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Abstract

Background: Systems biological approach of molecular connectivity map has reached to a great interest to
understand the gene functional similarities between the diseases. In this study, we developed a computational
framework to build molecular connectivity maps by integrating mutated and differentially expressed genes of
neurological and psychiatric diseases to determine its relationship with aging.

Results: The systematic large-scale analyses of 124 human diseases create three classes of molecular connectivity
maps. First, molecular interaction of disease protein network generates 3632 proteins with 6172 interactions, which
determines the common genes/proteins between diseases. Second, Disease-disease network includes 4845
positively scored disease-disease relationships. The comparison of these disease-disease pairs with Medical Subject
Headings (MeSH) classification tree suggests 25% of the disease-disease pairs were in same disease area. The
remaining can be a novel disease-disease relationship based on gene/protein similarity. Inclusion of aging genes
set showed 79 neurological and 20 psychiatric diseases have the strong association with aging. Third and lastly, a
curated disease biomarker network was created by relating the proteins/genes in specific disease contexts, such
analysis showed 73 markers for 24 diseases. Further, the overall quality of the results was achieved by a series of
statistical methods, to avoid insignificant data in biological networks.

Conclusions: This study improves the understanding of the complex interactions that occur between neurological
and psychiatric diseases with aging, which lead to determine the diagnostic markers. Also, the disease-disease
association results could be helpful to determine the symptom relationships between neurological and psychiatric
diseases. Together, our study presents many research opportunities in post-genomic biomarkers development.

Background

Systems biology is an indispensable approach to study
the complex mechanisms of any disease or disorders.
After post-genomic era the accumulation of genomics
and proteomics data are widely flooded. However, there
is an unrealized opportunity remains in the understand-
ing of detailed molecular mechanisms of several neuro-
logical disorders [1,2]. Thus, the molecular diagnosis of
most of the neurological disorders remains difficult and
mostly carried out by neurological examination [3]. The
current molecular connectivity approaches of systems
biology are mainly focusing on building large protein
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networks without probing the interaction mechanisms
specific to disorders or disease condition [4,5]. Hence,
the possibility of finding successful biomarkers through
systems biology approach is intricate. In order to gain a
better understanding of molecular mechanism, disease
relationship and biomarkers, the genes implicated within
similar disorders are need to be focused.

The systems biological concepts of disease interaction
were usually made by collecting signature genes of
genetically heterogeneous hereditary diseases and inves-
tigating the different mutations in a same gene (allelic
heterogeneity) giving rise to different disorders [6]. Simi-
lar, trends are followed for differentially regulating genes
and linking them to various diseases [7]. Here, we had
taken an integrated approach of mutated and differen-
tially regulating genes and exploring diseasome network
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that corresponds to the neurological and psychiatric dis-
eases. Such integrative approach will improve the confi-
dence of finding specific markers for diseases. The
reasons that we choose an integrative approach on neu-
rological disorders are two-fold. First, the understanding
of neurological disorder is considerably less, because of
difficulty in obtaining brain tissue for many cases. Sec-
ond, there is an increasing prevalence rate [8,9] and lack
of molecular diagnosis for most of the neurological dis-
orders [10,11].

In this study, we propose an integrative, network-
based model of mutated and differentially regulating
genes of 100 neurological and 24 psychiatric diseases
(see Additional File 1 for a disease category), that identi-
fies the neurological and psychiatric relationship and
their association with aging. Furthermore, this network
model helps to understand the common mechanism
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between diseases through common pathway network
(CPN). Overall, our findings highlight the importance of
integrating the gene/protein data of neurological dis-
eases into future molecular biomarkers and drug target
discovery.

Results and Discussion

In this study, we developed a novel computational frame-
work (Figure. 1) to build disease-protein network (DPN)
(Figure. 2), disease-disease network (DDN) (Figure. 3) and
common pathway molecular network (CPN) (Figure. 4).
Our approach of integrating mutated and differentially
expressed diseases genes allow us to validate the neurolo-
gical and psychiatric relationships with aging. In addition,
this approach helps to predict the disease specific biomar-
kers for the potential diagnosis. We showed that this
approach was effective in constructing a statistically

Manual
Collected
Disease
List

[mnse | Algorithm

Network

Database

|
|
|
|
I
|
In/Output :
|
|
|
|
|

&2 || Litrature mining

yrm—
wnprenf

Component

CSF & House
Keeping
Protein

List

Functional

L]

diseases.

