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Abstract

and the PUFA synthesis pathway.

contribute to disease at a systems level.

Background: Network modeling of whole transcriptome expression data enables characterization of complex
epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed
and successfully implemented to develop these networks, there are no formal methods for comparing differences
in network connectivity patterns as a function of phenotypic trait.

Results: Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns
across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of
connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each
pair, which can be used to identify network components most relevant to disease status. The method can also be
generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks
and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns
in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets,
we identified numerous reproducible differences in network connectivity across histological grades of breast
cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs
(MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets.
Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially
expressed by histologic grade in either dataset, and would thus have not been identified using traditional
differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant
differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets,

Conclusions: Our results suggest that GGM can be used to formally evaluate differences in global interactome
connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that

Background

Network and pathway models have been frequently used
to describe complex interaction patterns of genes and
other types of molecules, and there is increasing recogni-
tion that such networks will facilitate a more clear under-
standing of cellular physiology [1]. Developed using
global expression [2], proteomic [3,4], or metabolic [5]
measures, the models can be used to characterize the
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patterns of interaction (gene-gene, gene-protein, etc) that
underlie cellular states. Such models have been used to
define the complex pathobiology of numerous cancer
types [6-8], neurological conditions [9], and metabolic
disorders [10]. More recently, models constructed
through integration of genotype and expression data
have been used to identify disease-susceptibility loci that
alter network dynamics [11,12].

Though network models are fairly easy to visualize
using graphs, direct comparison of two models (for
example, transcriptome networks across disease states),
and quantitative measurement of the differences
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between networks, remains challenging. In recent years
there have been growing literature of methodology for
such comparisons [13], either for a global scale estima-
tion of overall network similarity [14-16], or for mea-
sures of local difference in connectivity for nodes or
modules in the network [17-19]. Among the many
methods used to infer gene networks are Gaussian Gra-
phical models (GGM) [20-23], including the empirical
Bayes methods for fitting Gaussian graphical models
[24], which performs well in inferring large-p small-n
gene networks. As a probabilistic method, GGM pro-
vides posterior probabilities of gene-gene interaction for
each edge in the network, a quantifiable measure of
interaction that incorporates the uncertainty of the
model. We recently [25] applied the method to build an
integrative network based on multiple data sources (i.e.
SNP genotypes and gene expression data). We now
extend this method to integrate clinical phenotypes,
such as disease status, in order to facilitate identification
of network modules whose connectivity patterns differ
by disease status. Our approach enables direct compari-
son of two co-expression networks and objective identi-
fication of network components that consistently exhibit
differential connectivity patterns across disease states.
For simplicity we will only consider dichotomous phe-
notypes, though this method could be extended to cate-
gorical or continuous traits as well.

Methods

First we describe the GGM for gene expression data.
The expression data matrix Y observed here has G
genes and N samples, and the model follows [24] and
[25], where Y follows a multivariate normal distribution:

Yi = (y1ir ~~~~VGi)T ~ Nc(pny, Zy), i=1,....N,

where y;; represents the expression observation for jth
gene in the ith sample, 4 is the mean vector and X is the
covariance matrix. The covariance matrix Xy and the par-
tial correlation matrix IT for Y are estimated based on the
shrinkage estimation described in [26]. The partial corre-
lation I here represents the conditional dependency
between gene j and gene £, i.e, Ilj; = 0 if the two genes
are independent conditional on all other expression
values and Iy = O if they are conditionally correlated.
Therefore the network estimation problem is reduced to
a sequence of G(G - 1)/2 hypothesis testing problem for
Iy, = 0. Following the mixed model approach in [24] we
can calculate the empirical posterior probability that ITj
= 0 for each pair of genes (panel (a) and (b) in Figure 1).
Figure 2 shows an example of the distribution of partial
correlations and their corresponding posterior probabil-
ities. The partial correlation coefficient Il;; follows a
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normal distribution (panel a), but the mixed prior, which
assumes that the majority of the gene pairs are not con-
nected, effectively shrinks most of the posterior probabil-
ities toward zero (panel b). We can see in panel (c) as ITj
grows away from zero the probability of a significant
edge quickly approaches 1 and the narrow U-shape
demonstrates the ability to identify significant edges for
relatively small absolute values of partial correlation coef-
ficients (e.g.~ 0.04-0.05).

