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Kristin Tøndel1*, Ulf G Indahl1, Arne B Gjuvsland1, Jon Olav Vik1, Peter Hunter2, Stig W Omholt3 and
Harald Martens1

Abstract

Background: Deterministic dynamic models of complex biological systems contain a large number of parameters
and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of
such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions
(inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically
relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically.
Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when
the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to
give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear
or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-
based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according
to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial
partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different
gene regulatory network models with various types of feedback, a deterministic mathematical model of the
mammalian circadian clock and a model of the mouse ventricular myocyte function.

Results: Our results indicate that multivariate regression is well suited for emulating dynamic models in systems
biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all
three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems
with highly nonlinear functional relationships and in systems with positive feedback loops.

Conclusions: HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly
nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the
complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

Background
Realistic deterministic dynamic models of complex
biological systems are difficult to assess with respect to
behaviour, since they are characterised by a large
number of parameters and state variables as well as
nonlinear functional relationships and intricate feedback
loops. The relationship between the output from such

models and their input parameter variation and initial
conditions, and control of built-in functional relation-
ships, can become extremely complex. The traditional
analytical tools of nonlinear systems theory are mainly
aimed at studying the effects of few parameters on low-
dimensional phenomena such as steady states and limit
cycles. The high-dimensional models emerging in sys-
tems biology bring new challenges such as increasing
the speed of numerical solvers, developing tools for
automated model simplification and global sensitivity
analysis (study of how the system input variations influ-
ence the output [1]). Metamodels of a dynamic model,
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which are statistical models mapping parametric varia-
tion to variation in the state variables throughout the
entire relevant parameter space [2], will be helpful in
meeting several of these challenges.
There is currently little tradition for making use of

metamodelling in advanced computational biology, but
based on experiences from other fields [2,3] we antici-
pate that this is up for change. Since computationally
demanding multiscale modelling is an emerging field in
computational biology, we foresee that metamodel-gen-
erated mappings will be very useful as a model reduc-
tion technique for speeding up simulations, for
performing global high-dimensional sensitivity analyses
for a whole range of purposes, for comparing the high-
dimensional prediction spaces of competing models as
well as for comparing models to high-dimensional phe-
notypic data. Input parameters and initial conditions
can also be predicted from the model output or empiri-
cal data, providing opportunities for identification of
biologically relevant parameters. However, for these
anticipations to be fulfilled we need to develop a robust
metamodelling methodology capable of producing accu-
rate predictive mappings for a whole range of different
biological models and which allows for extensive auto-
mation. Despite that considerable progress has been
made in other fields, in particular engineering [1-6],
there is a need for substantial development to make this
approach generally applicable in biology and feasible for
implementation e.g. as part of the model repositories
like the CellML repository [7-9].
Most metamodelling efforts published to date make

use of ordinary least squares (OLS) regression and
response surface methods based on OLS that require
the covariance matrix of the regressors (independent
variables) to be invertible [2], that is, the regressors
must be linearly independent. These methods are pri-
marily focused on prediction of one single output vari-
able at a time, and usually ignore strong inter-
correlations between the output variables. An exception
is Artificial Neural Networks (ANN), but these methods
produce models of a format that do not allow easy
interpretation. Using a Bayesian approach, Conti and
O’Hagan [10] recently demonstrated that it is possible
to emulate the output of a dynamic model to a high
degree of precision using only a few hundreds of train-
ing runs. However, such Gaussian emulators are only
effective for model structures having a small number of
significant main effects and very mild interactions [1].
Hence, one may claim that none of the current meta-
modelling approaches do make transparent how all
inputs, auxiliaries and outputs are related to each other
jointly under a broad range of different conditions. They
are also, with few exceptions, unable to utilise inter-cor-
relations between the output variables. Furthermore,

according to Li et al. [11], most sensitivity analysis
methods require the regressor variables to be linearly
independent, something that is not likely to be the case
in many biological modelling situations (e.g. due to the
use of highly reduced experimental designs or sampling-
based methods to set up the computational experiments).
Hence, there is a need for new methodologies for map-
ping the entire space of biologically relevant parameters
and initial conditions to the outcome of the correspond-
ing dynamic models, that can handle linearly dependent
input parameters, utilise strong inter-correlations
between the outputs, as well as model highly nonlinear
and non-monotone input-output relations, which charac-
terise many biological systems. Mild nonlinearities can to
some degree be modelled by polynomial regression, using
e.g. square- and interaction terms as extra regressors
[12], but a robust metamodelling methodology must be
capable also of handling strong nonlinearities, in particu-
lar non-monotone input-output relationships [13-15].
A candidate approach is to make use of locally linear