Figure 1 Computational framework for developing molecular connectivity maps. The framework consists of three major components:
disease protein network, disease-disease network and disease biomarker network. The first component takes the inputs from database and
literature and outputs a disease protein network (DPN). The second component takes the input from DPN and generates the output of positively
scored disease-disease network (DDN) using scoring algorithm. Further, the second component was used to generate sub-component of
common pathway network (CPN). The final disease biomarker network (DBN) component was generated from DPN showing proteins specific to
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significant molecular connectivity map of 124 diseases
with 3632 proteins. This work pointed out a new direction
for biomedical researchers to investigate the molecular
interaction network with the known dysfunctional genes
to identify disease relationship. The results of disease-dis-
ease connectivity map constructed from disease protein
interactions helps to guide the hypothesis for generation
of biomarkers for neurological and psychiatric diseases.
We used OMIM and literature mining to generate the
initial list of 1211 seed genes for 124 diseases. Using
STRING, we expanded 1211 seed genes/proteins to
13011 human proteins with 11800 proteins as enriched
set. Of 13011 proteins, most of the proteins were asso-
ciated to one or more diseases showing the possibility of
successful interactions between the diseases. These
records were further mapped to HGNC database to
obtain a unique gene symbol, to avoid false interactions.
As explained in the methodology, the disease protein
network (DPN) was constructed to have 3632 proteins
with 6172 interactions (see Additional File 2 for protein
interaction). In addition, we included the 261 ageing
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genes to the DPN, to make a valid correlation of aging
within the analyzed diseases. These aging genes were
presumably more interesting to determine the associa-
tion of aging with neurological and psychiatric diseases.
This final DPN containing 3999 proteins with 6557
interaction (Figure. 2) was important to generate the
disease-disease relationship (Figure. 3), common disease
pathway network (Figure. 4) and disease biomarker net-
work (Figure. 5). In Figure 2, we showed the curated
view of seed and enriched set of proteins interactions
including aging genes/proteins. All proteins were shown
as nodes; the seed and enriched proteins are colored yel-
low and the aging genes were colored as red. Similarly,
in Figure 3, nodes indicate disease and edges indicate
the link between diseases. The disease-disease interac-
tion was comprehended but the reliability of the DDN
depends on DPN. Therefore, the overall proteins
involved in the DPN were validated by analyzing its sig-
nificance by a random sampling method. For instance,
the protein sub-network (PSN) of Parkinson’s disease
contains 297 proteins, in which PSENI is highly

Figure 2 Disease protein network (DPN). In DPN each nodes (seed and enriched proteins) were colored yellow and the aging genes were
colored as red and the proteins interactions were represented in violet solid lines.

CLONZ
écwma

& ——<>CLDN®

\\l.l?“DELDNE
\b CLDN23
CLDMI




Ahmed et al. BMC Systems Biology 2011, 5:6
http://www.biomedcentral.com/1752-0509/5/6

Page 4 of 12

shown along with the aging interactions.

Figure 3 Disease-disease network (DDN). In disease-disease network, each node represents to a disease yellow colored. Two diseases were
connected by red solid line, if they attained the positive score in algorithm. The total of 4845 positively scored disease-disease interactions were

connected protein, showed 12 interactions in its net-
work. Therefore, the index of aggregation was calculated
as 4.04. The random sampling method was carried out
as described in the methodology. Only seven runs out of
1000 resulted in an index of aggregation value greater
than 4.04 (Figure. 6A). Therefore, the p-value of the
observed index of aggregation of the Parkinson’s disease
network was 0.007. Similar trends were followed for all
the diseases and geometric mean for overall p-values
was calculated as 0.00612. With the significance of dis-
ease-protein interaction data, the DDN was generated in
order to determine the relationship between the dis-
eases. Two diseases were connected by a link if same
proteins/genes were implicated in both the diseases.
These identified disease-disease interactions were further
validated by interaction score. This process generated a
total of 4845 positively scored disease-disease interac-
tions (Additional File 3 for positively scored interaction).
In these identified interactions, 79 neurological and 20
psychiatric diseases were shown to have a strong asso-
ciation with aging (Figure. 6B) (see Additional File 4 for

