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Abstract

Background: Metabolic reconstructions (MRs) are common denominators in systems biology and represent
biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available
information in a consistent, structured manner. Salmonella enterica subspecies | serovar Typhimurium is a human
pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem.

Results: Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology
and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The
consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of
this reconstruction jamboree include i) development and implementation of a community-based workflow for MR
annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to
identify potential multi-target drug therapy approaches.

Conclusion: Taken together, with the growing number of parallel MRs a structured, community-driven approach
will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

Background

The evolution of antibiotic resistance by a variety of
human pathogens is a looming public health threat
[1,2]. Salmonella is a major human pathogen and a
model organism for bacterial pathogenesis research [3].
S. enterica subspecies I serovar Typhimurium (S. Typhi-
murium) is the principle subspecies employed in mole-
cular biology and its variants are causative agents
in gastroenteritis in humans. The publication of the
annotated genome for S. Typhimurium LT2 provided a
foundation for numerous applications, such as drug dis-
covery [4]. Previous efforts to systematically identify
candidate drug targets within metabolism did not result
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in a plethora of new candidates, due to the robustness
and redundancy of S. Typhimurium’s metabolic network
[5]. Since new single protein targets are missing, we
need to target multiple proteins conjointly. Unfortu-
nately, antibiotic regimens, which require multiple tar-
gets to be hit simultaneously, have an increased
probability of the pathogen evolving resistance relative
to a single target therapy. However, the continuous clin-
ical success of the combination of beta-lactams and
beta-lactamase inhibitors actually demonstrates that
inhibitor combinations can be successful even if each
individual inhibitor is non-effective on its own. The
robustness inherent to S. Typhimurium’s metabolic net-
work imposes combinatorial challenges for in vitro and
in vivo approaches to identify synthetic lethal genes sets
(i.e., experimental enumeration of all synthetic lethal
pairs in S. Typhimurium would require the creation of

© 2011 Thiele et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:dirk.bumann@unibas.ch
http://creativecommons.org/licenses/by/2.0

Thiele et al. BMC Systems Biology 2011, 5:8
http://www.biomedcentral.com/1752-0509/5/8

~500,000 double gene deletion strains, see below).
Employing a systems biology network perspective could
facilitate their identification.

GEnome scale Network REconstructions (GENRE) [6]
represent biochemical, genetic, and genomic (BiGG)
knowledge-bases [7] for target organisms; and have been
developed for expression [8,9], metabolic [6,10], regula-
tory [11], and signaling [12,13] networks. Metabolic
reconstructions (MRs) are the most developed out of
the four GENRES. The metabolic network reconstruc-
tion process is well established [14] and has been used
for various biotechnological and biomedical applications
[15,16]. Given the rapidly growing interest in MRs and
modeling, parallel reconstruction efforts for the same
target organism have arisen and resulted in alternative
MRs for a number of organisms [17-23]. These parallel
MRs may vary in content and format due to differences
in reconstruction approaches, literature interpretation,
and domain expertise of the reconstructing group. Sub-
sequent network comparison and discoveries are ham-
pered by these differences. Consequently, the need for a
community approach to divide the substantial effort
required in reconciling and expanding these MRs has
been formulated [17].

Results and Discussion

Salmonella, a reconstruction jamboree for an infectious
disease agent

In June 2008, it became apparent that two MRs were
being assembled by two different research groups [20]
(Bumann, unpublished data). Subsequently, a Salmonella
reconstruction jamboree was held at the University of
Iceland, Reykjavik, from September 5th to 6th, 2008.
The jamboree team consisted of over 20 experts in
microbiology, proteomics, Salmonella physiology, and
computational modeling. Based on the experience with
the yeast reconstruction jamboree [17], a methodology
was devised to increase the efficiency of community-
based network reconstruction [24] and applied to the
Salmonella reconstruction jamboree.