or locally polynomial regression modelling of carefully
selected subsets of the input-output space of the original
complex model. Locally linear approaches to modelling
large and complex data sets have been successfully
demonstrated in a variety of applications, most of which
include a separation of the data into blocks based on
prior knowledge about the structure of the data being
analysed [16-20]. This suggests that nonlinear and non-
monotone response surfaces can be handled by local
high-order polynomial models. In order to also account
for linearly dependent regressors and inter-correlations
between the responses, alternatives to OLS are needed.
Bi-linear methods based on estimated latent variables, e.
g. Principal Component Analysis (PCA) [21,22] and Par-
tial Least Squares Regression (PLSR) [23-25] (see Addi-
tional file 1: Appendix 1), have shown considerable
success in analysis and interpretation of a large number
of highly multivariate and complex data sets. Martens
and Martens [26] demonstrated the use of PLSR as an
alternative to Analysis Of Variance (ANOVA) to facili-
tate the interpretation of multi-response data from
designed experiments. PLSR maximises the explained
covariance between the regressors and the responses. In
contrast to most other linear regression methods, PLSR
also utilises inter-correlations between the response
variables for model stabilisation, and does not require
the regressor variables to be linearly independent. PLSR
is efficient for compressing inputs, intermediate states
and output variables into their most relevant subspaces
(spanned by the estimated latent variables, also called
PLS components (PCs)), and hence provides a versatile
means for data compression by reducing the rank of
both regressors (X) and responses (Y). This, in turn,
provides an effective approach to identification of
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important features in a complex system. PLSR is equiva-
lent to OLS when the regressor rank is not reduced,
that is, when all PLS components are included. Model-
ling based on such estimated latent variables (repre-
sented by so-called X- and Y- score vectors) also have
the advantage of being suited for graphical visualisation,
inspection and interpretation via their associated sets of
loadings, i.e. the coefficients describing the relationship
between the score vectors and the original variables/
parameters. Theoretical aspects of PLSR and its relations
to the more commonly used method Principal Compo-
nent Regression (PCR) [27,28] are given in [29]. Camp-
bell et al. [30] have shown that metamodels based on
subspaces found by PLSR, when compared to Legendre
polynomials and PCA, gave the simplest and most pre-
dictive basis for sensitivity analysis for a set of computa-
tional models. In [31], the suitability of PLSR for
interpretation of complex biological systems and use of
PLSR in sensitivity analysis was demonstrated. This
motivated us to probe the versatility of a new variant of
local modelling, here named Hierarchical Cluster-based
PLS regression (HC-PLSR), which assumes no prior
knowledge about the data structure. Besides presenting
the HC-PLSR method, we report the metamodelling
performance of HC-PLSR, global PLSR and global
ordinary least squares regression on three dynamic
model systems in order of increasing complexity: i) six
different gene regulatory network models with various
types of feedback [32,33], ii) a dynamic model of the
mammalian circadian clock [34] and iii) a model of the
mouse ventricular myocyte function [35]. These three
test beds encompass large classes of dynamic models.
We show that the HC-PLSR approach is superior in all
cases and that the difference in terms of explained var-
iance and prediction accuracy increases with the degree
of nonlinearity and the presence of positive feedback
loops.

Methods
In silico data sets
Gene regulatory networks
Gene regulatory networks were modelled using the sig-
moid formalism [36,37]. In this formalism the state vari-
able Xi denotes the expression level of gene i, and the i-
th differential equation describes production and decay
of the gene product as well as regulation of these pro-
cesses by other genes in the network (see [32] for a
more detailed description). The dynamics of three state
variables (X1, X2 and X3) were computed over 300 time
steps in six different gene regulatory network motifs
with different feedback systems [32,33]. The initial con-
ditions were varied in a full factorial design (FFD) with
five equally spaced levels for each, resulting in 125 dif-
ferent starting conditions between 0 and 2 for each state

variable. Since differences in feedback loops lead to qua-
litatively different behaviour (e.g. positive feedback can
give rise to multistationarity) they should also lead to
large differences in the nonlinear terms in the regression
analysis. We therefore used five levels of each factor in
order to explore these nonlinear terms thoroughly. The
parameter values of maximal production rates, decay
rates and regulation thresholds were constant, and cho-
sen to ensure that the steady state levels for all three
variables were ranging from 0 (when the production
rate is zero) to 2 for a maximal production rate. For
each of the gene regulatory network motifs, the time
series data for the three state variables were concate-
nated into a matrix representing 125 starting conditions
× 900 time points, corresponding to the set of 125 × 3
initial conditions. The connectivity diagrams for the six
simulated gene regulatory network motifs are shown in
Figure 1, and illustrate that Motif 1 and 2 have positive
feedback, Motif 3 and 4 have negative feedback and
Motif 5 and 6 have no feedback. The simulations were
carried out in MATLAB® Version 7.9.0.529 (R2009b)
[38], using in-house code that can be obtained from the
authors upon request.
Mammalian circadian clock
The simulations of the mammalian circadian clock were
generated using a model developed by Leloup and
Goldbeter [34]. The ordinary differential equation
(ODE) model describes a mammalian consensus system
of three key genes: Bmal1, Per and Cry which regulate
circadian rhythms by means of intertwined positive and
negative feedback loops. The model consists of 16
coupled differential equations with state variables repre-
senting mRNA, nonphosphorylated and phosphorylated

Figure 1 Connectivity diagrams for the six simulated gene
regulatory network motifs. The dynamics of the three state
variables (X1, X2 and X3) were computed in six different gene
regulatory network motifs with different feedback systems [32,33].
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proteins for the three genes, as well as protein com-
plexes. The original publication [34] contains four differ-
ent parameter sets and we used parameter set 4
(corresponding to continuous darkness) as the basal
parameter set. A curated CellML implementation [7-9]
of the model was downloaded from http://models.cellml.
org. The parameter combinations used to generate the
calibration set were generated using an Optimised
Multi-level Binary Replacement (OMBR) Design [39,40]
of 9 factors (see Table 1) with 8 equally spaced levels
each. This resulted in 8192 simulations with the circa-
dian clock model. A full factorial design of 9 factors at 8
levels each would result in 89 > 134 million runs.
Hence, the OMBR design was chosen, in order to
explore the effects of as many factors as possible while
revealing possible nonlinear effects of parameters on
phenotypes. This was considered important in this
example, since the mammalian circadian clock model is
widely used and explored previously, and an optimisa-
tion study is therefore most relevant. Detailed insight
into the nonlinear behaviour of the model is obtained
using a large number of levels of each factor. In the
OMBR design method, the values of the original para-
meters are replaced by multi-bit binary representations,
and the binary factor bits are then combined in a frac-
tional factorial design according to the chosen con-
founding pattern. Thereby drastically reduced
experimental designs are obtained, yet maintaining rea-
sonable coverage of the parameter space. The OMBR
design used here was optimised by establishing a num-
ber of alternative binary confounding patterns, and
choosing the one that best satisfied the quadratic D-
optimality criterion. This OMBR design has been com-
pared to central composite designs and random sam-
pling, and has been shown to have good predictive
ability [40]. The range of each parameter is given in
Table 1.

