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Abstract

information), a new criterion function is here proposed.

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the
most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for
this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to
the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression
measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual

Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs
from time series expression profiles. The inference process is based on a feature selection approach and the
conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is
applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN)
model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex
networks and its gene transference function is obtained from random drawing on the set of possible Boolean
functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size
and its topologies are based on real networks. The dynamics are generated by continuous differential equations
with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the
inference with respect to different network topologies, transfer functions and network sizes.

Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the
number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free
parameter of the Tsallis entropy was on average in the range 2.5 < g < 3.5 (hence, subextensive entropy), which
opens new perspectives for GRNs inference methods based on information theory and for investigation of the
nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented
and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/
dimreduction and http://code.google.com/p/dimreduction/.

1 Background

In general, living organisms can be viewed as net-works
of molecules connected by chemical reactions. More
specifically, the cell control involves the activity of sev-
eral related genes through gene networks, with the rela-
tionship among them being generally broadly unknown.
The inference or reverse-engineering of such gene
networks is very important to uncover the functional
relationship among genes and can be defined as the
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identification of gene interactions from experimental
data through computational analysis [1].

Gene regulatory networks (GRNs) are used to indicate
the interrelation among genes in the genomic level [2].
Such information is very important for disease treatment
design, drugs creation purposes and to understand the
activity of living organisms in the molecular level. In
fact, there is a strong motivation for the inference of
GRNs from gene expression patterns, e.g., motivating
the DREAM project [3].

The development of techniques for sampling expres-
sion levels of genes along time has increased the possibi-
lity of important advances in the understanding of

© 2011 Lopes et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


http://sourceforge.net/projects/dimreduction
http://sourceforge.net/projects/dimreduction
http://code.google.com/p/dimreduction/
mailto:fabricio@utfpr.edu.br
http://creativecommons.org/licenses/by/2.0

Lopes et al. BMC Systems Biology 2011, 5:61
http://www.biomedcentral.com/1752-0509/5/61

regulatory mechanisms of gene transcription and protein
synthesis. In this context, an important task is the study
and identification of high-level properties of gene net-
works and their interactions, without the necessity of
low-level biochemical descriptions. It is not the objective
of this work to analyze a detailed biochemical model.
The objective is to recover the gene connections in a
global and simple way, by identifying the most signifi-
cant connections (relationships).

While it is not possible to infer the network topology
with great accuracy using only gene expression measure-
ments mainly due to the short sample sets and the high
system dimension, i.e., the number of genes, as well as
its complexity [4], the use of such inferences can be
very important for planning experiments and/or to
focus in some small meaningful subgroups of genes,
thus reducing the complexity of the problem.

We are interested in the inference of network topol-
ogy from temporal expression profiles by minimizing
the conditional entropy between the genes, i.e., the gene
entropy conditioned to the state of others genes. Given
a gene, the idea is to set as predictors the genes that
minimize its entropy. Therefore, the conditional entropy
works as a criterion function which has to be mini-
mized. As in a typical machine learning problem, the
quality of the inference depends on the data and the cri-
terion function. If the data is not representative, the
obtained solution will probably not be a global mini-
mum but a local one. Similarly, if the criterion function
is not suitable, the solution can only partially satisfy the
constraint imposed by the data or even represent a
wrong solution. Of course, since the criterion function
follows the properties of the entropy concept, a comple-
tely wrong solution is not expected. In other words, if
the observation of some genes reduces the uncertainty
on the target gene, the prediction accuracy is improved.
But it may not be the best or optimal one, which brings
the question: what is the best entropy function for the
inference of GRNs?

In this paper we address this question by presenting a
new criterion function for the inference of GRNs in
order to introduce the sensibility of the minimum con-
ditional entropy regarding its functional form. The gen-
eralized entropy functional form proposed by Tsallis [5]
is adopted, which not only recovers the Shannon form
but also presents properties required by the Statistical
Physics Theory. These properties are related to Thermo-
dynamics principles, to the concept of stability and its
axiomatic foundations [6].

A variety of statistical methods to infer network topol-
ogy has been applied to gene expression data [1,7-20].
The results are often evaluated by comparing predicted
couplings with those known from biological databases.
While this procedure can elucidate or corroborate
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inferred interactions between some couples of genes, it
has the drawback of the difficulty in estimating the false
detection rate [4] and thus making the validation pro-
cess very difficult. As it is not always possible to assure
the quality of inference methods by analytical calculus,
mainly in high complex systems, it is very important to
use computational experiments to do it. Besides, in such
experiments (simulations) it is possible to investigate
prior information, as topology classes (e.g., random or
scale-free networks), or the system dynamics. Therefore,
an Artificial Gene Network (AGN) platform [21,22] and
the DREAM4 in silico network challenge [3] are
explored in the present paper in order to assess the
GRNs inference process by generalized entropy intro-
duced in the present paper.

