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Abstract

Background: With the rapid development of high-throughput experiments, detecting functional modules has
become increasingly important in analyzing biological networks. However, the growing size and complexity of
these networks preclude structural breaking in terms of simplest units. We propose a novel graph theoretic
decomposition scheme combined with dynamics consideration for probing the architecture of complex biological
networks.

Results: Our approach allows us to identify two structurally important components: the “minimal production
unit"(MPU) which responds quickly and robustly to external signals, and the feedback controllers which adjust the
output of the MPU to desired values usually at a larger time scale. The successful application of our technique to
several of the most common cell regulation networks indicates that such architectural feature could be universal.
Detailed illustration and discussion are made to explain the network structures and how they are tied to biological
functions.

Conclusions: The proposed scheme may be potentially applied to various large-scale cell regulation networks to
identify functional modules that play essential roles and thus provide handles for analyzing and understanding cell
activity from basic biochemical processes.

Background
Cellular behavior, including motility, metabolism and
reproduction is controlled by complex biochemical reac-
tion networks, many of which have been identified and
studied in detail [1]. These networks realize their regula-
tory roles through complex molecular interactions. Con-
temporary high throughput experiments produce
unprecedented amount of data that serve to pinpoint
the players and their interactions, resulting in complex
chemical reaction graphs. How to analyze these intricate
graphs and gain insight into the regulation mechanism
employed by cell has become a central problem of mole-
cular biology.
Much progress has been made in the analysis of func-

tions of complex networks, no matter if they are mod-
eled deterministically [2,3] or stochastically [4-9]. These
studies concentrate on the investigation of dynamics of
given networks by checking their stability, parameter
dependence, robustness and input-output relation. How-
ever, for large-scale networks such as those commonly

found in important biological processes [10,11], the
incurred computational load often severely limits our
ability for performing detailed analysis. More critically,
with continued experimental efforts that are revealing
more details of networks’ global wiring, their growing
complexity has made it harder and harder to identify
the underlying local functional structures and thus
probe the network function.
Normal cell life involves physical or chemical activities

at vast range of spatial and temporal scales and it is
vital to identify characteristic structures at all scales and
study their roles in relation to a particular cell function
[12-17]. These key structures are called modules, the
existence of which contributes almost to every aspect of
the cell regulation: robustness, sensitivity, adaptivity,
evolvability. Their detection and study much simplifies
the analysis of complex networks since a small set of
modules could come from and be a lot simpler than a
collection of many entangled individual agents [18]. The
simplification may be carried on by constructing mod-
ules of modules.
Recently, useful concepts distilled from statistical phy-

sics such as the small-world and the scale-free networks
[19,20], began to see their application in gene regulation
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networks and lead to considerable success in unraveling
the statistical nature of these networks. However, this
type of statistical analysis mainly aims at gross features
of networks [21] and thus ignores local structural prop-
erties and heterogeneities, which often determine the
operation of a network in an essential way, since dispa-
rate network modules generally imply distinct dynamics
and fit for different functional requirements [22,23].
Nevertheless, the determination of modular structure in
a large network is not straightforward since one molecu-
lar species may be involved in many different pathways
with very distinct external connections. Such inter-cor-
relation is easily under-appreciated and yet has profound
consequences on the organism.
In this paper we propose a new theory of architecture

of biochemical networks based on control and graph
theoretic analysis. In this theory, a network consists of
two major modules: one is the pipeline of linear infor-
mation production unit which serves to generate the
required output (e.g. protein concentrations); the other
is the set of feedback loops which act as controllers of
the production. These two modules are identified based
on the information flow in a network. Specifically, input
and output nodes define a polarity of the network.
Information is received at the input, processed and then
sent to the output. The agents that carry on the infor-
mation along the forward direction belong to the pro-
duction unit. The remaining agents direct part of the
information in the opposite direction and thus are ele-
ments of the feedback controller [22]. In the paper,
detailed algorithm are presented for the construction of
the production unit and the feedback controller.
The concept of modules has been used in modeling of

biological networks for decades. The existence of this
special structure is universally agreed upon but its exact
definition is done on case-by-case basis. Recently, mod-
ules and community structures are defined in the graph
theoretic studies of many real-world networks [20,24],
based on the connectivity between nodes. Useful as it is,
this type of definitions ignore the importance of control-
ler loops. The community structure in the synchroniza-
tion study involves more dynamics information but it
works for a special class of networks and for particular
types of equations of motion. Closely related concepts,
such as “network motif” are also proposed [13,25].
Motifs consist of a small number of nodes and appear
repeatedly (more than expected from pure statistical
consideration) in a network. The modules determined
by our algorithm are different from all these in that we
emphasize the information processing and controlling
units but not simple fixed graph structures given a
priori. In contrast, the decomposition procedure based
on the function of the network and the associated polar-
ity supplies the detailed structures of our modules.

