering the error level in computation.

Dynamical simulation and perturbation analysis
After the addition of BuP, 5 unknown parameters are
introduced into the system. We have used Genetic Algo-
rithm to estimate their values. In the process of para-
meter estimation, we used Shinto’s experimental
observations of 16 metabolites to formulate the fitness
function, but we didn’t employ any information about
BuP. And in order to avoid the mistake of reasoning in
a circle, we compare our results with observations of
another experiment (Zhao et al.’s). It turns out that our
results are significantly consistent with the observations
and have shown some superiority over Shinto’s model in
reflecting the kinetics of BuP and butyrate. This indi-
cates that Shinto’s model is well fitted for its own condi-
tion but may not be suited well for other conditions. In
contrast, our model has more capacity in approaching
real cases because of the improvements we have made.
Simulations based on kinetic models can help develop
in-lab strategies, thus increasing the success rate of
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metabolic engineering. In our work, we have simulated
thousands of perturbed conditions to detect and assess
potential spots that have large influences on butanol
production. The magnitude of in silico perturbations
should not be too large because the system may exhibit
alternative activations for other pathways when under-
going substantial fluctuations [24,25]. When the system
is encountering slight perturbations, its overall proper-
ties will not change substantially due to biological
robustness [25-27]. So it would be fairly assumed that
when the perturbation magnitude on enzymatic para-
meters is 5%, the system will still survive and its func-
tional normality is not interrupted or diverted. In the
computation, we have identified an interesting phenom-
enon that BK’s catalytic capacity exhibits positive influ-
ence on butanol production while CoAT has negative
influences, as elevating BK activity results in increased
Rd value and uplifting CoAT activity diminishes the
value. And more convincingly, Rd decreases when
increasing the V,,,,, values of BK and CoAT at the same
time, which means the negative effect of CoAT can bal-
ance the positive effect of BK, confirming that CoAT
has large effect in impairing butanol production. Based
on this discovery, we propose a possible scenario that if
more metabolites are received by BK as substrates, the
overall acid (butyrate) reassimilation efficiency will be
benefited and butanol production is enhanced. And if
more metabolites are received by CoAT as substrates,
the situation will be on the contrary. It may not seem
economical for the bacteria to use the BK-PTB path (see
Figure 1) to reassimilate butyrate since running through
this path consumes ATP. Nonetheless, based on our
computation results and biochemical knowledge, we
raise a predictive explanation for the underlying
mechanism: in acidogenic phase, the metabolic flux
actually runs in the direction of PTB-BK (confirmed by
both our computation of kinetic profiles and experimen-
tal literature [5,16,21]), thus this path generates ATP for
the growth of the bacteria; when the bacteria enters sol-
ventogenic phase, it doesn’t need to grow and ATP has
surplus, these surplus ATPs are utilized to proceed
butyrate reassimilation. It’s noteworthy that acids are
severely poisonous to bacteria cells and it is a priority
for the bacteria to convert acids to other forms (e.g.
alcohol). In addition, enhanced butanol production
means more acids are converted. Hence, although reac-
tions through BK cost ATP, but so far as BK’s efficiency
is concerned, BK is still the preferred enzyme through
which the bacteria reassimilates butyrate during solven-
togenesis. Therefore, the reason why the ATP-costing
path BK-PTB is more efficient over the path catalyzed
by CoAT (not ATP-costing) in reassimilating butyrate is
probably because of responding to severe poison stress,
and the energetic basis for this process is the ATP
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surplus generated during acidogenic phase. Our predic-
tion is equivalent to considering the bacterial cellular
behaviour to be related with biological robustness, as
supposing that the bacteria is not seeking for its optim-
ality when undergoing stress response, but seeking for
sub-optimality. In such case, certain costs or sacrifices
are tolerated as long as it can survive (or maintain mini-
mal fluctuation from normality) [24,26].