2 Results and Discussion

2.1 Experiments

In order to verify the effect of the entropic parameter ¢,
we carried out inference experiments considering two
types of network topologies: the uniformly-random
Erdos-Rényi (ER) and the scale-free Barabdasi-Albert (BA)
models [23-25]. In the ER model each connection (edge)
is present with equal probability, in such way that the
probability distribution of the connectivity of the genes
follows a Binomial or Poisson distribution, with mean =
(k). On the other hand, in the BA model the probability
of a new node v; be connected to the node v; is propor-
tional to the connectivity of v;, which produces a power-
law in the probability distribution of the connectivity.

The data set Dy was generated according to Sec. 4.3.2
with N = 100 (the number of genes). For each type of
network model 10 sequences of 30 transitions starting
from random initial states were generated, which are
obtained by applying Boolean transition functions. Then,
the 10 segments were concatenated into a single expres-
sion profile, which was submitted to the network infer-
ence method. The inference was made by means of
Equation 6 with g varying from 0.1 to 3.1 in steps of 0.1
and from 3.1 to 10.1 in steps of 0.5, i.e., the similarity
between the source and the inferred AGN was calcu-
lated to each g in this range.

The similarity curves shown in Figure 1 were obtained
by averaging 50 runs (different source networks) for
each network model. In both network models improve-
ments were observed in the similarity by ranging g, with
the maximum (Similarity(A, B)) being reached by q = 1
for all tried (k). Besides, it can also be noted that the g*
that maximizes the similarity seems to be almost inde-
pendent of the network model and the average connec-
tivity. Figures 2(a) and 2(b) show the boxplots of the
similarity values for each g and k values. It is possible to
notice a very small variation in the boxplots, indicating
stable results for all g values.
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Figure 1 Similarity between AGNs and inferred networks as a
function of the entropic parameter q. Similarity between source
and inferred networks as a function of the entropic parameter g for
each average connectivity (1 < (k) < 5): (a) average values for the
uniformly-random Erdos-Rényi (ER) and (b) average values for the
scale-free Barabasi-Albert (BA). The simulations were performed for
100 genes (N = 100) and represent the average over 50 runs.

In order to better investigate this behavior, Figure 3
shows the normalized frequency curves of the best g for
each gene in the sense of higher similarity. It is clearly
observed that higher frequencies are concentrated in the
range 2 < g < 3 for both network models and varied
connectivity. This indicates and reinforces (Figure 1) a
non-dependence on the topology network in the
improvement of the inference by taking non-Shannon
entropy (q = 1).

In particular, considering the frequency curves in Fig-
ure 3, the average g* was calculated for each network
model given the average connectivity. These averages seem
to be almost constant (around 3.20 for the ER model and
3.23 for the BA model) as well as the ¢’s with higher fre-
quencies, i.e., maximum amplitude in the frequency curves.
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In order to confirm our findings, we also evaluate the
behavior of the proposed methodology by using the
DREAM4 in silico network challenge [3]. In this chal-
lenge the time series data was considered, which pro-
vides five different networks of size 10 and other five of
size 100. The networks of size 10 have 5 different time
series, while the networks of size 100 have 10 time ser-
ies. Each time series has 21 time points generated from
a differential equations model with noise. The DREAM4
in silico network challenge has 5 and 10 time series with
21 time points each, which were also concatenated to
form a single expression profile, similarly to the previous
case (AGNs).

The same methodology was applied with the similar
used parameters. Only one additional step was included
for the quantization of the DREAM data. The proposed
criterion function and the adopted methodology are
based on entropy calculations, in which a step of data
quantization may be required if the original input data
is not discrete, is the case of DREAM data. The applied
method for the quantization process is described in [26].
It was applied by considering 2 levels for networks of
size 10 and 3 levels for networks of size 100. In this
context, an integer value represents each quantization
level used by the quantization process. For example, 2
levels means that the quantized signal has only 0’s and
1’s. Then, each quantized network signal was submitted
to the same methodology adopted in the present pa-per.
Figure 4 presents the average results obtained for each
DREAM network size: 10 and 100. It is possible to
notice an improvement on the similarities by varying
the parameter ¢, in which the best results were obtained
by g # 1 for the two network sizes.

Figure 5 presents the normalized frequency, in which
the g value was able to infer the best set of predictors
(higher similarity) for each gene. The higher frequencies
are concentrated in the range 2.2 < g < 4.1 for the
DREAM network of size 10 and 3.2 < g < 5.5 for the
DREAM network of size 100. Regarding the frequency
curve in Figure 5, the average g* was calculated for each
network size, being around 3.30 for the DREAM 10 and
3.92 for the DREAM 100, which are similar to those
presented for ER and BA networks, but with slightly
higher value for DREAM 100 network. It is important
to highlight the existence of a range of g values that
produce better results, on average 2.5 < g < 3.5 (subex-
tensive entropy).