For each parameter combination the resulting differ-
ential equation model was solved from the original
initial conditions (see [34]) until convergence to a stable
limit cycle. The differential equations were solved in
SUNDIALS 2.3 [41] using a wrapper for PySundials
http://pysundials.sourceforge.net. The resulting data set
consists of values of 16 state variables (corresponding to
the 16 differential equations in the model) calculated
over 200 time steps each for the set of 8192 combina-
tions of values of the nine input parameters. The test
for convergence was done as follows: First the system
was solved with rootfinding for variable MB to extract
two complete cycles. Convergence of the cycle period
was tested by requiring that the period difference rela-
tive to the mean of the periods for the two cycles should
be less than 0.001. Convergence to synchronous oscilla-
tions was tested by (i) interpolating all 16 state variables
at 200 equally spaced time points for each cycle, (ii) lin-
early transforming each state variable such that the
minimum and maximum values of each cycle was 0 and
1, respectively, and (iii) requiring that the sum of abso-
lute difference between the two cycles across all the
3200 interpolated time points should be less than
0.0001.
Mouse ventricular myocyte
Data for the murine heart cell function was generated
using the model recently published by Li et al. [35],
built to account for the action potential and calcium
transient of the cardiomyocyte in terms of its constitu-
ent ion currents and gating channels. The model
extends that of Bondarenko et al. [42], with more realis-
tic calcium handling, detailed re-parameterisation to
experimental data and consistency checking by conser-
vation of charge. State variables include concentrations
of sodium, potassium and calcium in the cytosol, cal-
cium concentration in the sarcoplasmic reticulum and
the state distribution of ion channels. Formulated as a

Table 1 Description and range of the parameters varied in the simulations with the mammalian circadian clock model

Parameter
name

Unit Description Minimum
value

Level step
size

Maximum
value

vmB nMh-1 Maximum rate of Bmal1 mRNA degradation 0.16 0.017 0.28

vmC nMh-1 Maximum rate of Cry mRNA degradation 0.80 0.086 1.40

vmP nMh-1 Maximum rate of Per mRNA degradation 0.88 0.094 1.54

vdPCN nMh-1 Maximum rate of degradation of nuclear phosphorylated Per-Cry
complex

0.80 0.086 1.40

vdIN nMh-1 Maximum rate of degradation of nuclear Per-Cry-Clock-Bmal1 complex 0.64 0.069 1.12

k1 h-1 Rate constant for entry of the Per-Cry complex into the nucleus 0.64 0.069 1.12

k3 nM-1h-
1

Rate constant for the formation of the Per-Cry complex 0.64 0.069 1.12

k5 h-1 Rate constant for entry of the Bmal1 protein into the nucleus 0.32 0.034 0.56

k7 nM-1h-
1

Rate constant for the formation of the inactive Per-Cry-Clock-Bmal1
complex

0.40 0.043 0.70
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system of 36 coupled ODEs, this model provides a com-
prehensive representation of membrane-bound channels
and transporter functions as well as fluxes between the
cytosol and intracellular organelles.
The integration was carried out in CVODE [43],

which is part of the SUNDIALS 2.3 package [41], using
in-house code that can be obtained from the authors
upon request. Ten different parameters (see Table 2)
were varied in an FFD with three levels of each para-
meter (baseline value ± 50%), resulting in 59049 simula-
tions. Because the parameter space of the mouse heart
cell model has been less extensively explored than that
of the mammalian circadian clock, we designed for
screening rather than optimisation here. Screening
designs are typically used to identify which factors are
most important, while optimisation studies aim for a
more detailed insight into the relationships between the
various factors and the response. The range of each
parameter is given in Table 2. The data set resulting
from the mouse ventricular myocyte function simula-
tions consists of values of 36 state variables and 81 aux-
iliary variables (notably including ion currents that can
be monitored and manipulated in patch clamp experi-
ments (see [35])) calculated over 100 time steps (one
period) each for the set of 59049 combinations of values
of the ten input parameters. The time steps were adap-
tively chosen by the solver (Vik JO, Gjuvsland AB, Li L,
Tøndel K, Smith N, Hunter PJ, Omholt SW: Genotype-
phenotype map characteristics of an in silico heart cell,
Submitted). The pacing protocol was a stimulus setting
the transmembrane potential to -15 mV for 3 ms. This
was repeated until convergence or a maximum of 1000
stimuli. The convergence criterion for each state vari-
able was based on its value at the beginning of each
interval and the integral of its trajectory over that inter-
val, both being constant to within a relative tolerance of
0.001. A running history of ten intervals was kept, and
after each interval we checked for a match against the

previous ones. Cell dynamics was categorised as “failed”
if dynamics did not converge to period 1 within 1000
stimulus intervals. Details of alternans were not pursued.
Only the state variables were included in the regres-

sion analysis (not the auxiliary variables), and the con-
stant state variable iKss was omitted. For this data set
15793 of the 59049 simulations (26.7%)) failed, and were
therefore omitted in the analysis. In order for the time
series to be comparable, interpolation to a fixed set of
time points was needed. For the entire time series to be
analysed, the data set had to be separated into three
parts, according to the stimulus period (the values of
the stimulus period are given in Table 2). The time ser-
ies for each part of the data set were then interpolated
using the MATLAB® [38] system function “interp1.m”
into 200 equally spaced time points between 0 and the
stimulus period.

Metamodelling procedures
Implementation of the HC-PLSR was based on an initial
global second order polynomial PLSR using all observa-
tions in the calibration set with a 10-fold cross-valida-
tion (i.e. the data was separated into ten randomly
chosen segments, and ten PLSR models were made
where one segment was successively taken out and pre-
dicted using a PLSR model based on the other nine seg-
ments) to identify a preliminary (global) model (mean of
the ten models made in the cross-validation). The global
model (i.e. the optimal number of PLS components
(PCs)) was then chosen according to the minimum
cross-validated mean squared error (MSE) of prediction
of the response matrix Y, with the extra requirement
that each included component accounts for at least 1%
of the total cross-validated Y-variance. Using cross-vali-
dation to find the optimal rank is a well established
technique to minimise the risk of overfitting. When
modelling empirical data, the portion of the variance
accounted for by the omitted PCs are assumed to be

Table 2 Description and range of the parameters varied in the simulations with the mouse ventricular myocyte model

Parameter name Unit Description Minimum value Baseline value Maximum value

Ko uM Extracellular potassium concentration 2700 5400 8100

Nao uM Extracellular sodium concentration 67000 134000 201000

Cao uM Extracellular calcium concentration 700 1400 2100

stim_period ms Stimulus period 166.67 333.33 500

vmup_init uM/
ms

SERCA, calcium uptake from cytosol to sarcoplasmic reticulum 0.2530 0.5059 0.7589