aging interaction). Further, the analyses of 100 neurolo-
gical diseases revels 98 diseases were shown to have
relationships with any of the analyzed psychiatric dis-
eases. For example, 78 neurological diseases provide the
common association with both major depressive disor-
der and manic depressive psychosis, suggesting the role
of depressive state in these 78 diseases (Figure. 6C). To
access the reliability of these connections, we mapped
the connected disease pair onto MeSH term. Of 4746
positively scored disease-disease links excluding aging
interactions, 1219 (25%) pair shared common disease
term (see Additional File 5 for MeSH validated interac-
tion), (Figure. 6D). For example, Alzheimer’s and Par-
kinson’s disease were present in the neurodegenerative
disease section of the MeSH tree. The remaining 3527
disease pairs were not located in the same branch of
MeSH tree. However, these positively scored disease
connections that located in different branches of MeSH
tree was particularly interesting, because they provide
novel disease relationships that were primarily relying
on gene similarity instead of phenotypic classification.
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For example, Parkinson’s disease has been connected to
REM sleep behavior disorder, not surprisingly, many
studies indicate the association of REM sleep behavior
disorder with Parkinson’s disease [12-14]. However, they
were not explicitly in same disease branch according to
MeSH. For better understanding of common mechanism
between the diseases, the proteins/genes that commonly
associated between each disease pairs were mapped to

NCI-Nature Pathway Interaction Database [15]. This
process generates 179 associated pathways between the
disease pairs (Additional File 6 for common pathway
network). Further, analyses of these pathways may guide
for the drug target discovery. For instance, our study
showed the association of glucocorticoid receptor regu-
latory network between Alzheimer’s and major depres-
sive disorder. Supportive to this result, previous study of
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Figure 5 Disease biomarker network (DBN). The disease biomarker network contains 24 diseases (green) with 73 biomarkers. The biomarkers
were colored based on the diagnostic parameters (gray). The associations of biomarkers with any of the diagnosis parameters (gray) are

represented in yellow, while other biomarkers are indicated in violet.

Filippo et al., suggests glucocorticoid receptor can be
the common drug target for both Alzheimer’s and
major depressive disorder [16].

Biomarkers are the most interesting part of any biome-
dical research, and it is essential for neurological and
psychiatric diseases because most of these diseases lack
diagnostic markers. Every disease was expected to have
its own fingerprint, which subsequently helps in detec-
tion of diseases. Though, we analyzed 124 diseases, only
24 diseases were shown to have a disease specific bio-
markers (Figure. 5) (Additional File 7 for biomarkers
list) while, others may have shared their fingerprint with
their related diseases. Interestingly, few of our identified
biomarkers were previously reported. For instance, our
previous study suggests that pyruvate dehydrogenase
lipoamide beta (PDHB) and neuropeptide FF-amide

peptide precursor (NPFF) are the biomarkers for Parkin-
son’s disease [17]. However, this approach provides the
additional information that PDHB is not only associated
with Parkinson’s disease but also associated with Athe-
tosis and Friedreich Ataxia, whereas NPFF was found
unique to Parkinson’s disease, suggesting the possibility
as biomarker. The significance of these disease specific
biomarkers was validated by enrichment score based on
gene ontology with a threshold of 1.3. All the identified
disease biomarkers passed the threshold and confirmed
its significance to its diseases. Furthermore, the identi-
fied biomarkers of each disease was scored based on the
feasibility of diagnosis from biofluids, this analysis would
be of marginal interest to researchers focusing on diag-
nosis of these 24 diseases from biofluids. Each para-
meter such as house keeping genes and biofluids
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circulating proteins were assigned a value (m-score) to
generate the overall diagnostic score. In comparison
with other biofluids, urine has two characteristics fea-
ture that makes it a preferred high m-score value of 0.7
for feasible diagnosis. First, urine can be obtained in
large quantities using non-invasive procedures. This
allows repeated sampling of the same individual for dis-
ease surveillance. Second, the urinary protein content is
relatively stable probably due to the fact that urine
“stagnates” for hours in the bladder [18]. However, the
reliability of diagnostic biomarkers in CSF is high
because, it has direct contacts with the extracellular
space of the brain, making it as a unique medium in
detecting biochemical changes in the central nervous
system. However, obtaining the CSF samples is difficult
thereby it was assigned to a least diagnostic m-score of
0.3. Considering the feasibility of both urine and CSF,
the average m-score of 0.5 was assigned to biomarkers
presence in blood plasma. Of 73 identified biomarkers
proteins, 18 were found to be present in any one of the
biofluids and three biomarkers were identified to be cir-
culating in all the biofluids (Figure. 6E). Further com-
parison of biomarkers with house keeping genes,