Different polarities may result in different decomposi-
tions and different initial conditions may define different
MPUs. So our concept of modules depends on the
information flow through or the function of the
network.
In the following, we will use the NF�B regulation net-

work [26] as an example to explain our graph theoretic
analysis procedure and display the generic producer-
controller structure. We also analyze the chemotaxis
network of E. coli, TNF-a initiated apoptosis network
[27], the circadian clock network in Drosophila [28] as
interesting examples of the proposed architecture. Three
more examples of biological networks are presented in
Additional File 1 and are all found to possess the same
architecture.

Results and Discussion
The NF�B regulatory network
The NF�B regulatory pathway concerns the switching
dynamics of the nuclear factor NF�B, which regulates
various genes important for pathogen or cytokine
inflammation, immune response, cell proliferation and
survival [29,30]. In the cytoplasm of a resting cell, NF�B
usually binds to I�Ba and its activity is suppressed. Cer-
tain external signals activate the switch protein IKK
which phosphorylates I�Ba such that NF�B is released
[31]. The free NF�B then translocates into the nucleus
and initiates the transcription of a large set of proteins,
including protein I�Ba and protein A20. Protein I�Ba,
once synthesized in the cytoplasm, enters the nucleus,
binds to NF�B, transports it out to the cytoplasm and
thus terminates the transcription. Protein A20 deacti-
vates IKK. Therefore, the module mainly consists of two
forward proteins IKK and NF�B and two feedback pro-
teins I�Ba and A20. Also, the translocation of the pro-
teins between the nucleus and the cytoplasm is an
important biological process that realizes spatial locali-
zation of different protein species.
The diagram of a detailed model of the NF�B regula-

tory network is shown in Figure 1A where we use xi’s to
represent the concentration of various proteins. The
associated chemical kinetic model is given and explained
in Additional File 1. With physiological initial conditions
[32], the concentration of the nuclear NF�B executes
damped oscillations, shown with the thin dotted curve
in Figure 1C. At the beginning, it shoots up to a very
high value in a short time and then relaxes to a much
lower steady value in an oscillatory way.
For any networked system described by certain dyna-

mical equations, it is easy to write an interaction graph
with the vertices representing the reacting agents and
the edges directed from each agent to the ones under its
influence. The interaction graph for the NF�B model is
shown in Figure 1B.
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It is straightforward to write down the adjacency
matrix for the interaction graph, which marks 1 at the
entries corresponding to connected edges and zero
otherwise. The interaction graph and the adjacency
matrix neglect details of the interactions and only map
out the network topology which holds true almost
everywhere in the phase space and the parameter space,
except for a set of measure zero [33]. This robustness
confers flexibility of analysis to analyzing vastly different
dynamics described by ODEs or mappings or even sto-
chastic equations. Certain system properties, like the
uniqueness of the stationary point sometimes can be
deduced from pure topological consideration of network
structures [34,35]. So, understanding of structure of
interaction graphs helps unveil the key elements in a
complex system which possibly has uncertainties in the
parameter values or is influenced by a noisy environ-
ment. Graph theoretic techniques will be developed here
to enable an automatic decomposition of a biochemical
network into forward and feedback modules, thus unra-
veling the architecture responsible for its biological
function.

Controllers of the NF�B network
The horizontal-vertical decomposition (HVD) of an
interaction graph of a dynamical system has been dis-
cussed in a paper [33]. It is a technique that studies
information flow and processing in interconnected sys-
tems. Vertically, the HVD decomposes a system into a
linear series of layers, where the layer downstream is
influenced by the layer upstream but not vice versa. So,
the input signal propagates unidirectionally. Horizon-
tally, the HVD decomposes each layer into independent
groups with no direct connections between. In one
layer, each group receives its own input from upstream
layers and output the signal to downstream layers. Each
group is a strongly connected component (SCC) such

that a path always exists between any two nodes in the
group. If each group collapsed into a point, the whole
network will become cycle-free [36].
Direct application of the HVD to the interaction graph

in Figure 1B results in three layers with the top and bot-
tom layer consist of the vertex sets {x1}(IKKn) and {x3,
x15}(IKKi, cGen-mRNA), respectively. The rest of the
vertices are strongly connected and belong to the middle
layer. This type of structure with dominant intermediate
processing unit exists in most biological and engineering
networks [33,37] as a result of omnipresent feedback
loops and reversibility of many biochemical reactions.
Below, we apply our cycle search and selection techni-
que to the middle layer for further decomposition into
the production unit and feedback controller.
The polarity of the middle layer is ready to be identi-