P_CaL 1/ms L-type calcium current 1.25 2.5 3.75

V_max_NCX pA/pF NCX, scaling coefficient for the sodium-calcium exchanger current 1.9695 3.9390 5.9085

g_Na mS/uF Fast sodium current 8 16 24

g_K1 mS/uF Time-independent potassium current 0.1750 0.35 0.5250

g_Kr mS/uF Rapid delayed rectifier potassium current 0.0083 0.0165 0.0248
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caused by noise. However, in this case, we used data
from deterministic modelling which is free from noise,
but since we aimed for an as simple and easily interpre-
table metamodel as possible (but showing adequate pre-
dictive ability), we regarded variations not accounted for
by a second order polynomial as stochastic noise and
used cross-validation to truncate the model. The cross-
terms and second order terms were calculated from
mean-centred parameter values.
Thereafter the observations were clustered by fuzzy C-

means (FCM) clustering [44,45] of the X- or Y-scores
using Euclidian distance for a chosen number of PLS
components (X is the regressor matrix, while Y is the
response variable matrix). This allowed separation of the
overall data set into subsets where local polynomial
regression was hypothetically more likely to improve pre-
diction results. In our MATLAB® implementation the
FCM fuzzifier parameter was chosen equal to 2 (a stan-
dard choice). The fuzzifier parameter can be interpreted
as an increased sharing of points among all clusters.
Fuzzy clustering was chosen because the FCM algorithm
is simple, efficient and less prone to local minima than
crisp clustering algorithms. The FCM algorithm is also
flexible with respect to the distance measure used, and it
is easy to incorporate various types of penalties in the
distance measure [45]. It is therefore a good choice in
making the HC-PLSR method widely applicable.
To prevent possibly unstable regression models due to a

small number of calibration observations, we post-pro-
cessed the clustering with the requirement that each clus-
ter should contain at least ten observations. Smaller
clusters (and their associated observations) were regarded
as outliers, and not included in the subsequent local
regression modelling. Local second order polynomial
PLSR models were finally calibrated individually for each
of the remaining clusters, using 10-fold cross-validation to
find the optimal number of PLS components in the same
manner as in the global modelling. Using polynomial
PLSR instead of OLS (corresponding to PLSR using the
maximal number of PLS components) is an advantage in
hierarchical regression modelling, especially for large data
sets, since with OLS one would have to cluster on the
regressor matrix (X) itself, instead of the response (Y)-rele-
vant X-scores. This would be much more computationally
demanding than clustering on the reduced rank X-scores.
In addition to this, OLS requires the regressor covariance
matrix to be invertible, that is, the regressor variables need
to be linearly independent. Even in cases where the origi-
nal regressor matrix is generated using an experimental
design method that ensures that the design variables are
linearly independent in the full data set, this may still not
be true within the clusters used in the local regression
modelling. The MATLAB® [38] function “plsregress.m”
(from the Statistics Toolbox™ v7.2) was used for the

PLSR both for the global and the local regression analyses.
Figure 2 gives an overview of the HC-PLSR “pipeline”.
The MATLAB® code can be obtained from the authors
upon request.
New observations (or test set observations) were clas-

sified based on X- or Y-scores calculated by projection
into the global PLSR model. X-scores for test set obser-
vations were calculated based on loading weights from
the global PLSR model (see Additional file 1: Appendix
1, Eq. A4). If Y-scores were used in the clustering, the
global PLSR model was used for prediction of Y to
acquire the Y-scores from the loading weights of the
global PLSR model (see Additional file 1: Appendix 1,
Eq. A4 and A6). Four different ways of classifying an
observation into the appropriate cluster were compared:
i) the nearest cluster centre from the FCM clustering
(based on Euclidian distance), ii) Linear Discriminant
Analysis (LDA) [46], iii) Quadratic Discriminant Analy-
sis (QDA) [47] and iv) Naive Bayes (NB) classification
[47]. We used the MATLAB® functions “classify.m” and
“NaiveBayes.m” from the Statistics Toolbox™ v7.2 for
classification options ii)-iv), and in-house MATLAB®

code for option i).
Predictions of response variables for the test set obser-

vations were done both by a) selecting the local model
for the most probable cluster and by b) computing the
regression coefficients as a probability-weighted sum of
the local regression models. Outlier-check of new obser-
vations was based on the Euclidian distance matrix from
the clustering of all non-outliers in the calibration set
(based on the X- or Y-scores depending on what was
used for clustering and classification). The maximal
occurring distance from the cluster centre was found for
each cluster by inspection of the calibration results, and
1.5 times these values were used as outlier limits for the
respective clusters. Prediction of the outliers (corre-
sponding to no appropriate local model) was by conven-
tion handled by the global PLSR model.
To further improve the prediction accuracy we also

considered an alternative HC-PLSR approach based on
hierarchical regression modelling of the residuals from
the global PLSR model. Local modelling was here used
only on the Y-residuals (still using the original regressor
matrix), and the final predicted Y was the sum of the
global predictions and the local predictions. The clusters
were based on the global X-scores as described above,
and we therefore used the same number of clusters as
for the hierarchical regression modelling of the entire Y-
matrix. This gave a small gain in prediction accuracy
(the results for the mammalian circadian clock data are
shown in Additional file 1: Appendix 3, Figure A3.4).
However, this approach was not chosen since some
interpretability is lost due to the more complex Y-load-
ings based on the Y-residuals.
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Evaluation of the metamodelling performance of HC-PLSR
The three test applications were chosen in order to
represent a wide range of dynamic model types, in order
to obtain a valuable evaluation of the metamodelling
performance of HC-PLSR in systems biology. This is
important in order for the method to be generally
applicable e.g. as part of model repositories like the
CellML repository [7-9]. The first model setting repre-
sents very simple models, where differences between
various types of feedback can be explored. The two
other model settings represent more complex models
with many parameters and state variables, connected
through various types of feedback loops. As described
above, model setting 2 and 3 represent an optimisation
study and a screening study, respectively.