showed six biomarkers proteins were encoded by essen-
tial genes, which enhances the possibility of diagnosis in
any tissue. Though, we suggest these top scored proteins
as feasible diagnostic markers (Figure. 5) (Table. 1),
further studies are need to be carried out to determine
its significance as biomarkers.

Cross-validation of network

To validate our computational approach, the results
obtained from this study were compared with the results
of Goni et al and Goh et al approaches [19,4]. Our
result was in agreement with Goni et al studies showing
the successful interaction between Alzheimer’s disease
and multiple sclerosis. In addition to our result, several
other studies also confirm the molecular relationship
between Alzheimer’s disease and multiple sclerosis
[20-22]. However, similar interaction trend was not
been achieved with Goh et al approach. This is because
Goh et al approach of molecular connectivity was car-
ried out on mutated genes, while our approach uses
both differentially expressed and mutated disease genes
for the generation of DDN. Hence, our approach con-
firms the effectiveness of integrating differential and
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mutated genes for reliable disease-disease relationships.
On the other hand, the proposed biomarkers of our
study were cross-validated using genetic association
database (GWAS) [23] to confirm its disease specificity
in context to neurological or psychiatric diseases. In our
identified 73 biomarkers, only 27 biomarkers were
shown to have disease association information, while the
information of 46 biomarkers was not available in
GWAS database. This is because the genetic associations
of few diseases were not been included in GWAS data-
base. However, the precision rate (PPV) was calculated
only on these 27 biomarkers. All 27 biomarkers were
confirmed to be specific to its diseases in context to the
analyzed disorders. Hence, the PPV was calculated to be
100%.

Limitations

Though, our present approach provides good accuracy in
determining the disease-disease interaction and biomar-
kers, it has limitation in the aspects of biomarkers detec-
tion. In medicine, biomarkers are the molecules, specific
to its pathological condition. Since, our study is focused
on neurological and psychiatric diseases the obtained bio-
markers are specific to its diseases of neurological and
psychiatric disorders. However, there is a possibility for
these 73 biomarkers to have an association with other
disorders irrespective neurological and psychiatric dis-
eases. Such limitation can be avoided by including all the
disorders in a network and implementing our biomarker
strategy for detection of biomarkers. However, with the
available information of these 27 biomarkers, we vali-
dated across GWAS database. The results confirm that
15 biomarkers are specific to its disease and have no
association with any other disorders (Table. 1).

Conclusions

In conclusion, the disease-disease relationships are of
great interest because such knowledge not only
enhances our understanding of disease mechanisms, but
also accelerates many aspects of biomarker and drug
target discovery. These results can be interesting to neu-
rologists, and our method can be generalized to other
disease biology areas for systems biological investigation.
We believe our approach to understand the mechanism
involved in neurological disease has given a valuable
insight into the relationship of aging and psychiatric ill-
ness. Moreover, these combined efforts resulted in iden-
tification of biomarkers that will greatly improve in
diagnosis of neurological and psychiatric diseases.