fied. The vertex x15 is the output signal that is of inter-
est while x1 receives the external input. Therefore, in
the middle layer, x2 is the input vertex and x7 is the out-
put one. In the mean time, we observe that in an SCC,
if feedbacks exist, they are always making cycles and
vice versa every cycle contains at least one forward and
one feedback edge. As cycles are obvious topological
invariants of a network and easy to seek, our strategy
consists of two steps: first, search for all cycles that exist
in the graph; second, determine the feedbacks through a
selection procedure, which depends on the polarity of
the network. The detailed illustration of our technique
is contained in the Methods section. Here we show the
computation result in Figure 2A, where we see that our
procedure identified four feedback loops:

• FBa - the one through vertex 4: IKKa associates
with free I�Ba and catalyzes its decay.
• FBb - the one through vertex 14: I�Ban captures
NF�Bn to form (I�Ba-NF�B)n, which then moves
out of the nucleus.

Figure 1 A model of the NF-�B signaling module. (A) The structure diagram of the NF-�B module. (B) The derived interaction graph. (C) The
time evolution of the NF�Bn with the full network (red line) and with the minimal production unit (MPU) (green line).
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• FBc - the one through vertex 12: NF�Bn promotes
the production of the I�Ba mRNA which translo-
cates to the cytoplasm and initiates a burst of I�Ba
production.
• FBd - the one through vertices 8 and 9: NF�Bn

promotes the production of the A20 mRNA and
thus initiates the production of A20, which catalyzes
the decay of IKKa.

This identification agrees very well with the usual
recognition of feedback loops of this system in the lit-
erature [29,30] based on biological reasoning. The cor-
rect identification of feedback loops is essential for
understanding the signal processing of a network since
many important cellular activities are controlled or even
realized by feedback signaling [22,23]. We emphasize
that we recognized the feedback loops by an automatic
procedure based on graph decomposition.

Extracting the minimal production unit
After the structured network is constructed as in Figure
2A, we proceed to the extraction of the minimal pro-
duction unit (MPU). In the case of signal transduction
network, the MPU is the minimal subgraph of a net-
work that produces a response to external stimuli. The
MPU is minimal in the sense that removal of any links
from the subnetwork will lead to zero output. However,
the response of the MPU may happen at a value that is
different from what is desired in a real cell and setting
that correct value is one of the roles of the feedbacks.
Its identification depends both on the initial state of the
system and on the signal that is of interest. Moreover,
certain qualitative aspects of chemical kinetics of the
network need to be considered in the course. As a mat-
ter of fact, the binary or dissociative reactions correlate

certain edges that represent same reactions. For exam-
ple, the associative reaction A + B® C is depicted as
A® C ¬ B in the interaction graph and the two arrows
represent the same reaction. In previous computation,
we ignored this correlation and carried out our analysis
purely from a graph theoretic point of view. A more
detailed consideration needs to incorporate this correla-
tion: these two arrows have to coexist. Below, the NF�B
network is used as an example to demonstrate the pro-
cedure of the MPU extraction in detail.
As we now only consider the forward production part

to output x15, the feedbacks and the associated reactions
are first removed. For the NF�B network, we remove
{x4, x8, x9, x12, x14} and arrive at Figure 2B. The correla-
tion among edges has been considered as suggested by
the above-mentioned binary reaction, i.e., the correlated
arrows will be removed or kept coincidentally. Next, all
the outputs except the one we are interested in are
removed. That is, {x3, x11} are removed. Here we see
that the final MPU indeed depends on what signal we
are looking at. Different output may result in different
MPUs. Finally, we remove other irrelevant vertices in a
recursive way according to the topology of the resulting
graph and the given initial conditions. In the NF�B
example, based on Figure 2B, x10 is removable since it
does not lie on the main information path and x10(t) =
0 all the time with x10(0) = 0 being given. All this being
done, we produce the MPU depicted in Figure 2C.
The MPU of the NF�B network contains the vertex