Suppose we have the estimation of networks from two
different disease groups. If we consider the posterior
probability of an edge as a frequency, as if we could
actually observe the proportion of samples in the group,
then for the two disease groups C and D we can calcu-
late the posterior odds ratio (postOR) for each edge:

~C 5C
postORy, = {)]Dk/(l Iijk)
pjk/ (1 - pjk)

where f)]% and ﬁ,Dk are the posterior probability esti-
mates for the event that an edge exists between gene j
and gene k, in groups C and D, respectively. If ﬁffz and/
or 13][;2 are zero, we assign them a very small number on
the same scale as the smallest non-zero posterior prob-
ability to make sure all odds ratios are well-defined. The
posterior odds ratios between the disease groups provide
a quantitative measure for difference between network
connectivity, and the parts of the network where the
postORs differ from 1 are likely the parts most relevant
to the disease state (panel (c) in Figure 1). Panel (d) in
Figure 2 shows a histogram of the log posterior odds
ratio, with most of the edges concentrated around zero
and relatively few of them way out in the tails, which
represent the edges associated with the disease states.
The gap from around +5 to +30 roughly corresponds to
the sharp climb in the posterior probability seen from
panel (c) in Figure 2. This pattern has been observed in
all data sets that we have analyzed, though the scales in
which the extreme observations fall may vary depending
on the sample size and the number of genes in the net-
work. As the sample size increases relative to the num-
ber of genes, we observe more extreme values of log
postORs, in some cases going up to +50 or 60.

The idea of using posterior odds ratios to quantify differ-
ential connectivity can also be generalized to model more
focused differential gene connectivity patterns within pre-
viously defined sets of genes, including experimentally
derived gene networks and canonical pathways. For exam-
ple, for a given set of genes A, we define the differential
connectivity score (DC score) as the average absolute dif-
ferential connectivity, measured by difference in log pos-
terior probability, for all edges comprising set A:
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(a) Posterior Prob Grade 1 Tumors

(b) Posterior Prob Grade 3 Tumors
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Figure 1 Determining the posterior odds ratio (postOR). Gene network for five genes in the matrix metalloproteinases network determined
separately in grade 1 breast cancer samples (a) and grade 3 samples (b). The posterior probabilities of gene-gene connection (in red)
determined by GGM, support true edges in both tumor grades between MMP1 and MMP12, and between MMP12 and MMP9 (postProb ~ 1);
and a true edge between MMP12 and MMP10 in grade 3 but not grade 1. The log posterior odds ratios of the probabilities (in red in panel )
quantify the magnitude of difference in connectivity across disease states. Data derived from GEO series 2990 [28]. See the results section for

detail of the breast cancer data analysis.
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which is a good approximation of the average postORs
for all edges in the set, as most of the posterior prob-

DC Scorey =

abilities f)]Ck, f)ﬁ are close to zero. This gives a reasonable

measure of the overall differential connectivity for each
gene set.

Results

Simulation Study

To assess the theoretical performance of our approach,
we performed a series of simulation studies. For each
simulation study we first generate two partial correlation
matrices representing networks observed in two groups
of samples (i.e. “cases” and “controls”), and then gener-
ate synthetic expression data sets from them. We then
attempt to recover the network using GGM and calcu-
late the postORs for all pairs of genes. To simulate net-
works most closely resembling real world network data,

we set out to develop a set of relatively sparse networks
with few strong connections. When generating the par-
tial correlation matrices for the “case” network we there-
fore follow the same approach in [25], whereby we
estimate a connectivity network using an expression
dataset generated from peripheral blood CD4+ lympho-
cytes [25], take the top G genes with the highest corre-
lation, retain correlation coefficients of the top q
significant edges and shrink all remaining correlation
coefficients to zero. We take G = 100 and q = 77 in our
simulation study, which corresponds to about 1.5% of
all possible edges (all with posterior probability over
0.95). The “control” networks are from the null model,
where the expression data are generated from an inde-
pendent multivariate distribution and none of the genes
are connected. We simulate the expression data with
200 samples in each group and repeat the entire proce-
dure 10 times.