Methods

Initial collection of disease related genes

The initial 124 disease list was manually collected and
validated against the Medical Subject Headings (MeSH)
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Table 1 Biomarkers score

Disease

Biomarkers (score)

Alzheimer's Disease

APLP2 (4), NEU2 (1.4), PCDHT1X (0.5), SUMF1
(0.5), TOMM40 (0.5)

Amyotrophic Lateral
Sclerosis

ALS2CR8 (0.5), DERLT (0.5), FUS (1), HOPX (0.5),
KIFTA (0.5), MOBKL2B (0.5), NIF3LT (0.5), SCN7A
(0.5), SEMAGA (1.4), SLC39AT1 (0.5), STRADB
(0.5), SUSD1 (0.5), UNC13A (0.5), ZFP64 (0.5)

Angelman Syndrome

ARID4A (1.4), ARID4B (0.5), MKRN3 (1), NDNL2
(0.5), NIPA2 (0.5), PHLDA2 (0.5), SLC9A6 (0.5),
TSPAN32 (0.5), TSSC4 (0.5)

Asperger Syndrome GPR172B (0.5)
Ataxia Telangiectasia DDX10 (1), HEPACAM (1.4), TCL1A (0.5)
Canavan Disease ASPA (0.5)

Dyslexia ARFGEF1 (0.5), CCPGT (0.5), PDGFC (0.5)
Epilepsy TRAPPCI10 (0.5)

Fatal Familial Insomnia  CD68 (0.5)

Friedreich Ataxia ACOT (0.5)

Huntington disease AKAPSL (0.5), ARFIP2 (0.5)

Korsakoff Syndrome TKTLT (0.5)

Lambert-Eaton
Myasthenic Syndrome

RAPSN (0.5), SOXT (0.5)

Major Depressive
Disorder

FKBP5 (1), PCLO (2)

Manic Depressive
Psychosis

TRPM2 (0.5)

Multiple Sclerosis

CSMD1 (0.5), FCGRIA (2), FCGRIB (2), FCGR2A
(3.5), FCGR2B (5), FCGR2C (4.1), FCGR3A (4.1),
FCGR3B (0.5), IFNBT (0.5)

Multiple System Atropy

AGTPBP1 (0.5), EXTL3 (0.5)

Parkinson’s Disease

CALBI1(5), CSFIR (5), MT-CYB (0.5), CHACT (0.5),
NPFF (0.5)

Pathologic gambling DNER (3.5)

Restless Legs Syndrome DMRTT (0.5)

Schizophrenia AP3B2 (2), HMBS (0.5), SETD2 (1.4), ST6GAL2
(3.5)

Septo-Optic Dysplasia  LBXT (1)

Stroke NINJ2 (0.5), PROZ (0.5)

von Hippel-Lindau TCHP (0.5)

Disease

The biomarkers of 24 diseases were indicated along with their diagnostic
score. The biomarkers that are shown to be specific to neurological and
psychiatric diseases in comparison with GWAS database are indicated in bold.

database [24] in order to determine its neurological and
psychiatric relationship. Of 124 diseases 100 have shown
the relationship with neurological and 24 with psychia-
tric diseases (Figure. 7). These 124 diseases were taken
as the basis for developing disease protein network. The
network was constructed by retrieving the genes related
to these diseases from Online Mendelian Inheritance in
Man (OMIM) database [25] and literature mining. The
human mutated genes were retrieved from OMIM and
literature mining was carried out to retrieve the genes
that are differentially expressed in its corresponding
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diseases. Overall, 1209 seed genes were retrieved and
most of these genes were common to one or more dis-
eases. Further, 261 human aging genes were included to
this study to identify the association of aging to the ana-
lyzed diseases. This aging gene set was downloaded
from GenAge database [26].