set Sm = {x1, x2, x5, x6, x7, x13, x14}, while all other ver-
tices can be regarded as functional controllers. To check
if what we got in Figure 2C is indeed an MPU, we keep
only the variables in the vertex set Sm and their interac-
tions in the evolution equation. Numerical simulation of
this reduced set of equations produced an output curve
depicted with the thick solid line in Figure 1C, which
displays a fast approach to a steady state value that is
much larger than the equilibrium value of the full sys-
tem. It is interesting to note that the saturation value
and the relaxation time are very close to those of the
first oscillation peak of the full equation. The vertex set
Sm constitutes the MPU of the NF�B gene regulation
network, and it is the smallest subgraph that generates a
quick and large response to the external signal. It can
be checked that cutting any link in Figure 2C will totally
disrupt the output-producing ability. For example, if the
edge (2, 5) (from x2 to x5) is cut, the edge (2, 13) has to
be cut as well because of the correlation mentioned ear-
lier, and there will be no output signal. The vertices non
in Sm act as controllers to bring down the initial pulse
to a desired steady value in a larger time scale. Both the
short and the long time response in this network bear
important biological significance [30].

Figure 2 The structure decomposition and the MPU of the NF-
�B signaling regulatory network. (A) The structured diagram
derived from the graph theoretic analysis; (B) with feedbacks
removed. (C) The MPU with irrelevant vertices removed.
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Biological significance of the MPU and the feedbacks
So far, we have identified the MPU and the feedbacks.
Next, we go on to discuss the biological relevance of
these “modules” to the operation of NF�B network. In
this and several other networks we studied, as an impor-
tant observation, we find out that the MPU is the core
signal production unit which responds quickly to the
external cues. In the NF�B network, when a signal such
as TNF arrives, IKKn gets immediately activated into
IKKa while the deactivation of IKKa is minimized since
its constitutive decay rate is small. So, the concentration
of IKKa will rapidly increase until A20 is produced by
the feedback loop and starts the catalyzed decay of
IKKa. The forward reaction rate is thus maximized tran-
siently and enables cell response to signals with short
duration [30]. So, the network has a very sensitive and
fast transient response, which is essential for certain sig-
naling pathways [30].
The feedback structures we identified respond at a

much larger time scale. Only when the concentration of
NF�B reaches a high enough value and induces signifi-
cant transcriptions in the nucleus, does the negative
feedback start to bring down the IKKa concentration to
a steady level which is much lower than the transient
peak. The feedback FBb mainly facilitates the step of
clearing NF�B out of the nucleus. FBc is to restore the
concentration of I�Ba that has been consumed by the
IKKa-catalyzed decay. FBd is to deactivate IKKa by A20
to bring down the activation level of the whole network.
Thus, our structural decomposition detects forward pro-
duction unit for quick reaction and feedbacks responsi-
ble for long time responses.
Like other feedback signaling from the output [4,38],

these loops bring about sensitivity and robustness to the
network for fulfilling its basic function [39]. The oscillation
observed in Figure 1C is a signature of trading stability for
sensitivity [17]. The forward immediate amplification con-
fers easy excitability to the network while together with
the delayed feedbacks brings about oscillations. On the
other hand, over long time, the reaction rates of all bio-
chemical processes are to some extent influenced by envir-
onmental variables such as temperatures, pH values,
concentrations of certain ions [40]. To function normally
under different conditions, the chemical network should
possess structural stability. Here the double feedbacks FBc
and FBd offer extra structural stability against parameter
uncertainty: if the parameter changes incur a temporary
increase of the concentration of NF�Bn, then both FBc and
FBd will act to bring it down. Even if one of FBc or FBd

does not function well, the other one will minimize the
change of NF�B concentration. Computation shows that
when the rate of the reaction involving either FBc or FBd

assumes 50% of their normal value, the output signal
changes little. However, major changes in the oscillation

period, amplitude and the final equilibrium value of the
output x7 are observed when both of the previous changes
are made simultaneously. Therefore, these feedbacks pro-
vide extra protections for keeping the system stable under
parameter fluctuations [22].
The above procedure of searching for MPU is easily

generalized to more complex networks, with possible
multiple inputs and outputs which interact with each
other. We will study their competition or cooperation
all together instead of individually. The critical step lies
in our capability of detecting feedback loops. Once the
feedback controllers are found, the MPU is obtained by
removing all the feedbacks and then all the dynamically
inessential nodes. The observed separation of time
scales, can, however, leads to further theoretical study
using averaging methods or normally hyperbolic invar-
iant manifold concept from dynamical systems. We
expect to pursue this in our future studies. In what fol-
lows, we analyze the E. coli chemotaxis network and
several other signaling networks. More examples are
available online in the Additional File 1.