All experimental results confirm that the proposed
criterion function can improve the accuracy of the infer-
ence process, thus indicating that the network nonex-
tensivity is an important matter of investigation for
inference methods based on information theory. As a
result, it achieved a better accuracy on the inference of
GRNs from gene expression patterns.
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Figure 2 Distribution of the similarity values between AGNs and inferred networks as a function of the entropic parameter g.
values between source and inferred networks as a function of the entropic parameter g for each average
connectivity (1 < (k) < 5): (a) boxplot for the uniformly-random Erdds-Rényi (ER) and (b) boxplot for the scale-free Barabasi-Albert (BA). The
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connectivity (1 < (k) < 5): (a) uniformly-random Erd6s-Rényi (ER) and
(b) scale-free Barabasi-Albert (BA). The simulations were performed

for 100 genes (N = 100) and represent the average over 50 runs.

2.2 Discussion

The use of the entropy or mutual information as a cri-
terion function on the problem of network inference is
not new and has been largely applied for the inference
of GRNs in recent years [1,10,11,13,14,16,17,19,20].
This is explained by the possibility that some genes
may be well predicted by observing states of other
genes in a regulatory network, which makes the use
of conditional entropies suitable. If the relationship
between these genes are linear, a simple Pearson corre-
lation analysis would be enough to get a good des-
cription of the gene network. However, when the
relationship between genes is not linear but it is
described by functions of more than one predictor
gene, it is expected that the inference by methods based
on the entropy concept produces better results than

those based on Pearson correlation. Naturally, this leads
to the necessity of investigating the sensibility or
robustness of these methods with respect to the exten-
sivity of the applied entropy. In this context, it was veri-
fied in a previous work [27] that the entropic parameter
q was very important to achieve better results in the
GRNs inference process. In the present work, we intro-
duce a criterion function by adopting the generalized
Tsallis entropy in order to verify the dependence of the
inference on the entropy functional form and character-
ize how this dependence occurs.

The experimental results provide more evidence about
the sensibility of the inference process to the extensive/
nonextensive entropies. In addition, the experimental
results indicate that the nonextensivity property of the
entropy is an important factor to be investigated and
explored in the GRNs inference process in order to
improve its accuracy, thus opening new perspectives for
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inference methods based on the entropy minimization
principle.

As expected, we observed different similarity scores
for different entropic parameters g. The maximum simi-
larity score for all tried network models was reached by
q # 1, with an improvement of 20% compared to the
similarity score for ¢ = 1 (see Figure 1 and 4). In order
to better visualize the relevance of this improvement, it
is important to take a look closer on the correctly and
incorrectly inferred edges. For a network with N genes,
N? directed edges are possible when every node is con-
nected to itself and to each other, (C;; = 1 forall 1 <, j
< N ). As the simulations were made with 1 < (k) <5, C
was always a sparse matrix with the number of connec-
tions between the genes given by TP + F N .
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Table 1 presents the best number of correctly and
incorrectly inferred edges by considering each gene indi-
vidually. It is possible to observe a very good accuracy
of recovering correct edges (7' P and F P ) in the ER
and BA model by adopting g = 2.5 (subextensive
entropy). In this context, the recovery of false connec-
tions (FP) seems to be dependent of the best entropy
functional form. On the other hand, the network model
does not seem to be dependent. Therefore, in order to
improve the inference it is necessary to introduce infor-
mation about the class model in the method. Further-
more, another observed property that does not depend
on the network class model is the reduction on the
number of inferred false connections (FP), i.e., when the
algorithm infers a connection that does not exist
between a pair of genes. This indicates a more conserva-
tive inference when an adjusted ¢ is used, even for net-
works with high connectivity — the number of FP
connections for (k) = 5 obtained by the Shannon
entropy was more than six times greater than that
obtained by the generalized entropy with the adjusted

Table 1 The best results found for g = 2.5 compared with
q=1.0.

(a) ER network model

q k TP FP FN TN

1 1 223 229 21 9735
25 229 105 15 9741
1 2 311 162 27 9635
25 320 50 18 9644
1 3 344 131 36 9584
25 362 17 18 9602
1 4 381 96 46 9527
25 397 15 30 9543
1 5 383 96 91 9435
25 401 11 73 9453

(b) BA network model

q k TP FP FN TN

1 1 168 285 47 9738
25 175 149 40 9745
1 2 251 212 30 9689
25 259 83 22 9697
1 3 304 156 55 9586
25 314 37 45 9596
1 4 348 125 102 9448
25 356 21 94 9456
1 5 360 110 117 9406
25 383 16 94 9429

The best results found for g = 2.5 compared with g = 1.0 by considering each
gene individually in the same network: (a) uniformly-random Erdds-Rényi
model (ER) and (b) scale-free Barabasi-Albert network topology (BA).
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q = 2.5 for the BA networks and more than eight times
greater for the ER networks.