In the applications described above, a set of parameter
combinations and state variable initial conditions were
used as input to an ODE-based dynamic model, and the
output was a set of state variables calculated over a
number of time steps. In metamodelling of the dynamic
models, the parameter values and initial conditions were
then used as regressors (X) and the state variable time
series were used as response variables (Y) in a regression
analysis, in order to predict the state variable time series
directly from the parameters and initial conditions.
Second order polynomial HC-PLSR (including interac-

tion terms and second order terms in both the global
and local regression models) was compared to global,
second order polynomial PLSR (using 10-fold cross-vali-
dation to optimise the number of PLS components) and

Calibration Prediction for new observations

X- and Y- data

PLSR calibration

Global PLSR model

Global PLS X- and Y- scores

Membership values for each 
observation in each cluster

Fuzzy clusteringNr. of clusters

Local PLSR models in each cluster

Prediction of Y for each observation as weighted sum of 
local models using the membership values as weights or only using the most probable local model

X- data

Predicted Y- data

Global PLSR prediction

Predicted PLS X- and Y- scores

Projection into global 
PLSR model*

Classification 
(FCM/LDA/QDA/NB) 

Membership values for each 
observation in each cluster

PLSR calibration

PLSR prediction

PLSR prediction

Figure 2 Illustration of the HC-PLSR approach. The HC-PLSR “pipeline” starts with calibration of an initial global polynomial PLSR using all
observations in the calibration set. This global PLSR model provides PLS scores and loadings, which constitute the basis for separation of the
calibration set observations into groups by fuzzy C-means (FCM) clustering [44,45]. Local PLSR models are then calibrated in each cluster.
Predictions of response variables for new observations (or test set observations) are done by a) selecting the local model for the most probable
cluster based on classification or by b) computing the regression coefficients as a weighted sum of the local models, where the weights are
estimated cluster membership probabilities from the classification. *See Additional file 1: Appendix 1, Eq. A4 and A6.
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global second order polynomial OLS (equivalent to
PLSR were all PLS components are used) with respect
to test set prediction accuracy. Polynomial PLSR is
equivalent to Implicit Non-linear Latent Variable
Regression (INLR) [12], except that in INLR cross-terms
are not included. Table 3 gives an overview of the vari-
ables included in the regressor- and response matrices
and shows which test sets were used in the three appli-
cation examples. The same data were used with all three
regression methods. The squared correlation coefficient
(R2) and Root Mean Squared Error of Prediction
(RMSEP) values for the state variable time series of the
test set observations were used as measures of predic-
tion accuracy.
In HC-PLSR, only the local model corresponding to

the most probable cluster for each observation was used
in the test set prediction, since this approach gave
slightly better results than using a weighted sum of all
local models. The appropriate numbers of HC-PLSR
clusters were chosen by inspection of the R2 and
RMSEP values of Y within the calibration set, resulting
from predictions using a range of different numbers of
clusters. Here the calibration set observations were first
used for calibration and subsequently treated as “new
observations” and classified prior to prediction, that is,
the same procedure as for the test set was used in the
prediction stage. The minimum number of clusters in
HC-PLSR giving (approximately) maximum obtained
predictive ability (maximal R2 and minimal RMSEP) was
chosen for each state variable time series.
Model setting 1: Gene regulatory networks
In metamodelling of the six gene regulatory networks,
the initial values of the state variables were used as
regressors (X) (125 starting conditions × 3 state vari-
ables) and for each gene regulatory network, the

concatenated time series for the state variables X1, X2
and X3 were used as response variables (Y) (3 state vari-
ables × 300 time steps = 900 Y-variables). The state
variable data generated for the gene regulatory network
motifs are shown in Additional file 1: Appendix 2, Fig-
ure A2.1. Sine and cosine terms (in radians) of X were
included in the regressor matrix, while cross-terms and
second order terms were omitted here. This was the
result of a “trial and error” procedure to choose between
different types of nonlinear terms to include in the
regression equation. This could be afforded here due to
the relatively small size of the data set. Adding sine and
cosine terms to the regressor matrix turned out to be
advantageous in order to model the nonlinearities pre-
sent in this data set. All regressor and response variables
were mean-centred prior to the regression analysis.
In the HC-PLSR, FCM clustering on the Y-scores was

chosen due to the low number of X-variables (initial
conditions for three state variables), and the fact that
these were derived by a full factorial design. FCM clus-
tering on the first three PCs of the Y-scores was used to
establish the local PLSR models, since this gave a very
distinct clustering of the observations. QDA based on
globally predicted Y-scores for new observations gave
the best classification results for this data set, and was
therefore used for the test set prediction, using 33% of
the observations (randomly selected from the FFD) as a
separate test set (the rest of the observations were used
for calibration). The test set was chosen randomly from
all possible combinations of parameter values in order
to be representative for the population.
Model setting 2: Mammalian circadian clock
In metamodelling of the mammalian circadian clock
model, the state variable time series (Y) were modelled
as functions of the parameters of the dynamic model

Table 3 Overview of the regressor- and response matrices used in the regression analyses and the test sets used for
the three application examples

Application Design variables (D) Regressor
matrix (X)

Response matrix (Y) Test set used

Gene
regulatory
networks

125 initial conditions for the three
state variables X1, X2 and X3 (at time
zero) in a 53 FFD (dimensions:
125 × 3)

[D sin(D) cos
(D)]

The concatenated time series
for the state variables X1, X2
and X3 (Yi = 3 × 300 time
points,
i = 1 to nr. of observations)

33% of the observations in D (randomly
chosen), and the corresponding Y-values

Mammalian
circadian
clock model

Nine model parameters in an OMBR
design using eight levels for each
parameter
(dimensions: 8192 × 9)

[D cross-terms
of D D2]

16 state variable time series
modelled separately (for each
state variable Yi = 200 time
points,
i = 1 to nr. of observations)

8192 new parameter combinations
generated by random Monte Carlo sampling
(here the entire matrix D was used for
calibration) and corresponding Y-values

Mouse
ventricular
myocyte
model

Ten model parameters in a 310 FFD
(dimensions: 59049 × 10)

[D cross-terms
of D D2]*

35 state variable time series
modelled separately (for each
state variable Yi = 200 time
points,
i = 1 to nr. of observations)*

33% of the observations in D that did not fail
(randomly chosen), and the corresponding
Y-values