Decomposing the E. coli chemotaxis network
Figure 3A displays a chemotaxis model of E. coli [41],
which enables the E. coli cell swimming to food sources
and away from hostile environments. The most salient
feature of the chemotaxis regulation network is the sen-
sitivity and adaptivity. That is, E. coli is able to respond
quickly to very weak signals - concentration gradients
and under vastly different background concentrations.
This special dynamical properties are insured by inter-
esting network topology [4]. As shown in Figure 3A,
chemoattractants (indicated by the red ball) bind to and
activate the transmembrane receptors ({x1, x2, x3, x4,
x5}), which stimulate CheA (x6) through the adaptor
CheW. Activated CheA phosphorylates CheY(x8), which
binds to the flagellar motor (x9) and increases the fre-
quency of E. coli tumbling. The activation of the recep-
tor complex is controlled by its methylation states.
Higher methylation states indicate higher probability to
be activated. In the model, CheR binds only to the inac-
tive receptors to increase methylation and phosphory-
lated CheB(x7) only to the active receptors to decrease
methylation.
Figure 3B displays its feedback and forward structure

upon application of graph decomposition. The first level
consists of the vertex set {x1, x2, x3, x4, x5} which are
different methylation states of the receptor complex.
External signals propagate down through x6, x8 and
finally reaches the flagellar protein x9.
There is one feedback vertex x7 (CheBp). The minimal

production unit (MPU) is obtained after all the reactions
involving x7 are removed and is contained in the box in
Figure 3B.
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With the feedback through CheBp (x7), the system has
sensitive detection and robust adaptivity as shown with
thick solid line in Figure 3C. Starting with zero value,
the CheYp quickly reaches the saturation level. At t =
500s, an external stimulus - 10μM concentration ligand
is supplied, which induces a drop of CheYp concentra-
tion followed by an exponential decay back to the
saturation value. At t = 1000s, the ligand is removed
which triggers a jump of CheYp concentration but
regains its stable value exponentially fast. When the
feedback is removed, the MPU reaches the stable value
after a quick initial rise and stays at the value no matter
how the concentration of external ligand changes. The
robustness is retained but the adaptivity is lost. So, in
this example the feedback is essential for the system’s
transient response to external stimulus and maintaining
the adaptivity. As in the previous example, the produc-
tion-controller dichotomy structure guarantees the nor-
mal functioning of a cell regulation network with both
parts playing irreplaceable roles. Here, the forward pro-
duction reacts quickly accounting for the sensitivity of
the network while the controller works in a larger time
span to realize the adaptivity.

Survival and apoptotic pathways initiated by TNF-a
This model studies the survival and apoptotic pathways
initiated by TNF-a that we adopt from [42]. These path-
ways play decisive roles in cell fate decision in response
to inflammation and infection. After an external cue
TNF-a binds to its receptor TNFR1 (x2) (see the table),
adaptor proteins TRADD, TRAF2 and RIP-1 are
recruited to form an early complex ready for binding
and activating other functional proteins. There are two
different downstream pathways: the survival pathway

mediated by NF-�B and the apoptotic pathway mediated
by caspase. NF-�B is usually sequestered by I�B and is
released when I�B degrades. IKK binds to the early
complex to form a survival complex and is activated
with the dissociation of this complex. The activated IKK
is able to induce proteolysis of I�B. The released NF-�B
translocates to the nucleus, binds to DNA and leads to
the transcription of IAP and I�B. c-IAP inhibits apopto-
sis by binding to caspase-3* and thus preventing DNA
fragmentation. The interaction graph is depicted in
Figure 4 and the notation is detailed in Table 1.
Upon application of the graph decomposition routine,

we successfully unfold the underlying modular structure
of the TNF-a network. The forward production unit is
a long cascade involving many different species and
reactions. The signal TNF-a (x1) is processed through
the network until DNA fragmentation is induced (x26)
as shown Figure 5A. The direct HVD identifies one big
SCC enclosed in the two boxes in Figure 5A. Further
analysis distinguishes the forward and backward edges.
The whole NF�B pathway is now revealed as a feedback
module, which controls the level of the c-IAP (x27) and
thus Caspase-3* (x25), and maintains the option for sur-
vival. It is intriguing that the NF�B module is produced
automatically by our decomposition procedure although
it has many connections to the rest of the network. The
removal of the NF�B module singles out the MPU
shown in Figure 5B.
Figure 6 shows the level of DNA fragment (x26) with

or without the presence of the NF�B control module.
With the feedback module, the rate of the fragmentation
of DNA is low (Figure 6A), which may suggest the sur-
vival of the cell; without, the DNA cleavage is high
(Figure 6B), which could indicate an apoptotic fate of

Figure 3 The chemotaxis model of E. coli. (A) The structured biochemical diagram. (B) Feedback and forward structure through graph
decomposition. (C) The response of CheYp to the external cue of the full network (thick solid line) and the MPU (thin solid line), ligands added
at t = 500 and removed at t = 1000.
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the cell. So, indeed, here the NF�B modules acts as a
controller of the apoptotic pathway. Our decomposition
technique accurately captures this information. Again,
without the control module, the MPU produces over-
abundantly the output signal in a relatively fast way.
The long feed-forward edge from x16 to x27 may acceler-
ate the control in this case.