The left panels (a) and (b) in Figure 3 show the histo-
gram of the log posterior odds ratios for all edges (panel
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Figure 2 An example of partial correlations, posterior probabilities and log odds ratios. (a)Histogram of partial correlation. (b)Histogram of
posterior probabilities. (c) The distribution of partial correlations and their corresponding posterior probabilities. (d)Histograms of log odds ratios.
Data generated using lllumina HumanRef8 expression data from peripheral blood CD4+ lymphocytes [25].
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a) and for the 1.5% edges that were truly differentiated
(panel b). From the right hand side of the panel (a) we
see that the log posterior odds ratios from the null
edges goes as high as 40. Therefore we take +40 as the
threshold, which gives 72.34% sensitivity and 99.90%
specificity for detection of a differentially connected
edge. Though we miss a considerable proportion of true
edges (shaded in grey in panel b), the very high specifi-
city is particularly encouraging, as it suggests that posi-
tive findings are very reliable. Note that even a small
reduction in specificity (for example, a 1% increase in
the false positive rate) would result in identification of
the thousands of spurious differential connections, given
the enormous number of pairwise comparisons in any
given genome-wide analysis. It is therefore essential to
maintain high specificity in this context. We note that
for smaller datasets (a simulation with 50 cases and con-
trols), though sensitivity drops considerably (15.06% in

our simulation using a cutoff of -40 posterior odds), the
high specificity is retained (99.95%). We also considered
more realistic scenarios, including situations where both
networks (the “cases” and the “controls”) contain posi-
tive edges and where sample size is uneven between
groups, and found very comparable results. For example,
right panels (c) and (d) in Figure 3 show an example of
unbalanced data, where one set has 200 samples and the
other has 50, containing 2.5% and 5% true positive
edges, respectively. Using the same threshold of poster-
ior odds at -40 the sensitivity is 40.47% and specificity is
99.65%. Figure 4 shows the ROC curves from all three
scenarios considered. We can see that the power varies
depending on the sample size and number of variables,
but the specificity always stays close to 100%, and the
absolute postORs from the null distribution rarely
exceed 40. Therefore, we can conclude that in realistic
scenarios, though we are not able to identify all truly
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(a) Histogram of log postOR, all edges (c) Histogram of log postOR, all edges, imbalanced data
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Figure 3 Histograms of log odds ratios in the simulation studies. All edges (panel (a) with N = 200 for both data sets and panel (c) for
unbalanced samples (N = 200/50)) and true positive edges (i.e. truly differentially connected between disease states, panel (b) for N = 200 and
(d) for unbalanced samples). Red shaded results in panel (b) and (d) denote truly differentially connected edges that are not detected at cutoff
of logOR = -40 (i.e. false negatives).
J

differentially connected edges, those edges that are
declared as differentially connected between states are
very likely to be true findings.

Alternatively, we could compare the partial correla-
tions or Pearson correlations between the “cases” and
“controls”, as shown in Figure 5. In both cases the truly
differentially connected edges seem well-separated from
the unconnected edges (panel a-b), though from the his-
togram of the z-statistics (panel c-f) we can see that the
true positive edges from partial correlations separate
better (have less overlapping with the true negative
edges) than the Pearson correlations, which are routi-
nely used to infer gene networks [18,27]. Notice for the
correlation coefficients we still need to apply arbitrary
thresholds [13], as we do not have repeated measure-
ment for the correlations for each individual edge. Com-
pared to Figure 3 we can see that the postORs from the
empirical Bayes method, which takes into consideration
the sparsity of real gene network, allow us to effectively

separate the truly differentially connected edges from
others.