In double parameter perturbation tests, we noticed
that the net effect of combinatorial perturbation was
equal to the sum of effects of individual perturbations,
indicating that no crossover or nonlinear amplification
originated from perturbations with mild magnitudes.
This is probably because when the system is undergoing
mild perturbation, it tries to maintain the normal status
with minor alterations by means of system robustness.
To demonstrate the hypothesis further, we implemented
some three-parameter combinatorial perturbation tests.
We randomly chose a number of three-parameter tri-
plets and randomly decided their shift directions. For
example, if we increased three parameters Vi .14,
Vinax19> Vmax17 by 5% each and re-computed our model
(Equation (1)), we obtained Rd=2.14%, which exactly
equalled the sum of individual effects of these perturba-
tions. Again, if we increased K,,,15, and Viax19 by 5%
and decreased Vi,.x15 by 5%, we obtained Rd=2.09%,
still equalled to the sum of individual effects. Hence, we
raise a hypothetic measure for increased butanol pro-
duction: By slightly perturbing parameters in suitable
directions and with appropriately mild magnitudes, we
possibly can obtain a metabolic phenotype that can have
amplified butanol production, and the strain can steadily
and safely survive as well. The amplification magnitudes
of multiple parameter perturbations can be much
greater than those in single parameter perturbations, if
adequately many parameters are manipulated appropri-
ately. Meanwhile, from an engineering point of view,
multiple spot modifications can make the risks of sys-
tem fluctuations or external impulsions more distribu-
tive than in the case that all alterations are concentrated
on a single spot. Hence, this strategy provides a way
that can make a more stable high-production system.
But this strategy requires high-precision genetic
manipulation.

Significance

Traditional kinetic models cannot accommodate com-
plex metabolic regulation effects (e.g. gene transcrip-
tional control). Hence previous integrative modeling
approaches for metabolic system are mainly based on
the FBA method, in which the gene transcription regula-
tions are described by Boolean logic and the metabolic
level is expressed by flux balance equations. Since FBA
based methods and Boolean logic cannot adequately
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reflect system dynamics, we have developed a new
model as an attempt towards solving the problem. Actu-
ally, our modeling strategy is equivalent to extending
the traditional BST, degenerating complex metabolic
regulation effects to a form that is compatible with
kinetic models. This strategy provides a way for inte-
grating complex factors and knowledge from multiple
levels into the framework of kinetic models. Moreover,
our approach of describing metabolic regulation effects
with a time division pattern and EAC is extendable. For
instance, we can relate the enzyme activities to gene
transcriptional level, build a formulism between them,
and include the effects of other factors such as impulse
and stochasticity. Our modeling method can be general-
ized and extended to the modeling of other bio-
processes.

In this post-genomic era, massive information and
experimental data have been accumulated. Therefore, it
is important to develop methods or tools that are able
to make use of existed information/data and capable of
organizing, manipulating and interpreting them more
comprehensively [28,29]. Our work just attempts to
serve that goal by integrating existed information from
multiple aspects and describing them mathematically.
Nevertheless, the usage of “net effects of regulatory fac-
tors” in our modeling doesn’t seem to build direct links
between the genetic level and metabolic level. But if
adequately more information about the regulatory fac-
tors on the genetic level is revealed, better formulism
can be built to link the two levels and further studies on
the control of bacteria cellular systems can be
conducted.

Conclusions

We have developed a new kinetic model featured with
major improvements over the previous one (Shinto’s
model), with the information of BuP incorporated and
the effects of complex metabolic regulatory factors
included. The simulation results based on our model are
highly consistent with published experimental data and
have more superiority in precision and subtlety than the
previous model. We have successfully simulated the
right profile of BuP kinetics, which is not included in
the previous model. And we can make more precise
prediction on the kinetics of butyrate, another important
intermediate in the ABE process. Through perturbation
analysis, we predict that the path catalyzed by BK is
more efficient over the one catalyzed by CoAT in con-
verting butyrate to butanol during solventogenesis,
although ATPs are consumed.

Methods
We made improvements to Shinto’s model with respect
to three points: (i) incorporating key compound butyryl-
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phosphate (BuP); (ii) describing the net effects of com-
plex ABE metabolic regulations with a time division pat-
tern according to endogenous enzyme activity variations,
and (iii) introducing the “enzyme activity coefficient” to
quantify endogenous enzyme activity variations. After
the model framework was established, parameter estima-
tion was followed to obtain unknown parameter values.
We then implemented perturbation analysis to detect
sensitivities of reactions/enzymes.