Circadian clock in Drosophila
Circadian clock exists in many different organisms ran-
ging from bacteria to human. The regulation pathway

adopted from [43] and displayed in Figure 7 models the
Drosophila circadian clock which mainly contains two
interlocked loops. The notations are explained in
Table 2. The TIM and PER protein in the first loop may
bind to each other in the cytosol or nucleus, but they
enter the nucleus separately. They down-regulate their
own expression by inhibiting the transcription factor
CLK-CYC. The association of TIM and PER in the cyto-
plasm is mediated by FBM and the dissociation is cata-
lyzed by SM which is generated by the constitutive
entering of PER into the nucleus. In the second loop,
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Figure 4 The TNFa model. Network representation of the Survival and apoptotic pathways initiated by TNF-a.
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CLK-CYC activates both VRI and PDP expression. VRI
represses the expression of CLK while PDP promotes it.
Various forms of TIM are also influenced by the sun-
light. Nevertheless, even without the coupling to sun-
light, the model still produces an oscillation of period
24 hours.
Considering the influence of the external sunlight, we

pick x4 (TIMc) as the input node while x21
(CLK·CYC·Pc) is selected to be the output node since
this complex controls the transcription of TIM and
PER. The network graph after the decomposition analy-
sis shown in Figure 8A clearly shows 5 feedbacks. The
one through SM (x11) is the positive feedback that accel-
erates the dissociation of the PER·TIM complex. The
other four through x1, x2, x12, x13 are the important reg-
ulators of the concentration of PER, TIM, VRI and PDP
through DNA expression and protein translation. The
feedbacks through x12 and x13 interact with each other
and control the production of CLK (x19). The MPU is
very easily obtained by removing the feedback modules
and displayed in Figure 8B, which shows how the (sun-
light) signal is picked up at x4, processed via PER·TIM,
CLK·CYC interaction and output at x21.
With all the feedbacks, the Drosophila network is able

to generate stable oscillations with a period of 24 hours.
Indeed, employing the kinetic model in [43] and starting
with a somewhat arbitrary condition, the network soon
reaches an oscillatory state as shown in Figure 9. With-
out the feedbacks, all the state variables quickly relax to
a steady state, in which concentrations are adjusted

from their initial values quickly in the direction (higher
or lower) corresponding to the operating point of the
circadian clock. The full network follows this response
in the short initial time and then feedbacks take effect
to make it oscillate. So, these feedbacks are essential ele-
ments for the generation of the circadian cycles. Notice-
able in Figure 9 are clearly three distinct time scales: the
fastest direct response produced by the MPU, the period
of the oscillation and the slowest drift to stable oscilla-
tion. The displayed feedbacks in Figure 9 are responsible
for the slow adjustment of the motion and the
oscillation.

Conclusions
In this paper, we discuss some of the universal aspects
of the architecture of biochemical networks that relate
to their production and feedback function. We also
devise an automatic procedure for identifying the key
functional modules of that architecture by applying
graph theoretic methods and invoking additional
dynamic information. The key ingredients of the archi-
tecture are revealed by identifying the forward produc-
tion unit and the feedback controller. We successfully
applied the HVD and the feedback loop searching and
selection algorithm and obtained this anatomy in the
NF�B regulatory, the E. coli chemotaxis network, the
TNF-a pathway and the circadian network. In the Addi-
tional File 1 we show that similar structures exist in a
number of other cell regulatory networks.
The dissection of large networks into functional mod-

ules greatly facilitates their analysis. The functional
modules can be studied individually with well-designed
boundary conditions. The properties of the whole net-
work are deducible by piecing together the modules in
an ordered way. Henceforth, our strategy of analysis is
characterized by a decomposition and recombination
procedure. Current technique can be further extended to
the analysis of hierarchical structures at different scales
with disparate internal dynamics. In the top-down direc-
tion, the network may be broken into functional modules
at different scales by the above decomposition technique.
From bottom up after the property of each module is
conveniently explored, a hierarchy of modules of increas-
ing size may be built until the whole network is covered.
From biological evolution point of view, it is likely that
this nested structure stems from a simple core and is
later wrapped with complex regulation mechanisms dur-
ing evolution. So, our theory reveals the stable, poten-
tially generic feature of a biochemical network, which can
be used to explore either the intricacy in a single struc-
ture or interdependencies of a series of systems.
The detection of modular structures provides addi-

tional insight into how a regulatory network works and
thus gives clear indication of key protein species and key