It was also observed that distributions with mass con-
centrated in one of the classes are less penalized by
applying g values near to 2.5. By considering that the
system (organism) has a stochastic behavior and can
receive external perturbations, it is expected that the
class distributions are not deterministic among the pos-
sible classes, i.e, in binary case 0 or 1. In other words,
given the nature of the system it is desirable from
method to infer connections from classes with concen-
trated distributions and few errors among its classes
(Table 2(b)) compared to more uniform distributions in
one of the classes and no errors in the other (Table 2
(a)). An important observed issue is that subextensive
entropies, e.g., ¢ values near to 2.5, promote this prefer-
ence in the presented inference method. Table 2 shows
an example of probability distribution that illustrates
this situation. The predictor states are on the first col-
umn and the number of observed states for the target
states on columns two and three, thus generating a
mass probability distribution table for a target gene by
observing its predictor states. In columns four, five and
six we have the criterion function results (conditional
entropy) for each distribution by using different ¢
values. The mean conditional entropy results marked
with * represent the minimal achieved by the method,
and therefore selected as predictor for the target by the
inference method.

As we can see, the minimum criterion function score
changes with ¢ and so the gene will be selected as pre-
dictor. For g = 0.5 and 1.0 the method selected gene
A as best predictor, while gene B is selected for g = 2.5.
For almost probable states, the derivative of the

Table 2 Example of change on the inferred predictor by
using different values for g entropic parameter.

@
Target  Criterion Function Results
Predictor A 0 1 g=05 q=1 qg=25
0 18 23 0108 0.090 0.056
1 278 0 0 0 0
mean conditional entropy 0.108* 0.090% 0.056
(b)
Target Criterion Function Results
Predictor B 0 1 q=05 gq=1 qgq=25
0 1 16 0024 0013 0.005
1 295 0.265 0.104 0.036
mean conditional entropy 0.289 0.117 0.041*

Example of change on the inferred predictor by using different values for g
entropic parameter: (a) distributions that lead to wrong predictor and (b)
distributions that lead to correct predictor.
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generalized entropy increases as g decreases (see Fig-
ure 6). This behavior allows S, (target|B = 1) to be sig-
nificantly greater than S, (target|A = 1) depending on g.
In this context, distributions concentrated in one of the
classes (few errors) can produce higher conditional
entropy values, which can be very amplified by the pre-
dictor distribution mass. Therefore, when g = 0.5 or 1.0
the method selects the predictor gene A since it induces
a null entropy on the target (when A is active), besides
the high entropy on the target induced when it (gene A)
is inactive. However, when ¢ is set to 2.5 (subextensive
entropy) the balance between the conditional entropy
and the predictor probability mass is adjusted in order
to produce better accuracy on the inference process.

In summary, this situation characterizes how the subex-
tensive entropy (g = 2.5) produces better results. In this
example, it is considered a single target gene with a fixed
number of time points on its expression data. Hence,
Table 2(a) and 2(b) characterize two conditions of fre-
quencies distribution that produce different predictors for
the same target gene by using different values of g, in
which g = 2.5 (subextensive entropy) achieves the correct
predictor for the target. This example illustrates the
trade-off between the conditional entropy of the target
and the probability distribution of the predictor.

Tables 1(a) and 1(b) present the results obtained by a
single value of the entropic parameter g = 2.5, in order
to show how the improvements are achieved by fixing
q value on the range 2.5 < g < 3.5 (subextensive
entropy). However, the main point in the Tsallis Theory
is that there is not an universal g that should be used
on every data set. The optimal ¢ should be set by the
system (or kind of systems), e.g., we have observed that

L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

P(’U@' = l)

Figure 6 Generalized entropy S, as a function of the
probability P(v; = 1). Generalized entropy S, as a function of the
probability P(v; = 1) for binary genes, v; € {0, 1}. From up to bottom,
the curves were obtained with g set to: 0.1, 0.25, 0.5, 1.0, 1.5, 2.0,

30,40, 50.




Lopes et al. BMC Systems Biology 2011, 5:61
http://www.biomedcentral.com/1752-0509/5/61

for Boolean networks this value was found close to 2.5
and 3.5 for the DREAM networks. If we pay attention to
the Figures 2(a) and 2(b), it will be noted that not only
the averaged similarity is improved by considering g =
2.5 instead of g = 1, but also the best and worst infer-
ences (the highest and lower line in the boxplot)
obtained in the sample dataset. Besides, it can also be
observed the variance in the similarity is almost con-
stant with respect to ¢ (g = 1 and g = 2.5) for low levels
of connectivity (small k) and reduced for high levels of
connectivity (large k) when g = 2.5.