*The three parts of the mouse ventricular myocyte data set separated according to the stimulus period were analysed separately, and only the simulations that
did not fail were used.
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and their cross- and second order terms (X). Each of the
time series for the 16 state variables (see Additional file
1: Appendix 3, Figure A3.1) was modelled separately,
giving 16 regression models for each regression method.
Each regression model could thus predict the response
in 200 time steps for one of the 16 state variables. The
state variable time series (response variables, Y) were
log-transformed, and all variables were mean-centred
prior to the regression analysis.
FCM clustering on the X-scores from the global PLSR

model was used in the HC-PLSR, and the classification
of new observations was based on the distances to the
cluster centres (in predicted X-scores for new observa-
tions) from the fuzzy clustering. Clustering on the X-
scores is in general more safe compared to using the Y-
scores, since the Y-scores for new observations to be
predicted have to be calculated from predicted Y-values
from the global PLSR model. The X-scores are calcu-
lated from the X-data for new observations, and their
accuracy is therefore not dependent on the quality of
the global PLSR model. However, only the first three
PLS components of the X-scores were used for cluster-
ing, in order for the clusters to be as relevant as possible
for both Y and X (the first PCs explain the largest
amount of the covariance between X and Y).
The circadian clock test set consisted of 8192 new

parameter combinations generated by random Monte
Carlo sampling [48,49] from a uniform probability dis-
tribution within the same parameter ranges as for the
calibration set. Hence, the test set had the same size as
the calibration set. The reason why we chose to generate
a separate test set based on Monte Carlo sampling
instead of sampling randomly from the original design
as in the gene regulatory network example is that here a
highly reduced design was used instead of an FFD. A
test set sampled from a highly reduced design is less
likely to be fully representative for the population than a
test set sampled from an FFD (which includes all possi-
ble combinations of parameter values). Furthermore,
sampling from the OMBR design to generate a test set
would reduce the calibration set further, and the cali-
brated regression model would be less representative.
Since the OMBR is optimised with respect to quadratic
D-optimality [40], using part of the design as test set
would also make the calibration set less optimal for
inclusion of second order polynomial terms in the
regression analysis.
Model setting 3: Mouse ventricular myocyte
In metamodelling of the mouse ventricular myocyte
model, the state variable time series (Y) were modelled
as functions of the parameters of the dynamic model
and their cross- and second order terms (X), using the
same procedure as for the mammalian circadian clock
model. Each of the time series for the 35 state variables

(see Additional file 1: Appendix 4, Figure A4.1) was
modelled separately. The parameters were mean-centred
and standardised (divided by their standard deviations)
due to the large differences in absolute values for the
parameters, and the state variables were mean-centred
prior to the regression analysis.
In this study, 33% of the observations (randomly

selected from the simulations in the FFD that did not
fail) were used as a separate test set. The rest of the
observations were used for calibration. The data set
was separated according to the stimulus period, and
the regression calibration and test set predictions
were carried out for each part of the data set sepa-
rately. The average R2 and RMSEP values over the
three data set parts were then calculated for each
state variable.

Results
Model setting 1: Gene regulatory networks
Based on the results in Figure 3, HC-PLSR with two
clusters was chosen for Motif 1, while for Motif 2-6
using three clusters was considered to be optimal.
Figure 4 illustrates the clustering results obtained from
the global PLSR Y-scores prior to the HC-PLSR cali-
bration for gene regulatory motif 1 and motif 6. The
range within which the starting conditions for the
three state variables X1, X2 and X3 varied in each
cluster used in the HC-PLSR modelling of gene regula-
tory network motif 1 and 6 are shown in Additional
file 1: Appendix 2, Table A2.1.
The prediction results from HC-PLSR, PLSR and OLS

on the separate test set for the gene regulatory network
data are shown in Figure 5, and show that the HC-PLSR
approach performs better than both global PLSR and
OLS in modelling the state variable time series from
their initial conditions, especially for the gene regulatory
network motifs containing positive feedback loops
(Motif 1 and 2). The mean R2

test set over all motifs was
0.93 for HC-PLSR and 0.84 for both PLSR and OLS.
When clustering on the Y-scores as is done for the

gene regulatory motif data set, a relatively good global
PLSR model is needed for reasonable prediction of the Y-
scores for the test set. In this example, the lowest global
model R2

test set value (0.66) was obtained for gene regula-
tory network motif 1. This is good enough for a reason-
able Y-scores prediction for this data set, since HC-PLSR
results in an R2

test set value of 0.99 (see Figure 5). It
should, however, be kept in mind that the global model
needs to provide some reasonable information to be used
for prediction of the Y-scores. The required quality of
the global model depends on how distinct the separation
of the clusters is. Less distinctly separated clusters need a
higher quality of the Y-scores predictions for the Y-
scores to give reliable classification results.
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Model setting 2: Mammalian circadian clock
The optimal number of clusters to be used in HC-PLSR
for the circadian clock data set was found to be 15 or
20 for most of the state variables (see Additional file 1:
Appendix 3, Figure A3.2), but for two of the state vari-
ables a two-cluster solution was sufficient. Figure 6
shows the global PLSR X-scores and corresponding
clustering result (coloured) for the observations prior to
the HC-PLSR calibration for the state variable MP, while
Figure 7 shows the corresponding global X- and Y-
correlation loadings (see Additional file 1: Appendix 1).
Figure 7 shows that loading plots are useful for illustra-
tion of the relations between X- and Y-variables in the
estimated latent variable space, and indicates that the
parameter vmP accounts for the variation in PC1, and is
negatively correlated with the state variable MP time
series (Y). Hence, globally, vmP has a large, negative
effect on the state variable MP, since PC1 accounts for
the largest part of the covariance between X and Y. The

parameters vmB and k5 account for most of the variation
in PC2, while PC3 is made up of vmC, vmB and k5.
The accuracy of the test set predictions for the three

regression methods is compared in Figure 8 as histo-
grams of R2 and RMSEP values for the 16 state vari-
ables, indicating that HC-PLSR is superior to global
polynomial PLSR and global polynomial OLS with
regard to predictions of the state variable time series.
The mean R2

test set over all state variables was 0.99 for
HC-PLSR, 0.96 for PLSR and 0.97 for OLS. The HC-
PLSR results in R2

test set values larger than 0.98 for all
state variables (Figure 8). The prediction results from
OLS and PLSR are less robust. For the state variables
PC, PCP, PCC, CC, CCP, PCCP, PCN, PCNP and IN (see
Additional file 1: Appendix 3, Figure A3.1), HC-PLSR
works much better than PLSR and OLS. In light of that
HC-PLSR excels at positive feedback motifs for the gene
regulatory networks in model setting 1, and that these
state variables are all involved in a large positive
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feedback loop (see [34]), a possible explanation is that
the presence of the positive feedback loop is the reason
why HC-PLSR gives much more accurate results than
PLSR and OLS for these state variables. As shown in
Additional file 1: Appendix 3, Figure A3.3, most obser-
vations in the test set have relatively low prediction resi-
duals from HC-PLSR, and the mean prediction error
(taken over the 200 time steps) decreases as the distance
from the nearest cluster centre decreases (increasing
membership value for most probable cluster).