The goal of a network reconstruction jamboree is to
provide a 2-D genome annotation that is of higher qual-
ity than it may be achieved by bioinformatic analyses
alone [24,25]. The objective of this jamboree was to
re-evaluate, reconcile, and expand the currently available
MRs for S. Typhimurium with a focus on virulence.
Furthermore, we aimed to include standard identifiers
for reconstruction metabolites, reactions, and genes to
facilitate subsequent mapping of ‘omics’ data. The start-
ing MRs were AJRecon (a variant is published in [20])
and BRecon (D. Bumann, unpublished data), which were
derived from published E. coli MRs, iJR904 [26] and
iAF1260 [27], respectively, and their contents were mod-
ified to account for Salmonella-specific properties; i.e.,
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transport and enzymatic reactions not present in Salmo-
nella were removed and the proteins associated with the
reactions were modified to contain proteins present in
S. Typhimurium LT2.

Comparison of two metabolic reconstructions for

S. Typhimurium

We developed an automatic approach to initiate the
reconciliation of the two MRs by converting their meta-
bolites and reactions into a common language (Figure 1).
The MR contents were grouped into three categories: (1)
identical, (2) similar, and (3) dissimilar. A similar reaction
was one, in which there was a minor discrepancy, such
as reaction reversibility, a missing reactant or product, or
a difference in associated enzyme(s). Dissimilar reactions
were those with distinct sets of reactants and products,
and often represented metabolic reactions that were not
included in one of the starting MRS. The identical con-
tent was transferred to the consensus MR without further
evaluation. The similar and dissimilar content was evalu-
ated at the jamboree. Genes and proteins associated with
the reactions were also carefully compared and refined
where necessary. At its end, the meeting yielded an
approximately 80% reconciled consensus reconstruction.
The remaining discrepancies were manually curated by
the Bumann and Palsson groups following the jamboree
meeting.

Initial comparison revealed that there were 760 reac-
tions common to the starting MRs while 521 and 1684
reactions were unique to AJRecon and BRecon, respec-
tively (Additional file 1 Table S1). Some of these differ-
ences could be explained by changes introduced to
the E. coli MR when it was converted from its earlier
version, iJR904 [26], to the most recent version,
iAF1260 [27] (i.e., explicit definition of a periplasm com-
partment; more detailed fatty acid metabolism).

Characteristics of the Salmonella Consensus
Reconstruction

The resulting knowledge-base, STM_v1.0 (Table 1;
Additional file 2; Additional file 1 Table S2), represents
the final product of a community-effort to develop a
detailed MR of S. Typhimurium. STM_v1.0 integrates
the novel and common features of the starting MRs into
a vetted, well-documented consensus knowledge-base,
capturing currently available BiGG knowledge about
S. Typhimurium. Key features of STM_v1.0 include
i) accounting for the periplasm as a compartment
between the extracellular space and cytoplasm; ii) Sal-
monella-specific virulence characteristics, such as iron
chelation by salmochelin and serovar Typhimurium LT2
O-antigen production; iii) the possibility to employ the
consensus MR as mathematical, predictive model; and
iv) comprehensive support data for reactions and
associated genes (Additional file 1 Table S2a). Some
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Figure 1 Approach to reconcile two metabolic reconstructions (MR). This figure illustrates the automated comparison tool developed for
the Salmonella reconstruction jamboree. Both MRs are translated into a common language (based on KEGG [44]). Metabolites and reactions that
could not be mapped onto KEGG were subject to manual evaluation by the jamboree team. The overlapping part of the MRs was directly
moved into the consensus MR while reactions and metabolites unique to a MR were evaluated manually. This approach can be readily applied
to comparison of any two MRs.

information was excluded from STM_v1.0, such as the
26 dipeptide and tripeptide transport/digestion reactions
that are present in AJRecon, as they represent generic
compounds. Accounting for all potential consumable
oligopeptides would make computational analysis
intractable or unnecessarily difficult. Appropriate

oligopeptides may be manually added to STM_v1.0 to
represent a specific growth environment. We also
attempted to exclude reactions that were included to fit
some growth data [28], but were contrary to other
observations [20,29] as was the case for growth with
D-aspartic acid [30] as the sole carbon source which

Table 1 Basic Statistics for the original and the consensus reconstructions

AJRecon [20] BRecon iMA945*% [21] Consensus (new data)

Genes 1,119 1,222 945 1,270
Network reactions 1,079 2,108 1,964 2,201

-Transport 200 575 726 738

reactions

Biochemical 879 1,533 1,238 1,463

reactions
Metabolites (unique) 754 1,084 1,035 1,119

Cytosol, extracellular
space

Compartments

Cytosol, periplasm, extracellular
space

Cytosol, periplasm, extracellular
space

Cytosol, periplasm, extracellular
space

*Not included in consensus reconstruction. See text for details.
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requires an unknown transporter and an unknown
aspartate racemase [31].