Breast Cancer Study

We now demonstrate the application of our method to
real data sets. The main results will be focused on the
comparison between two independent gene expression
data sets from breast cancer tissues of varying histologi-
cal grade available through the Gene Expression Omni-
bus (GEO series GSE2990 and GSE6532). The GSE2990
series consists of Affymetrix Human Genome U133A
Array data for 189 breast tumor samples from the
National Cancer Institute database [28], from which we
selected 100 estrogen receptor-positive (ER+) samples
with histological grades 1 (n = 61) and 3 (n = 39). The
GSE6532 series contains several independent validation
sets generated using Affymetrix U133PLUS2 GeneChips
and described in [29], from which we used the 33 sam-
ples from Guy’s Hospital, UK (17 grade 1 and 16 grade
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3). These data sets were selected based on sample sizes
and availability of clinical phenotypes. Using the R
package genefilter[30], we applied the non-specific
gene ltering [31] on both data sets. The resultant data
set consisted of 1,445 RefSeq-annotated genes with
interquartile ranges (IQR) in the upper 50% for both
data sets.

We applied our method sequentially to define, in each
dataset, the differences in network connectivity patterns
observed across breast cancers of different histological
grades. The two datasets were analyzed separately to

enable unbiased evaluation of the reproducibility of find-
ings by our method when applied to biologically inde-
pendent datasets. We observe a similar pattern to those
seen in the simulation studies, with most edges concen-
trated around zero and relatively few in the extremes.
Focusing on the edges with extreme postOR probabil-
ities of differential connectivity between grades (Empiri-
cal p-values < 0.001 based on permutation), we found
significant overlap across studies. When considering
genes exhibiting high degrees of connectivity - so-called
hubs [1] defined as genes with at least 30 independent
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Pearson correlation coefficients (b) from the simulated “case” and “control” data sets. The red dots represents the differentially connected edges.
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edges - 10 of 33 hubs demonstrating differential connec-
tivity patterns in dataset GSE2990 were also observed in
the second dataset GSE6532 (Fisher’s exact test, p-value
= 1.5 x 10 ). This high degree of overlap between two
independent data sets suggests that the observed differ-
ential network connectivity patterns are a reproducible
property of complex biological processes such as cancer
progression.

We next examined the gene content of the replicated
hub genes demonstrating grade-dependent differences in
network connectivity, and found that in all but one case
(DHRS2), these hub genes have all been previously char-
acterized in expression studies of breast cancer, with
many being implicated as critical regulators or markers
of metastatic potential and tumor progression (Table 1).
That nearly all the identified genes have been previously
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Table 1 Hub list for breast cancer study (GSE2990 and GSE6532) histological grade 1 and 3

Gene Frequency Prior evidence for role in breast cancer biology

DHRS2 55/46 Up-regulated in endometrial cancer by the inducer of myometrial infiltration ERM/ETV5 [55]; Protective role against oxidative-
stress induced apoptosis in endometrial cancer [55]; Down-regulated in ovarian tumors following cisplatin treatment [32]

CXCL13 30/45 Overexpression in breast cancer tumor tissue, with elevated blood serum levels in patients with metastatic disease [56]

AGTRI1 36/42 Overexpressed in subset of estrogen-receptor positive breast cancer; Ectopic overexpression confers a highly invasive
phenotype in primary mammary epithelial cells; AGTR1-positive tumor growth reduced by 30% with receptor blockade in
xenograft model [54]

KRT15 34/42 Expressed in breast cancer tissue compared to normal breast tissue [57]; Expression associated with increased risk of post-
operative breast cancer recurrence [58]

SCGB2A1 38/49 Overexpressed in breast cancer tissue [59]; Associated with mammary gland proliferation and terminal differentiation [60]

MMP12 31/43 Breast tumor transfection of MMP12 reduced endothelial cell invasion and capillary tube formation [50]