Incorporating BuP

BuP was key intermediate in conversions between buty-
rate (But) and butyryl-CoA (BCoA). It was reported that
BuP played a crucial role in solventogenesis, as the
initial peak of its concentration marked the onset of sol-
vent production [16]. Adding in BuP meant splitting the
originally lumped reactions between But and BCoA (as
in Shinto’s model) so as to represent their intermediate
BuP as a system component. Here we added two new
reactions to denote the conversions from BuP to But
and BCoA respectively. Hence, the butyrate formation/
reassimilation branch was restructured and BuP
appeared as another system component. Mathematically,
we created rate equations for the new reactions and re-
formulated the mass balance equations relating to But,
BCoA and BuP. For details, see additional file 8.

Time division pattern

We assumed endogenous enzyme activity variations
were net effects of transcriptional control and other
complex factors. As experimental studies suggested
enzyme activities varied with time [15,21-23,30], we
developed a time division pattern to reflect the regula-
tory effects. We divided time into several intervals
according to the enzymes’ activity variation profiles
[22,23]. Here we only considered a subset of enzymes,
which were either located on acid/solvent production
reactions or directly associated to them. We adopted
activity variations of the enzymes in consideration and
regarded others’ as constants. All enzyme activity pro-
files were collected from published experimental studies
[22,23] and the experiments were done under the identi-
cal culture conditions as our simulation [14,16]. For
details of constructing the time division pattern, see
additional file 8.

Enzyme activity coefficient

We introduced EAC to quantify endogenous enzyme
activity variations. EACs were formulated as time-depen-
dent functions. At each time instance, the EAC value was
the ratio of the current enzyme activity to its maximum
activity. Here we employed the divided intervals in the
time division pattern (see the previous paragraph) as
markers of time. And for computation simplicity, we

Page 9 of 11

approximated EAC with a set of 0™ splines with respect
to these markers. In other word, the EAC value remained
constant within a divided interval and changed to
another constant when stepping into another interval.
The constant was the ratio of the average activity level in
the interval to the maximum activity. We calculated all
EACs of the considered enzymes and multiplied them to
their corresponding rate equations to reflect endogenous
activity variations. All enzyme activities data were col-
lected from literatures [22,23]. For details of computing
EAC, see additional file 8.

New Model

The new model contained 21 rate equations and 17 dif-
ferential equations, involving 50 kinetic parameters. The
model was built by integrating ABE kinetic features
identified so far. Except for those included in Shinto’s
model [11-14], EACs were multiplied to rate equations.
The model was expressed in the form of ordinary differ-
ential equation (ODE) system as in Equation (1):

4¥ = A-E(1)-R(Y,P) (1)

where Y was the vector of metabolites’ concentrations;
A was the stoichiometric matrix of mass balance equa-
tions; E=diag{EAC;,...,EAC,;} and EACs corresponding
to enzymes with constant activities were set to 1; R
was the vector of rate equations without EACs; and
P was the entire set of parameters. For details of the
equations, symbols and abbreviations in the model, see
additional file 8.

Unknown parameter estimation

We applied Genetic Algorithm (GA) to de novo esti-
mate unknown parameters introduced by new reac-
tions (previous subsection “Incorporating BuP”). We
considered the experimental observations of 16 meta-
bolites in Shinto’s work to be valid, and assumed that
the correct value assignment of the unknown para-
meters definitely reproduced these valid observations
under Shinto’s conditions. Therefore the fitness func-
tion in optimization was formed by forcing the 16
metabolites’ concentrations Y(1:16) to match Shinto’s
observations Y,(1:16). We computed parameter values
that minimized the fitness function and accepted them
as numerical solutions. In addition, we didn’t employ
any qualitative or quantitative information of BuP or
Zhao et al’s experiment in this process. For parameter
values, see additional file 7. And for details of para-
meter estimation, see additional file 8.