Additionally, we evaluated the reaction directionality
of consensus MR reactions by considering thermody-
namic properties of participating metabolites. In the
case that a thermodynamic prediction was inconsistent
with experimental evidence, the experimental evidence
was followed. Thermodynamic predictions are made
using the knowledge that is available [45], and incorrect
predictions highlight gaps in our knowledge of biology.

A bacterial MR often includes a biomass reaction that
lists all known biomass precursors and their fractional
contribution necessary to produce a new bacterial cell in
a given environment. The individual biomass constitu-
ents of a S. Typhimurium cell have been measured [20],
and adapted for the consensus reconstruction by
accounting for the changes in naming and compart-
ments introduced during reconciliation (Additional file
1 Table S3c).

Comparison with a third metabolic reconstruction of S.
Typhimurium

After finishing the consensus reconstruction, a third
metabolic reconstruction (iMA945) was published [21].
Similar to one of our starting MRs (BRecon), iMA945
was built by using homology, and other bioinformatics
criteria [32], starting from the E. coli metabolic recon-
struction (iAF1260). Gaps in iMA945 were detected and
filled with GapFind and GapFill, respectively [33]; and
iMA945’s content was further augmented by the Grow-
Match algorithm [34] to fit experimental measurements.
These automated optimization methods are excellent
tools for identifying gaps in network reconstructions
and proposing candidate reactions to fill these gaps and
fit the model to growth data, however, they often do not
associate genes with the candidate reactions. The candi-
date reactions are typically taken from a universal reac-
tion database (such as KEGG) that includes pathways
from all domains of life, thus candidate reactions pro-
posed by these methods should be taken as hypotheses
and require additional validation from published litera-
ture or direct experimental evidence.

We performed a preliminary comparison between
STM_v1.0 and iMA945. However, we did not reconcile
iMA945 with the consensus reconstruction, as this will
require detailed evaluation of the discrepancies in a sub-
sequent jamboree meeting. Overall, 2,057 reactions were
present in both the consensus reconstruction and
iMA945, of which 1,706 reactions have identical gene-
protein-reaction (GPR) associations (Additional file 1
Table S2d). A total of 26 reactions had identical reac-
tion identifiers but different reactions (e.g., different
reactants, products, stoichiometry, or directionality:
reversible, forward only, backward only) and GPR asso-
ciations. There were a total of 629 distinct reaction ids
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between STM_v1.0 and iMA945: 446 were unique to
STM_v1.0 and 183 to iMA945. Of the 183 reactions
flagged as unique to iMA945, the majority represents
reactions that were intentionally excluded from the con-
sensus reaction (e.g., 45 dipeptide exchange, transport,
and peptidase reactions and >60 additional exchange,
transport, and enzymatic reactions not supported by
literature). Some of the distinct reactions, such as ade-
nosylcobalamin phosphate synthase, were due to differ-
ent metabolite and reaction identifiers. No bibliomic
data were included in iMA945, so it was not possible to
assess whether the reactions were inserted by the auto-
mated gap-filling methods or supported by additional
evidence. The 446 reactions unique to STM_v1.0
include Salmonella-specific chelators, O-antigens, and
lipid modifications that were not present in the starting
network derived from the E. coli MR (iAF1260). Overall,
the core metabolic network is similar between
STM_v1.0 and iMA945, which is expected as the draft
scaffolds for both MRs were derived from E. coli MRs
and S. Typhimurium has a notable metabolic homology
with E. coli; however, STM_v1.0 includes over 300 more
genes than iMA945 and includes a variety of Salmo-
nella-specific reactions that are essential for virulence
and could serve as coupling points for constructing a
host-pathogen model.