PDZK1 47/46 Estrogen-regulated gene expressed in hormone-responsive breast cancer [61]; Correlated with estrogen receptor phenotype
[62]; Suppressed with tamoxifen and aromatase inhibitors [63]

BEX1 42/54 BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB
inhibition of apoptosis in breast cancer cell lines. [64]

S100A8 38/42 siRNA-mediated knockdown of ST00A8/A9 expression significantly reduced H-Ras-induced invasion/migration; Induction
confers the invasive/migratory phenotype [52]; Immunopositivity correlates with mitotic activity, MIB-1 index, HER2
overexpression, node metastasis, and poor prognosis [65]; Associated with transformation and progression of breast cancer
cells which is reversed by treatment with silencing inhibitors [53]; Down-regulated in invasive tumors [66]

NAV3 64/42 Differentially expressed in hill-type cancer cells [67]

Frequency denotes the number of differentially connected edges detected in GSE2990 and GSE6532.

implicated in breast cancer biology suggests that differ-
ential connectivity mapping is exquisitely specific in the
identification of biologically relevant genes. We note
that the 10th gene, DHRS2, though not previously
implicated in studies of breast cancer, has been asso-
ciated with other estrogen-responsive cancer types of
the female reproductive tract, such as endometrial and
ovarian cancer [32], suggesting that it too is a true posi-
tive finding, and represents a novel breast cancer target.
In contrast to more standard statistical methods, more
spurious evidence for differential connectivity might be
found, paradoxically, in studies of small sample size
when true connections in samples from one disease
state are not detected due to low statistical power. We
thus performed permutation tests to obtain a null distri-
bution of the number of differential connections for
each gene in the two disease states. With 500 permuta-
tions, two of the ten genes (CXCL13 and MMP12) were
rarely observed in both datasets (0.2% and 0.4%, respec-
tively), and thus can be considered to be reliable hubs
demonstrating consistent differential connectivity by his-
tological grade that are not likely observed due to
chance. We further note that although there is a strong
curvilinear relationship between the total number of sig-
nificant connections within a network (based on poster-
ior probability thresholds) and the number of
differential connections between states (p-values ~ 0, see
Figure 6), we observe that both CXCL13 and MMP12
represent outliers in these distributions of both datasets,
exhibiting a higher proportion of differential connec-
tions even when accounting for the total number of

connections. Therefore, they are unlikely to represent
false positive results, and represent high priority targets
central to breast cancer grade.

We next examined whether these same genes could be
identified using more standard analytic approaches
(making our method redundant) or whether our
approach provides truly independent information. When
we applied traditional differential expression analysis
(linear regression as implemented in the R package
limma: Linear Models for Microarray Data, [33]) to the
datasets, we found that only two of the 10 hub genes -
AGTRI1 and NAV3 - were themselves differentially
expressed by histological grade (FDR adjusted p-value <
0.05). Moreover, none of the 10 differentially connected
hub genes were identified as relevant grade-related
genes in the original report by [34]. These comparisons
suggest that differential connectivity mapping can iden-
tify disease relevant genes that would not be found
using more traditional approaches. The lack of differen-
tial expression for most of the hubs themselves argues
that the observed differential connectivity patterns are
not primarily due to primary alterations of hub gene
expression, but rather due to more subtle changes in
expression of numerous genes interacting with these
hubs.