Table 1 The variables in the TNFa model

x1 TNFa x17 FADD

x2 TNFR1 x18 <x7>/RIP1/FADD

x3 TNFa/TNFR1 x19 TRADD/TRAF2/RIP1/FADD

x4 TRADD x20 Caspase8

x5 TNFa/TNFR1/TRADD x21 TRADD/TRAF2/RIP1/FADD/
Caspase8

x6 TRAF2 x22 Caspase8*

x7 TNFa/TNFR1/TRADD/
TRAF2

x23 Caspase3

x8 RIP1 x24 Caspase8 * /Caspase3

x9 μ〈x7〉/RIP1 x25 Caspase3*

x10 IKK x26 DNA - frag

x11 〈x7〉/RIP1/IKK x27 cIAP

x12 IKK* x28 Caspase3 * /cIAP

x13 I�B/NF�B x29 DNA

x14 I�B/NF�B/IKK* x30 Caspase3 * /DNA

x15 I�BP x31 I�B

x16 NF�B

TNFa is one tumor necrosis factor which binds to the receptor TNFR1. TRADD,
TRAF2 and RIP1 are adaptor proteins which may form complexes with TNFa.
IKK, NF�B, I�B belongs to the NF�B module while FADD, caspase8 and
caspase3 are on the apoptotic pathway. c-IAP is an inhibitor of apoptosis
protein.
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reactions in a cascade, which finds wide applications in
the drug design and synthetic biology [44]. The identifi-
cation of the dominating skeleton subnetwork such as
the MPU and key feedbacks in a regulatory pathway also
simplifies the determination of reaction rates of in vivo
biochemical reaction since the distracting unimportant

reaction components have been removed from the skele-
ton structure [45,46]. In all, the production and feedback
dichotomy of biological networks shapes cellular signal-
ing [22] and the current graph decomposition technique
provides a convenient handle to uncover this important
aspect of their architecture.

A B

Figure 5 Graph analysis of the TNFa network. (A) Feedback and forward structure through graph decomposition. (B) The minimal production
unit of the TNFa network.
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Methods
Identification of forward and feedback edges
As mentioned previously, here, we present an algorithm
to identify the forward and feedback edges with given
polarity, by searching and ordering important topologi-
cal invariants - cycles. First, a cycle search procedure is
discussed which produces all the cycle generators for a
strongly connected component. Then a selection proce-
dure is discussed which generates a partial order of the
vertices and enables the detection of feedbacks in a
straightforward way. Before proceeding directly to the

algorithm part, we state a principle which will be used
in our selection procedure.
Principle of minimum feedbacks
Very often, in complex systems, multi-step processes are
carried out in a well-ordered sequential way with a
small number of feedback controllers modulating the
behavior of the system. The cascade structure with
minimal number of feedback controls yields balance
between robustness and evolvability. It also has the
advantage of maximizing operation efficiency and mini-
mizing energy cost. As an analogue, we propose that in
order to make optimal use of resources and at the same
time maintain necessary stability cells employ a mini-
mum feedback principle: the number of feedback edges
should be minimal in a cell regulation network. It seems
evolutionarily advantageous to allocate only necessary
resources to feedback control. As always happens in
biology, there may exist other requirements which
weaken this principle. Here, we just stick to this princi-
ple which produces reasonable results for all the exam-
ples we are looking into so far.
How to find a minimum set of feedback edges is an

NP-hard problem in graph theory but there exist
approximate algorithms which could do the job rela-
tively fast [47]. It is conceivable that the solution might
not be unique. However, extra constraints may help
remove some non-uniqueness. From a control theory
point of view, the signal transduction network consists
of two major components, the information forwarding
part and the feedback controller. The forwarding part
receives external signal at one end, passing and proces-
sing it along different paths, and producing an output at
the other end. So, the associated information flow
defines a direction on the network. The feedback com-
ponent modulates the flow by sending downstream sig-
nals back to upstream nodes. The identification of these
two components is essential for understanding the func-
tion of different parts of a network. The problem of
searching for the minimal set of feedback arcs has to be
consistent with the polarity determined by the informa-
tion flow. Accordingly, we may restate the problem in
an equivalent way: find an ordering of the vertices with
the given polarity determined by input and output

Table 2 The variables of the circadian clock model

x1 Perm x7 PER · Pc x13 Pdpm x19 CLKc
x2 Timm x8 PER · Pn x14 Clkm x20 CLK · CYCc
x3 PERc x9 TIMn x15 VRTc x21 CLK · CYC · Pc
x4 TIMc x10 PER · TIMn x16 VRIn x22 CLK · CYCn
x5 PER · TIMc x11 SMc x17 PDPc x23 CLK · CYC · Pn
x6 PER · TIMf x12 VRIm x18 PDPn

This Drosophila circadian clock model consists of two loops. One contains PER
and TIM and the other contains PDP and VRI. They interact through CLK-CYC
controlled expression. SM and FBM are two proteins assisting in the first loop.