Metabolic Network Reconstruction Assessment

To assess the utility of a mathematical approximation of
reality, it is essential to determine the consistency of the
model’s predictions with real-world benchmarks. In the
case of MRs, comparing experimental growth data with
predicted biomass production is a commonly employed
metric in benchmarking metabolic models [14].
Although biomass production is a commonly employed
metric, the results should always be taken with a grain
of salt; for instance, it is possible to improve the fitting
of a model’s predictions to growth data by including
enzymatic reactions for which no evidence exists or
which are contrary to published experimental observa-
tions. The reconstruction committee chose not to
include invalidated enzymatic reactions that improved
the fit between growth predictions and experimental
observations; the failings of the model’s predictions
highlight areas where knowledge is lacking and experi-
mental undertakings could identify new knowledge.

For S. Typhimurium, there is a wealth of experimental
growth data [29]. Overall, we found good agreement
between the qualitative growth phenotype predictions
and the experimental data (Table 2 Additional file 1
Table S4); with the notable exception of sulfur metabo-
lism where the prediction accuracy was about 40%.
As we are becoming increasingly aware of the impor-
tance of sulfur-related metabolism in host-pathogen
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Table 2 Growth benchmark results

Experiment

Source Prediction Growth No Growth

(accuracy)

Carbon Growth 79 9
(118/133) No Growth 6 39
Nitrogen Growth 28 5

(57/64) No Growth 2 29
Phosphate Growth 24 0

(24/25) No Growth 1 0

Sulfur Growth 0
(8/14) No Growth 2

interactions [35-38], the deficiencies in our knowledge
highlighted by this analysis represent viable targets for
experimental enquiry. For the carbon and nitrogen
sources accessible by AJRecon our results were compar-
able, however STM_v1.0 has the ability to metabolize 20
carbon sources and 15 nitrogen sources not accessible
to AJRecon. The additional metabolic capabilities of
STM_v1.0 are due, in part, to the presence of ~200
additional gene products in STM_v1.0.

Gene Essentiality Simulations

To combat the rise in antibiotic-resistant pathogens, it is
crucial to identify new drug targets. Genes or sets of
genes that are essential for growth are potential drug
targets. To identify novel drug targets in STM_v1.0, we
performed single and double gene deletion studies. We
identified 201 essential genes in M9/glc, 144 of which
were also essential in LB (Additional file 1 Table S5a).
The synthetic lethal gene pair simulations were per-
formed using only genes that were found to be non-
essential in the condition of interest (Additional file 1
Table S6). In M9/glc, there were 87 synthetic lethal
gene-pairs comprised of 102 unique genes. For E. coli,
Suthers et al. [39] predicted 86 synthetic lethal gene-
pairs, however, there were only 83 unique genes
involved. In LB, there were 56 synthetic lethal gene-
pairs comprised of 76 unique genes. Interestingly, 10 of
LB synthetic lethal genes were also essential in M9/glc
and were members of 12 of the LB synthetic lethal
gene-pairs. The very small fraction of essential synthetic
lethal gene pairs (< 100 synthetic lethalities out of
>500,000 possibilities - assuming approx. 1000 non-
essential metabolic genes) emphasizes the robustness of
S. Typhimurium’s metabolic network, which has pre-
viously been noted [5].

Candidate drug targets

Our observed, very small number of synthetic lethal
pairs in STM_v1.0 indicates that antimicrobial regimens
may need to target more than two elements to be
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effective. Unfortunately, it will take less time for a
pathogen to evolve a solution to a conjoint two-target
antimicrobial strategy compared to a single-target strat-
egy. To reduce the probability of a pathogen evolving
resistance to a conjoint two-target strategy, it may be
plausible to employ a combination of two-target strate-
gies. Although a combination approach may be suitable
for dealing with antibiotic resistance, there are potential
shortcomings associated with clearance and toxicity
because all the components of a regimen must reach a
target at a specific time with the requisite concentra-
tions. Despite these difficulties, multi-component, multi-
target drugs are becoming standard therapeutics for
complex diseases, including cancer, diabetes, and infec-
tious diseases [40]. Experimental identification and char-
acterization of therapeutic strategies that require
multiple targets for effectiveness is a resource intensive
undertaking (e.g., creating over 500,000 double mutant
strains). An in silico approach using an MR, such as
STM_v1.0, could be implemented to prioritize the
experiments by indicating which multi-target therapies
would adversely affect the pathogen’s metabolic
capabilities.