We also individually tested each of 5,452 published
gene sets comprising the Molecular Signatures Data-
base [[35], MSigDB,] for evidence of differential con-
nectivity in the breast cancer data set. We considered
2,785 MSigDB gene sets that consist of 5 or more
genes represented in the breast cancer analysis, and for
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each gene set we calculated the DC Score. We also
performed permutation tests to obtain the null distri-
bution of DC score. DC-scores above the 99% percen-
tile of the null distributions from 100 permutation sets
were observed for 108 and 185 Broad Sets in the
GSE2990 and GSE6532 breast cancer datasets, respec-
tively, including 80 Broad Sets that exhibited differen-
tial network connectivity in both datasets. Additional
file 1 (Table S1) details the 16 Broad Sets that repro-
ducibly demonstrated such extreme differential con-
nectivity in both datasets with at least 3 differential
connections in each dataset. Most have been impli-
cated in tumor biology, and many of these gene sets
have been implicated in breast cancer progression,
including chromosomal region 1p33 [36], matrix
metalloproteinases (including MMP12), and sequence
targets of peroxisome proliferator-activated receptor
alpha [37,38]. Potential therapeutic targets were also
identified, including subnetworks of the polyunsatu-
rated fatty acid synthesis pathway [39] and of VEGE-
induced factors [40] (Figure 7). For example, consistent
differential connectivity was noted for a set of genes
[[41], Broad Set VEGF_HUVEC_30MIN_UP] upregu-
lated in human umbilical vein endothelial cells
(HUVEC:s) by VEGEF, a proangiogenic factors critical to
tumor progression and metastasis [40]. The differen-
tially connected sub-network (Figure 7) centers on
Cys2-His2 zinc finger transcription factors Early
Growth Response 1 and 2 (EGR1 and EGR2). EGR1
and EGR2 directly regulate a series of classical tumor
suppressors [42,43], and experimental interference of
their expression dramatically alter breast cancer cell
growth rates [44,45]. Evidence of differential connectiv-
ity was observed for numerous additional gene sets
implicated in other carcinomas, though not previously
with breast cancer. In response to an anonymous
reviewer’s suggestion, we also ran an analysis on
another breast cancer set, GEO series GSE11121 [46]
with Affymetrix Human Genome U133A Array to
further confirm the reproducibility of our findings. We
selected 29 patients with grade 1 breast cancer and 35
grade 3 breast cancer (ER data unavailable), and com-
pared the networks derived from the two subsets. We
found 35 hub genes with over 30 differential connec-
tions. Five of them overlap with the hub list from
GSE2990(CPB1, PRAME, MMP12, BEX1, NAV3),
which use the same platform. Three of them (MMP12,
BEX1, NAV3) overlap with both GSE2990 and
GSE6532 hub lists. The other gene of interest,
CXCL13, also has a large number differential connec-
tions (28). These results show strong reproducibility in
the third data set, demonstrating that the our findings
are not due to platform differences.
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Discussion
The appeal of systems-based or interacteome mapping
approaches for the study of disease is steadily increasing
with the recognition that non-linear epistatic interaction
underlies all but the simplest of biological processes.
However, formal identification of biologically relevant
interaction patterns imbedded in complex network con-
nectivity maps has been a challenging problem. Several
studies have looked at global comparison of the net-
works based on annotated database, such as GO or
KEGG [14-16]. Unlike our method, those previous stu-
dies assume complete knowledge of the networks (i.e.
they do not accommodate uncertainty in the observed
connectivity between nodes). In many instances, how-
ever, complete certainty is unattainable. Moreover, these
methods are largely global, but do not provide informa-
tion regarding regional differences (i.e. measures of dif-
ference in connectivity between any two nodes in the
network). Without a measure of variability of the model,
it is not easy to distinguish disease-related genes from
those that have neutral roles. There are several methods
for comparing region differential connectivity between
two networks, based on pair-wise gene co-expression
relationships, either at the gene cluster/module level
[17,19,47,48] or at the individual gene level [18]. Here
we have presented a novel approach that enables direct
comparison of two different networks derived from
Gaussian graphical model. The key feature of the GGM
approach is that the network inference is based on par-
tial correlation (i.e. conditional dependence), which dis-
tinguishes direct interactions from indirect ones [24,49].
The postORs from empirical Bayes approach provide an
easily interpretable quantitative measure for differential
connectivity, allowing search for local differential con-
nectivity either for individual genes, gene pairs, or on a
cluster/module level. The method performed well in
detecting differential network connectivity in simula-
tions of moderate sample size, compared to other simple
methods with Pearson correlations or partial correla-
tions only. In fact, even though the sensitivity was mod-
est, both the simulation studies and the real breast
cancer datasets suggest that our approach detects many
of the strongest associations with very high specificity.
Application of differential connectivity mapping to the
breast cancer data sets provides several important
insights, both regarding the utility of this approach to
other disease states, and with respect to the importance
of network connectivity underlying disease processes
such as cancer. With regard to the performance of the
method, we first found substantial reproducibility (~30%)
in the observed connectivity patterns across the two
breast cancer datasets, then similar results were found in
the third data set, suggesting network connectivity as a