Model setting 3: Mouse ventricular myocyte
The optimal number of clusters to be used in HC-PLSR
was found to be between 10 and 20 for most state vari-
ables in the mouse ventricular myocyte data set (see
Additional file 1: Appendix 4, Figure A4.2). Figure 9
shows the global PLSR X-scores and corresponding clus-
tering result (coloured) for the observations used in the
HC-PLSR calibration for the state variable V (the action
potential), while Figure 10 shows the corresponding

global X- and Y- correlation loadings. For simplicity we
show only the results for the part of the data set having a
stimulus period of 333.33 ms (baseline value). Figure 10
indicates that the parameters having the largest impact
on the mouse ventricular myocyte action potential (V)
are Ko, P_CaL, Nao and g_Kr.
The test set prediction results from HC-PLSR, PLSR

and OLS on the murine heart cell data (average over
the three data set parts separated according to the sti-
mulus period) are shown in Figure 11. Also for this data
set, HC-PLSR results in a higher prediction accuracy
than the other two regression methods in prediction of
the state variable time series. The mean R2

test set over all
state variables was 0.98 for HC-PLSR and 0.94 for both
PLSR and OLS. Figure 11 shows that the results from
HC-PLSR are good for all state variables. As shown in
Additional file 1: Appendix 4, Figure A4.3, most obser-
vations have relatively low HC-PLSR prediction resi-
duals. The results from global polynomial PLSR and
OLS are less robust. This indicates that there are
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nonlinearities or non-monotone input-output relations
that a global polynomial regression model is not able to
model correctly, but that local modelling by HC-PLSR
can account for. The difference between the results
from HC-PLSR and the other two regression methods is
largest for the state variables PO1, PC2, ONa, CNa1 and
CNa2, perhaps due to a higher degree of nonlinearity
and/or a non-monotone response surface (see Addi-
tional file 1: Appendix 4, Figure A4.1).

Discussion
HC-PLSR provides a very flexible metamodelling metho-
dology, since the number of local models (clusters) can
be adjusted and the model adapted to suite the com-
plexity of the response surface of the dynamic model.
Hence, even very complex data sets containing a large
number of different types of input-output relations can
be quite accurately modelled through modelling each
type of response surface separately. HC-PLSR using only
one cluster is equivalent to a global PLSR model. In
principle, the least complex among several types of

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Motif nr.

R
2 te

st
 se

t

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Motif nr.

R
M

S
E

P
te

st
 se

t

 

 

HC−PLSR
PLSR
OLS

BA

Figure 5 Test set prediction results from HC-PLSR, PLSR and OLS for the gene regulatory networks. A) R2 and B) RMSEP values from test
set predictions of the gene regulatory network state variable time series as functions of the starting conditions, with HC-PLSR, global PLSR and
global OLS as grouped bars. In HC-PLSR, 4-9 PLS components were used in the regression models, while in PLSR 3-6 PLS components were
used. The mean R2test set over all motifs was 0.93 for HC-PLSR and 0.84 for both PLSR and OLS.

−0.02

−0.01

0

0.01

0.02

−0.04
−0.02

0
0.02

0.04
−0.05

0

0.05

T
x
, PC1

T
x
, PC2

T
x, P

C
3

Figure 6 Clustering results used in HC-PLSR for the
mammalian circadian clock state variable Mp. The global first
three PLSR X-scores (PC1-PC3) obtained for the calibration set data
for the mammalian circadian clock state variable MP. The
observations are coloured according to the two-cluster solution
used in the HC-PLSR (blue: cluster 1, red: cluster 2).

Tøndel et al. BMC Systems Biology 2011, 5:90
http://www.biomedcentral.com/1752-0509/5/90

Page 12 of 17



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

vmB

vmC

vmP
vdPCN
vdIN
k1
k3

k5

k7

P and Q, PC1

P 
an

d 
Q

, P
C3

Y=M
p

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

P and Q, PC1

P 
an

d 
Q

, P
C2

vmB

vmC
vmP vdPCNvdINk1k3

k5

k7

Y=M
p

Figure 7 Correlation loadings for the mammalian circadian clock state variable Mp. The global PLSR X- and Y-correlation loadings (P and
Q, respectively) for PC1 to PC3 obtained for the calibration set data for the circadian clock state variable MP. X-loadings (model parameters) are
shown as dots, while Y-loadings (time series) are shown as a curve. The loadings for the cross-terms and second order terms of the parameters
are not shown in order to increase the overview.

0.85 0.9 0.95 1
0

5

10

15

R2
test

 
set

N
u

m
b

er
 o

f 
st

at
e 

va
ri

ab
le

s

2 4 6 8 10
0

1

2

3

4

5

6

RMSEP
test

 
set

 

 

HC−PLSR
PLSR
OLS

A B

Figure 8 Test set prediction results from HC-PLSR, PLSR and OLS for the mammalian circadian clock. Histograms of A) R2 values and B)
RMSEP values from test set predictions of the mammalian circadian clock state variable time series as functions of the parameters, with HC-PLSR,
global polynomial PLSR and global polynomial OLS. In HC-PLSR, 4-19 PLS components were used in the regression models, while in PLSR 3-17
PLS components were used. The mean R2test set over all state variables was 0.99 for HC-PLSR, 0.96 for PLSR and 0.97 for OLS.