As mentioned above, the synthetic gene deletion ana-
lysis yielded 56 synthetic lethal gene pairs disrupting
growth of S. Typhimurium in silico. We grouped these
gene pairs based on different criteria to assess their
potential value as multi-drug targets (Figure 2). It is
notable that five gene pairs are between protein com-
plexes while a further three gene pairs are between
genes involved in the same pathway - this indicates the
presence of a layer of ‘redundancy’ for the enzyme or
pathway that confers protection against a single-target
therapy. Moreover, three of the genes involved in gene
pairs are known to be essential for virulence, but not for
growth, and have known inhibitors based on BRENDA
[41]. This structured overview of in silico synthetic
lethal gene pairs identified numerous candidate drug
targets many of which have known inhibitors. In subse-
quent studies, these model-generated hypotheses need
to be tested and validated.

Additional gene products shown to play a central role
in virulence yet are not essential for growth in laboratory
conditions or do not have an unequivocal functional
annotation represent additional therapeutic targets.
These gene products could serve as potential points for
manipulating host metabolism [38], could be essential for
metabolism in the host environment (e.g., Salmonella-
containing vacuoles are nutrient poor) [42], and will
represent an energy and materials demand when creating
integrated metabolic and expression reconstructions
[8,9]. Recent examples of relevant gene products that
have not been annotated but are crucial for virulence
include gene products STM3117-STM3120 [43]; as the
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metabolic functions of unannotated genes are elucidated,
they will need to be incorporated into future revisions of
the MR.

Conclusions

Taken together, the community-developed consensus
MR is a curated reconstruction with the combined prop-
erties of the starting MRs and new information that was
added during and after the reconstruction jamboree. The
expanded metabolic versatility with a focus on virulence,
updated annotation, including corrections, and curation
of hundreds of additional reactions, genes, and metabo-
lites by a community of experts present in STM_v1.0
highlights the value of a community-based approach.
Another MR for S. Typhimurium was published after the
jamboree [21], which was also based on an E. coli MR
[27]. The reconciliation with this third MR will need to
be done in subsequent jamboree meetings, which will
also lead to a further expansion of knowledge and data
included in the consensus knowledge-base. The publica-
tion of the third MR for S. Typhimurium emphasizes the
importance and the value of the effort presented in this

report as well as the need for additional outreach when
assembling jamboree committees.

Methods

Metabolic network reconstructions of Salmonella enterica
serovar Typhimurium LT2

The starting reconstructions, AJRecon and BRecon, were
built on scaffolds derived from published E. coli MRS.
AJRecon is a pre-publication version of iRR1083 [20], and
was based on iJR904 [26]. For its scaffold, BRecon
(Bumann, unpublished) employed iAF1260 [27]- a direct
descendent of iJR904. The two reconstructions, differ in
content due to: (1) different components being targeted for
manual curation (e.g., BRecon extended Fe chelation and
AJRecon extended lipid production), and (2) differences in
E. coli MRs that were used as comparative genomics scaf-
folds for initializing the Salmonella MRs (e.g., iAF1260
accounted for the periplasm whereas its ancestor did not).

Method for community-based network reconstruction
There are three essential phases for community-based
MR development: (1) preparation, (2) jamboree, and
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(3) reconstruction finalization [24]. The preparation and
finalization phases are carried out by a small contingent
of researchers, whereas, the collective knowledge of the
community is harnessed during the jamboree. In the pre-
paration phase, the two MRs were compared as described
below in terms of metabolites, reactions, and gene-pro-
tein-reaction associations (GPRs). Overlapping content
between both original MRs was directly moved into the
consensus MR (Additional file 1 Table S1). Discrepancies
in the listed three areas were presented to the jamboree
team, which was split into three groups: metabolite cura-
tion, reaction curation group, and GPR curation group.
The metabolites group curated the list of all metabolites
present in either original MR for i) protonation state of
metabolites at physiological pH, ii) missing metabolite
identifiers: KEGGID, PubChemID, ChEBI ID, and iii)
comparison of neutral formulae in reconstruction and
metabolite databases. The reaction group was responsible
for identifying evidence for orphan reactions in either ori-
ginal MR with and without a KEGG reaction ID. Reac-
tions without a KEGG ID had to be extensively audited
as there were no database evidences for the correctness
of the reaction mechanisms. The GPR group had to
resolve the discrepancies in GPR assignments using gen-
ome databases and literature. Each team evaluates their
problem set based on evidence within the consensus MR
and available resources (literature, databases, and annota-
tions). Items that are not adequately addressed during the
jamboree are subject to extensive manual curation during
the MR finalization phase. The finalization phase
includes: (1) manual curation, (2) benchmarking the con-
sensus MR against experimentally-derived phenotypic
data, and (3) MR dissemination. The consensus MR is
expected to be maintained, updated and expanded in
subsequent reconstruction jamborees.