Enriched protein network

The Search Tool for Retrieval of Interacting Genes/Pro-
tein (STRING) database [27] was used to collect protein
interaction data to construct disease-protein network
(DPN) from 1209 seed genes. The STRING database
contains experimental and predicted protein interaction
data of 630 organisms of both eukaryotes and prokar-
yotes. This study includes both experimental and pre-
dicted interaction of human proteins for the generation
of disease-protein network, considering the successful-
ness of predicted interactions in several disease interac-
tion studies [5,28]. To build disease-protein network, we
pulled out proteins that are interacting to seed genes/
proteins, with confidence scores ranging from 0.5 to
1.0. Such expanded set of initial seed proteins were
denoted as enriched protein set and the interaction of
seed and enriched set of each disease is known as pro-
tein sub-network (PSN). The aging genes set were
included to the network without enrichment to make a
strong correlation with neurological and psychiatric dis-
eases. All genes were mapped to the official gene sym-
bol using HUGO Gene Nomenclature Committee
(HGNC) [29] to avoid false interaction to same genes/
proteins and the data curation was carried out using
Microsoft Excel and Microsoft Access. From these non-
redundant interaction data, disease-protein network
(DPN), disease-disease network (DDN), common path-
way network (CPN) and disease-biomarker network
(DBN) were created and visualized using Cytoscape ver-
sion 2.7.0 and NAViGaTOR version 2.1software. In
DPN, node represents disease proteins. The proteins of
two diseases were connected if same proteins are asso-
ciated with both diseases. In DDN, node represents dis-
ease, two diseases are connected to one another if they
share at least one protein common to both the disease.
Further, CPN was created from the commonly asso-
ciated genes/protein between the disease pair and DBN
was created by pulling out the disease specific seed pro-
teins from DPN.

Statistical significance of network

To validate the DPN, we adopted a similar method
developed by Chen et al [28]. The index of aggregation
was calculated for each PSN and their significance was
evaluated by random re-sampling method. The largest
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connected protein in each PSN was selected and the
index of aggregation for each PSN was calculated.

Largest connected
protein in protein sub-network

Index of aggregation(%) = Total number of

proteins in its protein sub-network

In order to determine significance of DPN, the follow-
ing random sampling method was executed,

1. Randomly select same number of seed proteins as
in each PSN from Brain Gene Expression Map data-
base [30].

2. Pull out the enriched set for the randomly
selected seed proteins from STRING database.

3. Compute an index of aggregation.

4. Repeat the above steps for 1000 times to generate
index of aggregation.

5. Compare the index of aggregation of protein-sub
network with the distribution of previous steps, to
calculate p-value.

6. Similarly, repeat the above steps for remaining
PSN.

7. Finally, compute the geometric mean to the
obtained p-values of 124 PSN.

Disease-disease interaction score

The interaction score was assigned for each disease pair
(Dg;). The score indicates the strength of the interaction
between the diseases based on the protein interaction.

Here, P; and P; are the total number of proteins for the
disease, i and j, respectively. P;; is the total number of
common protein between the two diseases. N is the size
of entire proteins involved in the disease protein network.
Z is a constant (Z = 1) introduced to avoid out-of bound
errors, if P; = P; = P;; = 0. The expected result of ®g;; is
positive, when the disease pair is over-represented and
negative, when the disease pair is under-represented.

MeSH based disease interaction mapping

Medical Subject Headings (MeSH) is the National Library
of Medicine’s controlled vocabulary thesaurus. It consists
of sets of terms naming descriptors in a hierarchical
structure that permits searching at various levels of speci-
ficity. We downloaded the disease tree file from MeSH,
which contains 16 categories, including disease, chemi-
cals and drug category, etc. The neurological disease
category (C10) was classified into 15 major clusters and
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Figure 7 MeSH based disease classification of 124 diseases. The manually collected 124 diseases represented in white blocks were grouped
based on the MeSH disease category (blue block) of neurological and psychiatric diseases (yellow block). Most of the diseases were linked to
one or more MeSH disease categories. The overall linkage between the diseases was represented by solid lines.

psychiatric disorder (FO3) was classified into 16 major  carried out by comparing the each seed protein of one
clusters. Each positively scored disease pair (®g;;) was ~ PSN with the other PSN. If the seed protein was unique
mapped to the neurological and psychiatric disease cate-  to its PSN, then the identified seed protein was consid-
gory to determine the reliability of disease connectivity. ered as a biomarker (pi) to its disease.