An important property of the GRNs inference method
regards stability. The boxplots results shown in Figures
2(a) and 2(b) present very small variations for all tested
q values. These results are an important indicative of
the stability of the proposed methodology.

3 Conclusions

In general, reverse-engineering algorithms using time
series data need to be improved [1]. The present work
opens new perspectives for methods based on informa-
tion theory, in face of all results discussed which show a
relevant improvement on the inference accuracy by
adopting nonextensive entropies proposed by Tsallis. In
particular, the subextensive entropies provide a remark-
able improvement of accuracy by reducing the number
of false connections detected by the method. The
obtained experimental results showed the importance of
the range of values 2.5 < g < 3.5 (subextensive entropy).

An interesting point regards the logic circuits created
by Boolean functions and its dynamics. The inference
method finds some of them independent of the g value,
while others are found by tuning this parameter, as pre-
sented in the previous section. Future works should
investigate the Boolean functions or logic circuits that
are sensitive to entropic parameter g and the local struc-
tures formed by them.

The inference algorithm and criterion function
described in this work were implemented and included
in the DimReduction software [26], which is freely avail-
able at http://sourceforge.net/projects/dimreduction and
http://code.google.com/p/dimreduction/.

4 Methods

4.1 Selecting predictors by conditional entropy

The mutual information may be understood as a mea-
sure of the dependence between variables, with this
dependence being quantified by calculating the average
amount in the uncertainty on some variable v; given the
knowledge about other accessible variable vy, and vice-
versa. In this sense, the mutual information indicates
how much the prediction error of the state of v; changes
if we know the state of v;.
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Given two random variables v; and v, their mutual
information can be calculated by [28]:

1) = 3 ) P(viow) In (PIEEZ;PIEIZ))

Vi U

(1)
= S(vi) — S(vilvr),

where

S(vi) ==Y _P(v;) InP(v;),
S(vilwe) = =Y P(w) > P(vilv) In P(vifvy)

are the Boltzmann-Gibbs entropy of the gene i and its
conditional entropy on the gene vy, also known as the
Shannon entropy and its conditional entropy, respectively.

If the states of the genes taken into account in Equa-
tion 1 are collected in distinct times, ie., v,(t+1) and v(¢),
the mutual information can be used to select predictor
genes (vi(t)) as those that minimize the uncertainty on
the target gene (vt + 1)). Thus, the method consists in
finding the gene v, that maximizes Equation 1 for a given
target gene v;, which is equivalent to find the gene v, that
minimizes the conditional entropy S(v,(t + 1)|vi(t)).
Despite the symmetry in I(v,(¢ +1), v(t)) with respect to
the variables v,(¢ + 1) and v(¢), since the state variables
computed in it belong to different time instants, ¢ and
t + 1, it is possible to infer a causality between v,(t + 1)
and vi(t). As I(vi(t + 1), vi(?)) is not necessarily equal to
I(vi(t + 1), v(t)), this causality can be estimated by the
difference between I(v;(t+1), vi(¢)) and I(vi(¢t+1), vi(¢)) or,
in a simple way, by S(vi(t + 1)|v(?)).

Naturally, the mutual information is not restricted to
pairs of genes and we can use it to infer the dependence
of v; on groups of genes: I(v{(t + 1); {v; ..vx }(£)) = S(vi(t
+ 1)) - St + D|{v; ..vx }(2)). Therefore, given a set D
of temporal gene expression profiles from a network,
the method looks for the group of genes that maximizes
Equation 1 for each gene. If I(v,(t + 1); {v; ..i}(¢)) pre-
sents the maximum score calculated from D, then each
gene of {v; ..y} is directly connected to v; as predictor.
In the same way, if there is not a group that causes sig-
nificantly variations on the mutual information, then v;
is selected as a source or an isolated gene (in the case
that v; is not selected as a predictor of any gene). Once
the method is applied to each gene individually, the
individual entropy of the target v; (S(v;(t + 1))) is kept
constant during the search for predictors, and as a result
the method returns as predictors the genes that produce
the lowest conditional entropy (S(v,(t +1)[{v; ...vk }(2))).
In other words, the mutual information can be calcu-
lated by the difference between the individual entropy S
(vi(t + 1)) and the mean conditional entropy S(v,(¢ + 1)]
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{v; .vi}(1), by considering a group of genes g(t) = {v; ...
viJ(£). Therefore, the difference between I(v;, vi) and I(v;,
2) is due to the mean conditional entropy, once the indi-
vidual entropy of v;, S(v;), is exactly the same in both
I(v;, vi) and I(v;, 2).