Metabolic Reconstruction Reconciliation

Reconciling multiple MRs requires that the MRs’ con-
tents employ a common nomenclature so that the con-
tents may be compared. For this work, we employed the
KEGG database [44] as the source of common identi-
fiers (Figure 1); although all of the reactions and meta-
bolites in KEGG may not be accurate or complete,
KEGG has the benefit of being an extensive, freely
accessible resource used by the broader biological com-
munity. The complete consensus reconstruction can be
found in Additional file 1 Table S6 and in Additional
file 2 as an SBML file.

Thermodynamic directionality

Thermodynamic directionality for each reaction was cal-
culated as described in [45]. Briefly, assuming a tempera-
ture of at 310.15 K, intracellular pH of 7.7, extracellular/
periplasmic pH of 7.0, and a concentration range of 0.01-
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20 mM, we calculated upper and lower bounds on trans-
formed reaction Gibbs energy, and assigned reaction
directionality accordingly. Transport reactions were not
subject to thermodynamic consistency analysis as there is
still uncertainty associated with the directionality predic-
tion of transmembrane transport.

Conversion of reconstruction into a mathematical model
The conversion of a reconstruction into a mathematical
model has been described in detail elsewhere [14]. The
unit of reaction fluxes was defined as mmol/gpy/hr.

Phenotypic assessment

Flux balance analysis [46] was employed to assess the
STM_v1.0 model’s ability to correctly predict biomass
production in a variety of limiting conditions. The accu-
racy of the model was assessed by comparing the pre-
dictions to benchmarks drawn from experimental data
[20,29]. In this assessment, there are four possible obser-
vations: (1) STM_v1.0 model correctly predicts growth
(G/G), (2) STM_v1.0 model incorrectly predicts growth
(G/NG), (3) STM_v1.0 model correctly predicts no
growth (NG/NG), and (4) STM_v1.0 model incorrectly
predicts no growth (NG/G). For a prediction to be
counted as a true positive (G/G) or true negative (NG/
NG), the prediction needed to match one or more
experimental observations. The predictions were first
compared with the Biolog phenotype microarray (PM)
data http://www.biolog.com. False positive predictions
(G/NG) and false negative predictions (NG/G) were
then compared with the data from Gutnick et al. [29]
and references cited in Ragunathan et al. [20]. For limit-
ing conditions not represented in the PM, predictions
were only compared with data from Gutnick ez al. [29]
or cited in Ragunathan et al. [20].

Gene essentiality analysis

The gene deletion studies were performed by converting
STM_v1.0 into a stoichiometric model and performing
flux balance analysis [46]. For each gene, or gene pair,
the associated reaction(s) were disabled (Vinin, i = Vinax, i =
0 mmol.gDW '.hr™") and the ability of the model to pro-
duce biomass was assessed, i.e., the biomass reaction was
chosen as the objective function and maximized.

All simulations were performed using the COBRA
Toolbox v2.0 [47] using Matlab (Mathworks, Inc) as the
programming environment, and Tomlab (TomOpt, Inc)
as the linear programming solver.

Additional material

Additional file 1: Consensus MR. This xIsx file contains the consensus
reconstruction and simulation setup/results. - Table S1. Statistics for
automated reconciliation of starting reconstructions. - Table S2.
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Consensus Reconstruction in SBML format. - Table S3a. M9/glc. - Table
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