Tøndel et al. BMC Systems Biology 2011, 5:90
http://www.biomedcentral.com/1752-0509/5/90

Page 13 of 17



regression methods leading to good predictions should
be chosen, in order to favour model interpretation and
to avoid overfitting. In our approach to the hierarchical
PLSR, both the global and the local regression models
are kept for comparison. Hence, for each case of meta-
modelling one can evaluate the gain of using local mod-
elling compared to the global model. The combination
of local and global modelling is also useful for revealing
regional differences in model sensitivity to the various
parameters, e.g. by exploring the loading plots or regres-
sion coefficients for the local models. The local models

also provide the opportunity to zoom into regions of the
parameter space and identify the operative domains of
the parameter space in an efficient manner.
The gain in prediction accuracy from using HC-PLSR

was larger for metamodelling of the circadian clock data
set than for the mouse ventricular myocyte data, imply-
ing that the circadian clock model exhibits behaviour
which is harder to capture with linear polynomial mod-
els. This indicates that the circadian clock model con-
tains more non-monotonicity or other complex
nonlinear relationships between parameters and beha-
viour, but the systemic explanations are not easy to pin-
point as both dynamic models contain complex wiring.
Even though polynomial PLSR and OLS gave reasonable
predictions for many of the state variables in both the
circadian clock and the mouse ventricular myocyte data
set (see Figure 8 and Figure 11), the HC-PLSR results
were superior to both PLSR and OLS in terms of meta-
modelling robustness. OLS gave slightly better results
than global PLSR for both these data sets, since the
rank was reduced in PLSR compared to OLS. Projecting
the data into estimated latent variables and thereby
decreasing the rank of the data has great advantages
with respect to interpretation. Hence, there is a trade-
off between interpretability and prediction accuracy.
One may argue that the present criterion for choosing
the number of components to include in the PLSR
model (based on cross-validation) is a bit conservative
in this case, since the regression modelling is based on
noise-free data from deterministic models. Using HC-
PLSR, we achieve a better prediction accuracy than both
global polynomial PLSR and OLS, while keeping the
advantages of reduced rank and increased overview and
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interpretability compared to OLS by using PLSR in the
local modelling.
Our HC-PLSR using FCM clustering of the observa-

tions may be considered as a more or less automatic,
“top-down” approach. In contrast, most existing hier-
archical approaches are “bottom-up”, that is, they start
by estimating latent variables (PLSR scores) for indivi-
dual, a priori known data blocks, and then combine
these block scores into a second level linear PLSR
model [16-19]. The use of fuzzy clustering to separate
the observations into groups makes the HC-PLSR
approach presented here applicable also in cases where
prior knowledge about different blocks of data is not
available. However, when such information is available,
it should be used instead of clustering to separate the
observations into groups. The number of clusters to use
is here specified in advance. More computationally
demanding alternatives exist, however, that allow auto-
matic identification of the optimal number of clusters
[50,51]. An alternative would be to include an automatic

optimisation of the number of clusters (e.g. based on
automatic exploration of several alternatives). This
would allow for a semi-automatic metamodelling meth-
odology which would be feasible for implementation e.g.
as part of the CellML repository [7-9].
In contrast to crisp clustering methods, such as K-

means clustering, which allocate each observation to a
unique cluster, fuzzy clustering returns membership
values for the different clusters for each observation
[45]. This provides the opportunity to compute the
regression coefficients for each observation as a
weighted sum of the regression coefficients for the dif-
ferent clusters, where the membership values are used
as weights. Predictions of response variables for the test
set observations were here done both by a) selecting the
local model for the most probable cluster and by b)
computing the regression coefficients as a weighted sum
of the local models. The first approach gave the best
prediction accuracy in our case. The reason is probably
that all data sets used in this paper were generated from
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Figure 11 Test set prediction results from HC-PLSR, PLSR and OLS for the mouse ventricular myocyte. Histograms of A) R2 values and B)
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experimental designs, and not by random sampling in
the parameter space. For data sets with very distinct
separations of the clusters, the first approach performs
best, while for more continuous data, a weighted sum of
the local models will probably be a better choice. More-
over, using a weighted sum will help avoiding disconti-
nuities in regions where local models meet in more
continuous data sets. We found that using only the first
three PLS components in the FCM clustering gave the
most distinct separation of the clusters for the three
data sets tested here. This ensures that the most rele-
vant information about the covariance between X and Y
is being used for clustering when using the X-scores as
basis. However, using only three PLS components may
not be appropriate in general. For some data sets, one
may want to use a larger number of PLS components.
In order to use the Y-scores as a basis for clustering
and classification, the separation of the observations
needs to be quite distinct, since the Y-scores are based
on predicted Y-values and therefore contain some pre-
diction error that may disrupt the classification when
the clusters are not distinctly separated.
OLS is less computationally demanding than both

HC-PLSR and PLSR, and is a suitable metamodelling
method in cases where the response surface is mono-
tone, moderately nonlinear and the regressor variables
are linearly independent. However, for the metamodel-
ling approach to be feasible for automation, we need a
robust regression method that can be automatically
adjusted according to the properties of the response
surface of the dynamic model to be emulated. HC-
PLSR has advantages over other regression methods
such as global PLSR and OLS in cases where the
response surface is complex, highly nonlinear and non-
monotone (in such cases, the model errors described
by the RMSEP values from predictions with a global
regression method will be much higher than the level
of noise in the data), and the number of clusters used
can be adjusted to suit the complexity of the response
surface allowing for a robust automation of the meta-
modelling procedure.

Conclusions
Our results show that it is possible to emulate dynamic
models in systems biology to a high precision using
multivariate regression, and that local modelling can
improve the results substantially when the parameter to
phenotype map is highly nonlinear. HC-PLSR was
superior to both global polynomial PLSR and global
polynomial OLS regression in all three model settings
reported here. Since these model settings represent large
classes of dynamic models and because the HC-PLSR
method can be adjusted to suite the complexity of the
dynamic model behaviour in a very flexible way inviting

automation, it qualifies as a promising candidate
approach for metamodelling within systems biology.

Additional material

Additional file 1: ’Additional file.pdf’ contains Appendix 1, which
provides background theory on the multivariate analysis
methodology used, and Appendix 2-4 with supplementary figures
and tables for each of the three test cases.
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