4.2 Beyond the Boltzmann entropy

The concept of entropy was introduced by Clausius in
the context of Thermodynamics considering only
macroscopic statements [29]. Motivated by the idea of
relating it to the Classical Mechanics some years later,
Boltzmann showed that this entropy could be expressed
in terms of the probabilities associated to the micro-
scopic configuration of the system [30]. However, in his
mathematical demonstration there were some considera-
tions about the nature of the physical system to assure
the recovery of the properties of Clausius macroscopic
entropy by his microscopic approach — e.g., short-range
interactions, a necessary condition to assure the exten-
sivity of the Boltzmann entropy [6,31]. Thus, despite the
great importance and success of the Boltzmann entropy,
there are situations were such conditions are not pre-
served [32] and Boltzmann entropy will hardly recover
the properties of the Clausius entropy.

Inspired by the probabilistic description of multifractal
geometry, C. Tsallis proposed in 1988 a generalization
of the Boltzmann entropy [5] which, along two decades,
has been successful in presenting desired properties of
Statistical Physics Theory [6,33] with great experimental
accordance [31].

The proposed definition is [5]

w
—k(l - Zi P?)’ (2)
l—q

where k is a positive constant (which sets the dimen-
sion and scale), w is the number of distinct configura-
tions of the system, p; is the probability of such
configuration and g € R is the entropic parameter.

The entropic parameter characterizes the degree of
nonextensivity, which in the limit ¢ — 1 recovers
S=—kY.!pilnpik with k being set to the Boltzmann
constant k.

The Boltzmann-Gibbs entropy is said to be extensive
in the sense that, for a system consisting of N indepen-
dent but equivalent subsystems v = {vy, vy, ..., V5}, the
entropy of the system is given by the sum of the entropy
of the subsystems: S(v) = NS(v;) [31]. In the Tsallis
entropy, this extensivity is set by the parameter ¢, which
can be clearly visualized by the compound rule [31]:

Sq(A,B) = 84(A) + Sq(B) + (1 — 4)Sq(A)Sq(B), (3)

Sq=

with A and B being independent systems, i.e., P(4,B) =
P(A)P(B). We can observe superextensivity for g <1,
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extensivity for ¢ = 1 and subextensivity for ¢ >1. More
specifically, S, is always nonnegative for g >0. Although
it is also possible to have S, >0 for some g <0, g >0 is
generally used to avoid divergences or some inconsisten-
cies [31].

Equation 2 has been largely applied to different physi-
cal problems, e.g, http://www.cbpf.br/GrupPesq/Statisti-
calPhys/biblio.htm for a large bibliography, leading to
good agreements with experimental data. Naturally,
despite these applications, it can be asked if the Tsallis
entropy is also suitable to code information in a general
way such as Shannon [34], Khinchin [35] and Kullback
[36] showed to be the Boltzmann entropy. Some papers
have been published verifying the mathematical founda-
tion of the Tsallis entropy, similarly to the axiomatic
approach used by Khinchin [37,38], as well as investigat-
ing its nonaddictive features and their interpretations
[6,39]. As in typical physical problems, there are some
examples where the Boltzmann-Shannon entropy is not
suitable [40]. Besides, it is also possible to define a
divergence equivalent to the Kullback-Leibler [41].

By defining In,(x) = (x*7 -1)/(1 - g), Equation 2 can be
written in a similar form of the Boltzmann entropy
Sy = —kY ¥ pllngp:. In this way, a generalized mutual
information between v; and v, can be defined as [41]:

Iq(vi; v) = Z ZP(% )Ing (;;E:;g?;l)) . (4)

vi U

The generalized mutual information has the necessary
properties to be used as a criterion measure for consis-
tent testing [42] and, as Equation 1, it reaches its mini-
mum value when P(v;|v;) = P(v;) and the maximum
when — Zvi P(viIUk)qlan(viIUk) vanishes [41], which is
equivalent to make — )", , P(vi)P(vi|vi)IngP(vi|v) van-
ish. It is hence possible to look for dependencies
between v; and v, by minimizing S,(v;|v,).

For binary genes, v; € {0, 1}, we have S (v;) = [P(v; =
D7+ (1 - P(v; = 1))7 -1]/1 - q) and the influence of the
entropic parameter g can be easily observed. In Figure 6
the maximum entropy for the gene increases as g
decreases, taking the limit S5 = 1as ¢ — 0. Indeed,
when g ~ 0, S,(v;) will be significantly different of Sf,"“x
for P(v; = 1) = 0 or P(v; = 1) = 1, which means a very
rigid criterion in the sense that, either the predictor can-
didates fulfill all the constraints imposed by the data or
they can not be selected as predictors. On the other
hand, S§'** = 0 for g > 1 which can be interpreted as a
very flexible criterion function in the sense that any
gene or group of genes can be selected as good
predictors.