For instance, if each disease pair presents in single major

cluster suggest having strong connectivity. Significant enrichment biomarkers score
The functional enriched biomarkers score for each dis-
Common Pathway network ease was computed based on the gene ontology. The

In order to understand the common molecular mechanism  scores were calculated using Biological Network Gene
between diseases, the proteins/genes that associated Ontology (BiNGO) plug-in in Cytoscape software.
between each disease pair of disease-disease interaction BiNGO provides p-value statistics based on the prob-
were mapped to the NCI-Nature Pathway Interaction  ability of occurrence of the genes/proteins in the defined
Database (PID) [15]. PID is a manually curated human  ontological categories [31]. Here, the p-values for each
pathway database contains 116 human pathways with 6180  disease biomarkers were calculated on the entire ontolo-
interactions. PID provides the p-value based on the prob-  gical categories such as molecular function, biological
ability of occurrence of the proteins in the defined pathway.  processes and cellular localization. Further, the geo-
Lower the p-value the greater the probability of proteins  metric mean of p-values of each disease was calculated
associated towards a given pathway. Hence, we filtered the  and the negative logarithm was performed. The biomar-
common pathway between the diseases by p-value 0.05. kers relationship to its disease was significant, if the
score obtained to be greater than a threshold of 1.3 [32].
Biomarker’s identification
The analysis of DPN was carried out to determine the  Biomarker scoring for diagnosis from biofluid
biomarkers for each disease involved in this study. Bio-  The identified biomarkers were scored based on the fea-
markers were identified by finding the disease specific  sibility of diagnosis. The biomarker score (‘¥p; score) for
seed proteins from the DPN network. This process was  each protein (pi) was calculated by assigning the score
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for each parameter such as house keeping genes (y;),
urine protein (ai), plasma protein (i) and CSF protein
(yi) in a given scoring formula.

‘Ppi score = Mj t 3((Xi + Bl + Yl)

The proteomic data of urine was obtained from [33]
and plasma proteome data was obtained from the
Human proteome organization database [34]. The CSF
proteome and house keeping genes data were obtained
from the literature of previous studies [35,36]. In scoring
formula (Wi score)s Wit scored 1.0, if the protein (pi) is
encoded by house keeping gene, else it is scored 0.5; ai
= 0.3, if the protein (pi) circulating in CSF; i = 0.5, if
protein (pi) circulating in plasma; yi = 0.7, if the protein
(pi) circulating in urine. The absence of protein (pi) in
any biofluid indicated as, ai (or) Bi (or) yi = 0.

Cross validation of network

In order to validate our computational approach, the
results obtained from this study were compared with
the results of previous studies. The disease-disease inter-
action was cross-validated with Goni et al and Goh et al
approaches [19,4]. Furthermore, the identified biomar-
kers were validated using Genome Wide Association
studies (GWAS) database [23] to calculate the precision
rate.

P

Precision rate (PPV)% = ———
TP + FP

TP: Number of True Positive

FP: Number of False Positive

GWAS contains disease associated gene/protein infor-
mation in terms of gene expression, proteomic expres-
sion and mutation data. Cross validation of identified
biomarkers with GWAS database will be valuable, to
utilize the measurable threshold of our biomarkers for
diagnosis.

Additional material

Additional file 1: MeSH based disease categorization. Classification of
manually collected 124 diseases based on the MeSH terms. This file is in
PSI-MI level 2.5 format and can be viewed by Cytoscape software.

Additional file 2: Curated disease protein network (DPN). Disease
protein network of 3632 proteins with 6172 interactions. This file is in
PSI-MI level 2.5 format and can be viewed by Cytoscape software.

Additional file 3: Extracted disease-disease network (DDN) using
scoring algorithm. List of positively scored disease-disease interactions.
This file is in PSI-MI level 2.5 format and can be viewed by Cytoscape
software.

Additional file 4: Disease and aging interaction. Positively scored
interaction between of disease and aging. This file is in PSI-MI level 2.5
format and can be viewed by Cytoscape software.
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Additional file 5: MeSH validated disease interaction pairs. List of
MeSH validated disease interactions. This file is in PSI-MI level 2.5 format
and can be viewed by Cytoscape software.

Additional file 6: Common pathway network. Common pathway
associated disease pairs. This file is in PSI-MI level 2.5 format and can be
viewed by Cytoscape software.

Additional file 7: Gene/protein sets uniquely representing specific
disease as biomarkers. Disease specific biomarker proteins. This file is in
PSI-MI level 2.5 format and can be viewed by Cytoscape software.
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