Chu et al. BMC Systems Biology 2011, 5:89
http://www.biomedcentral.com/1752-0509/5/89

Page 11 of 14

observed in GSE2990 (red), GSE6532 (green), or both (black).

VEGF_HUVEC_30MIN_UP Network

Figure 7 Differentially connected sub-network of the VEGF_HUVEC_30MIN_UP BroadSet. VEGF_HUVEC_30MIN_UP is a collection of 24
transcripts significantly upregulated in human umbilical cord endothelial cells at 30 minutes following treatment with VEGF [41]. Network limited
to the 8 of 24 transcripts demonstrating differential connectivity in the two breast cancer datasets. Lines denote differentially connected edges

robust, measurable property of complex biological pro-
cesses. Second, many of the most compelling findings
from our analysis (the 10 hubs observed in both datasets)
have been previously implicated in breast cancer or other
estrogen-responsive cancers, suggesting that the
approach is highly specific with regard to biologically
relevant findings. Third, as the hubs genes are not always
expressed, the majority of the 10 hub genes were not
detected using the traditional differential expression
approach. Differential connectivity mapping comple-
ments differential gene expression analysis and can be
used to identify those genes.

Perhaps most importantly, careful review of the speci-
fic genes identified suggests that hubs manifesting differ-
ential connectivity (or one or more of their connected
edges) may represent important candidates for therapeu-
tic targeting. In addition to EGR1 (discussed above), of

the 10 hub genes identified, there is experimental evi-
dence for at least three that their targeted manipulation
alters the malignant and invasive potential of breast can-
cer. Matrix metalloprotease 12 (MMP12), a protease
that converts plasminogen to angiostatin (a potent inhi-
bitor of angiogenesis), inhibits angiogenesis when overe-
spressed in breast cancer tissue [50]. SI00AS, a calcium-
binding protein that complexes with SI00A9 and whose
expression is suppressed by functional BRCA1 [51], is
induced by H-Ras to promote malignant potential
(tumor cell invasion and migration). Contradictory
reports suggest that these malignant properties are
either attenuated [52] or enhanced [53] upon siRNA-
mediated knockdown of SI00A8/A9 expression, suggest-
ing S1I00AS8 as a targetable regulator of malignant poten-
tial. Similarly, AGTR1 (one of only two differentially-
connected hubs that was also itself differentially
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expressed across tissue grades) is a potent inducer of
invasive phenotypic properties when overexpressed in
primary mammary epithelial cells [54]. These effects are
inhibited by the AGTR1 antagonist losartan, and FDA-
approved medication commonly prescribed for the man-
agement of essential hypertension. Consistent with these
observations, treatment of xenograft models of breast
cancer with losartan reduces tumor growth in AGTR1-
positive, but not AGTR1-negative, breast cancers [54]. It
is intriguing to speculate whether manipulation of
NAV3, the only other gene that displayed both proper-
ties of differential connectivity and differential expres-
sion across tissue grade, would have similar effects in
altering the malignant potential of breast cancers.

Conclusion

In conclusion, we have developed a highly specific
method for the identification of genes that demonstrate
differential connectivity across disease states. Though
applied here to transcriptome data, this method can be
applied more broadly to other types of biological net-
work models, and can serve as a novel approach for the
identification of high priority target nodes underlying
complex biological processes.

Additional material

Additional file 1: Broad Sets demonstrating differential connectivity
by breast cancer histological grade. This table includes the 16 Broad
Sets that reproducibly demonstrated significant differential connectivity
in both GSE2990 and GSE6532 with at least 3 differential connections in
each dataset.
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