Another interesting point is the ordering of the
entropy with respect to P(v; = 1). If the entropy of P(v;
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= 1) = a is larger than the entropy of P(v; = 1) = b for a
given g%, then it will always be large for any g — see Fig-
ure 6. But this ordering is not preserved on the mean
conditional entropy. For S,(v;|v,) the entropy of v; given
vy is weighted by the probability of vy,

Sq(ilve) = = D Pw)(1 = Y P(ulu))/(1 = q), (5

in such way that it is possible to have

S;,(vilvk) > SZ, (vilvr) and Sj‘],,(vilvk) < SZ,,(vilvk) for some
q = q" and where the index a represents the constraint
{P(v; = 1|vy = 0) = ag, P(v; = 1|vg = 1) = a;} and b the
{P(v; = 1|lvg = 0) = bo, P(v; = 1|vx = 1) = by}. This results
in a trade-off between the relevance of the conditional
entropy and the probability distribution of the predictor
genes.

In the context of feature selection or dependence vari-
ables test, in which the entropy is used as a criterion
function, this non-preservation of the ordering means
the existence of an optimal g* by which a system can be
best reproduced. As in physical problems, g* should be
related to the system properties [31] and discovering the
laws or principles which relate g* to these properties
becomes fundamental to improve recovering methods.

4.3 Proposed Method

The algorithm is based on previous works [8,11], which
consists in looking for the group of genes that mini-
mizes the criterion function (i.e., conditional entropy) of
the target gene. Therefore, for each given target v, we
have to calculate the conditional probabilities P(v;(t+1)|
vi(t), .., vi(t)) based on the data set Dy = {s(1), s(2), ..., s
(T)}, where s(£) = [vy(2), v5(t), ..., va(t)] is the expression
vector at time ¢, i.e., the state of the network at time ¢.

For a network with N genes we have
n, = YN N1/x!(N — x)! conditional probabilities to be
calculated for each gene, i.e., n, possible groups of pre-
dictors. Fortunately, it is not expected that the genes are
regulated for many predictors [43,44] and an upper
bound for 7, can be defined. Kauffman observed that
chaotic dynamics are more probable for gene networks
with n, > 3 [43,44] and by stability principles he con-
cluded that the average connectivity should be upper
bounded by three, once the gene network could be in
the frontier of chaos but not chaotic. Herein, we relax a
little the Kauffman statement and set this upper bound
on the average connectivity (k) < 5.

Another important point is the possibility of gene net-
works with different topology classes. In order to verify
the sensibility of the method on the topology class, the
topology of gene networks were generated with the uni-
formly-random Erdos-Rényi (ER) [45] and with scale-
free Barabdsi-Albert (BA) [46] models. The BA complex
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network model is one of the most similar to known real
regulatory networks [47,48]. Biological network topolo-
gies based on Escherichia coli and Saccharomyces cerevi-
siae [49] were also considered.

We describe below how the artificial gene networks
were generated, the algorithm of inference, evaluation
metrics and the experimental results.

4.3.1 The inference algorithm and criterion function

Given the temporal data D the algorithm fixes a gene
target v; and looks for the group of genes g that mini-
mizes the conditional entropy S,(v,(¢t + 1)|g(¢)) for a
fixed g. As the network size is generally high, the search
space becomes very high such that an exhaustive search
is not appropriate. Then, we apply the Sequential For-
ward Floating Search (SFES) [50] to circumvent this
combinatorial explosion.

For the calculation of the conditional entropy (Equa-
tion 5) it is necessary to estimate the conditional prob-
abilities of the target given its predictor candidates as
well as the probabilities of these candidates. In the
absence of prior information, these probabilities are esti-
mated by the relative frequencies on D7, which means
an accuracy dependence on the representativity of Dy .
Once we are searching for the lower entropy, it is not
recommended to set the probability of non-observed
instances as null. It is possible that some of the
instances are not present in the temporal expression
profile because of its small size sample and/or by the
dynamics of the system, i.e., the transition functions.
Therefore, in order to reach a good trade-off we follow
the penalization of non-observed instances [26,51]. The
penalized criterion function by adopting the generalized
Tsallis entropy is defined as follows:

1-Y, P(vilg)’

Sy(vilg) = Y _P(g) P

g=1
i Tg +o 1 - Zui P(”l'g)q

o am+ d qg—1 ©)
a(m—n)

oam+d Sq(vi)+

i g+ 1- Zu,- P(v”g)q

o om+ d qg—1

where o 2 0 is the penalty weight, m is the number of
possible instances of the gene group g (predictors), # is
the number of observed instances, d is the total number
of samples and r, is the number of each observed
instance of g.