Perturbation analysis
We performed perturbation analysis to assess enzymes/
reactions’ impacts on butanol production. By consecutively
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shifting the enzymes’ V,,,, and K, values and using the
normal state as control, relative changes of in silico
butanol production were computed. We defined the rela-
tive change in butanol production as Rd (a ratio expressed
in Formula (2)):

f of
[ vpwar=] v
Rd = t0 7 t0 (2)

ye(t)dt
10

where y, was the instantaneous butanol concentration
in perturbed state, and y. was that in normal state. For
approximation, we discretized the integrals in Formula
(2) with the trapezoid method. The results of perturba-
tion analysis were in additional files 1, 2, 3, 4, 5, 6, and
for details of computation, see additional file 8.

Additional material

Additional file 1: Results of single parameter perturbation tests
with magnitude +5%. The data entries included are numerical results
obtained by increasing the value of every kinetic parameter by 5%. All
parameters are traversed. There are 50 entries and the dataset is
organized as a table in the format of *xls (Excel worksheet). The first
column is the index of the parameter perturbed, the second column is
the parameter perturbed, and the third column is the Rd value that is
used to evaluate how much impact the perturbation causes to butanol
production.

Additional file 2: Results of single parameter perturbation tests
with magnitude -5%. The data entries included are numerical results
obtained by decreasing the value of every kinetic parameter by 5%. All
parameters are traversed. There are 50 entries and the dataset is
organized as a table in the format of *xls (Excel worksheet). The first
column is the index, the second column is the parameter perturbed, and
the third column is the Rd value that is used to evaluate how much
impact the perturbation causes to butanol production.

Additional file 3: Results of double parameter perturbation tests
with respective magnitudes +5% and +5%. The data entries included
are numerical results obtained by increasing the values of every pair of
kinetic parameters by 5% each. All 2-parameter combinations are
traversed. There are 1225 entries and the dataset is organized as a table
in the format of *xIs (Excel worksheet). The first column is the pair of
indexes of the parameters perturbed, the second and third columns are
the parameters perturbed, respectively, and the fourth column is the Rd
value that is used to evaluate how much impact the perturbation causes
to butanol production.

Additional file 4: Results of double parameter perturbation tests
with respective magnitudes +5% and -5%. The data entries included
are numerical results obtained by altering the values of every pair of
kinetic parameters, increasing the first parameter by 5% and decreasing
the other one by 5%. All 2-parameter combinations are traversed. There
are 1225 entries and the dataset is organized as a table in the format of
*xls (Excel worksheet). The first column is the pair of indexes of the
parameters perturbed, the second and third columns are the parameters
perturbed, respectively, and the fourth column is the Rd value that is
used to evaluate how much impact the perturbation causes to butanol
production.

Additional file 5: Results of double parameter perturbation tests
with respective magnitudes -5% and +5%. The data entries included
are numerical results obtained by altering the values of every pair of
kinetic parameters, decreasing the first parameter by 5% and increasing
the other one by 5%. All 2-parameter combinations are traversed. There
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are 1225 entries and the dataset is organized as a table in the format of
*Xls (Excel worksheet). The first column is the pair of indexes of the
parameters perturbed, the second and third columns are the parameters
perturbed, respectively, and the fourth column is the Rd value that is
used to evaluate how much impact the perturbation causes to butanol
production.

Additional file 6: Results of double parameter perturbation tests
with respective magnitudes -5% and -5%. The data entries included
are numerical results obtained by decreasing the values of every pair of
kinetic parameters by 5% each. All 2-parameter combinations are
traversed. There are 1225 entries and the dataset is organized as a table
in the format of *xIs (Excel worksheet). The first column is the pair of
indexes of the parameters perturbed, the second and third columns are
the parameters perturbed, respectively, and the fourth column is the Rd
value that is used to evaluate how much impact the perturbation causes
to butanol production.

Additional file 7: The values of kinetic parameters There are 50
parameters in our kinetic model. The dataset is organized as a table in
the format of *xls (Excel worksheet). The first column contains the
indexes of reactions, the second column contains the parameters
involved in each reaction, and the third column contains the parameter
values.

Additional file 8: Description of the modeling method This is the
detailed description of the method of modeling, including the
incorporation of BuP, the construction of time division pattern, the
computation of EACs, parameter estimation procedure, and the
computation of perturbation analysis. This file is in the format of * (Word
document). This file contains 4 supplementary figures (Figure S1 - S4)
and a supplementary table (Table S1).
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