If o is set to zero, we do not have any penalization and
P(g) is estimated by its relative frequency on Dr, i.e., by

calculating the terms r,/d (Zg Tg = d). When n = m, the
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penalization term, first term in Equation 6, is canceled and
P(g) is now estimated by a modulated relative frequency of
the predictors, by adding « to all instances of g, i.e.,

(rg + @)
am+d’

P(g) =

and finally when # < m, the parameter « is considered
m - n times for non-observed instances (sum), and n
times for observed instances. Thus, in Equation 6 a
positive mass of probability is assigned to the non-
observed instances of the gene group g in the expression
data, which is parameterized by o

Furthermore, the penalization of the non-observed
instances is weighted by the entropy of the target gene,
i.e., Sy(v;). This is important because of the possibility of
having a good description about a gene when its uncer-
tainty is small, i.e., the observed instances of the genes
are enough to describe the dynamics of a target gene
with small entropy. In this paper we set @ = 1.

The inference algorithm consists in calculating the
mean conditional entropy by using Equation 6 and look-
ing for a group of genes that minimizes it. This search is
performed by the SFFS algorithm.

4.3.2 Artificial gene networks

The adopted AGN model was built based on the random
Boolean network (RBN) approach [43,44,52]. This model
yields insights into the overall behavior of large gene net-
works, allows the analysis of large data sets in a global
way and represents some fundamental characteristics of
real GRNs [53-57]. In a RBN model, the state of each
gene is a binary variable set by Boolean functions of
other genes. The possibility to model GRNs as Boolean
networks stems from the switch-like behavior that the
cell exhibits during regulation of functional states
[52,58]. In this context, the gene state is mapped from a
continuous expression to a two-level expression (on/off).

More specifically, an artificial gene network (AGN) is
defined by a set V = {vy, vy, ..., vn} of N genes (nodes), a
N x N adjacency matrix C (with C;; e {0, 1}) and a set F =
{fi, fo» .- fa} of N transitions functions. In the Boolean
approach, each f; is a logical circuit of the non-null ele-
ments of the i/ row of C that sets the state of the gene v;.
Then, the network state at time ¢ + 1 is a N-dimensional
vector s(¢ + 1) = [v1(t + 1), vo(£ + 1), ..., va(t + 1)] resulting
from the application of these functions to the previous
state s(t). Besides, the connectivity of v; is given by
ki = Z;\i 1 (Gij + C;i) and the topology class of the network
is defined by the probability distribution of these
connectivities.

The networks used in this paper were obtained by the
network generator proposed in [21,22]:

1. define a topology class, i.e., the distribution P(k) of
the number k of connections per gene;
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2. define the k; connectivity for each gene v; setting
the predictors (C;;’s) and targets (C; ’s) by using the
P(k) distribution;

3. set the transfer function f; for each gene v; by ran-
dom drawing a truth table according to its number

of predictors (n, = Z][Zl C;i), i.e., an output state for
each one of the 2™ input states.

Once defined the AGN, the simulated temporal
expression profile Dy is obtained by defining an arbi-
trary initial state of the network and successive applica-
tions of the transfer functions.

On the other hand, DREAM4 temporal expression
profiles were generated by considering network struc-
tures based on Escherichia coli and Saccha-romyces cere-
visiae [49]. The dynamics was generated by continuous
differential equations with the inclusion of perturbations
on the data in order to simulate a physical or chemical
intervention. Gaussian noise was also added in order to
simulate expression measurement error. In summary,
the DREAM4 time series database presents variations of
network size with 10 and 100 genes, perturbation and
noise on expression profiles generated by differential
equations. A detailed description is provided in the
DREAM project website [3].

In both cases (AGN and DREAM network), the tem-
poral expression profile Dt is submitted to the inference
method and its results are evaluated according to the
measures presented in the next section.

4.3.3 Evaluation

In order to quantify the similarity between the source
gene network A and the inferred network B, we adopted
the validation metric based on a confusion matrix [59]
(see Table 3).

The networks are represented in terms of their respec-
tive adjacency matrices C, such that each connection
from gene i to gene j implies C;; = 1, with C;; = 0 other-
wise. Then, in order to quantify the quality of the
inferred network, the similarity measurements [60]
widely used to compare inference methods were
adopted, being calculated as follows:

Similarity(A, B) = \/PPV x Specificity,

ppy- T
(TP + FP) 7)
N
Specificity = .
pecificity = 1, rpy

Table 3 Confusion matrix.

Edge/Connection Inferred in B Not Inferred in B
Present in A TP FN
Absent in A FP TN

Confusion matrix. TP = true positive, FN = false negative, FP = false positive,
TN = true negative.
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Since the measurements on Equation 7 are not inde-
pendent of each other, it was adopted the geometrical
average between the ratios of correct ones PPV (Positive
Predictive Value, also known as accuracy or precision)
and correct zeros (Specificity), observing the ground-
truth matrix A and the inferred matrix B. In this way,
both coincidences and differences are taken into
account by these measures, thus implying the maximum
similarity to be obtained for values near 1.
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