A B

Figure 6 The evolution of the DNA fragment. The evolution of
the DNA fragment (x26) (A) with and (B) without the NF�B feedback
module.
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vertices, such that the number of feedback edges is
minimized.
Cycle search
For a finite graph, there exist sets of linearly indepen-
dent cycles, the algebraic combination of which is able
to produce all cycles in the graph. Such a set is called
the cycle generator set, denoted by Cgen in our paper.
It is not unique, but the number of elements in Cgen is
fixed for different sets and determined by the graph
itself. Therefore, for an SCC, all the edges lie in the

generator set Cgen. In the following, we introduce a col-
lapsing scheme to find one Cgen of a general graph G =
{ai : i = 1, 2, ..., m|vi : i = 1, 2, ..., n}, where ai’s repre-
sent vertices of G , and vi = (j, k) = [aj, ak] represents
an edge from the vertex aj to the vertex ak. A chain of

edges, denoted by [ , ], , ]a a ai i ik1 2
⋅ ⋅ ⋅ , represent a path

from ai1 to ai2 to ... and finally to aik . We use

[ , ] , , ]a a ai i ik1 2

−  to represent a cycle of k-nodes. The

A B

Figure 8 Graph analysis of the Drosophila circadian network. (A) Feedback and forward structure through graph decomposition. (B) The
minimal production unit of the Drosophila circadian network.
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adjacency matrix of G is denoted with A. The main
idea is to identify shortest cycles and then simplify the
graph in an iterative way and a flow graph of the proce-
dure is shown in Figure 10 which is explained below in
detail.
(1) Record all the self-loops of G which are encoded

by the nonzero diagonal elements of A. After removing
the corresponding edges from G , we obtain a new

graph G1 and a new adjacency matrix A1.

(2) Search and record a shortest cycle l a ai ik1 1
= [ ,..., ]

of A1 for some k > 1 by looking for the nonzero diago-
nal elements of the m-th powers of A.

(3) The induced subgraph H1 with the vertex set

{a1,..., am} and their connections has an adjacency
matrix B1 which is a submatrix of A1. Each nonzero ele-
ment (ip, ip+1) of B1 can be made to a cycle by connect-

ing aip+1 back to aip with part of the cycle l1, e.g., by

the chain of edges [ , ,..., ]a a ai i ip p p+ +1 2 . Initially, this step

is not necessary since besides l1 there is no extra edge

in H1 . However, after the collapse in step 4, there may

appear multi-edges between some pair of nodes. For

each of those in H1 but not in l1, we can identify and

record a new cycle.
(4) Collapse all the edges and vertices in the subgraph

H1 into one point P1, and we obtain the updated graph

G2 for which a new adjacency matrix A2 is written

down. If G2 only contains P1, the iteration is terminated.

Otherwise, we go back to step 2 and repeat the proce-

dure with the new graph G2 and the new adjacency

matrix A2. Note that G2 may not be a simple graph:

there could be more than one edge between some pair
of vertices. This is the origin of extra edges on a short-
est cycle in step 3.

It is easy to show that each cycle of G1 corresponds to

a unique cycle either in H1 or in G2 . Vice versa, each
cycle l in G2 can be identified with a unique cycle in
G1 : if the cycle l runs through P1, then its incidence ver-
tex and exit vertex in H1 can be connected by a unique
path embedded in the cycle l1 and thus a unique cycle
in G1 is produced by concatenating this path to the
edges contained in l; if the cycle l stands apart from P1,
it directly corresponds to one cycle in G1 . So, after the
search is done, finally, we can trace backward all the
cycles we have found so far in the original graph G
except the self-loops. In the algorithm just described,
not all cycles but a set of linearly independent cycles are
recorded, which by definition constitutes a cycle genera-
tor set Cgen. The generators derived from the above
algorithm are prime in the sense that any proper subset
of a generator is not a cycle. Note that the set Cgen
may not be unique since the selected cycle in step 2
might not be unique. What consequences this non-
uniqueness brings about is an interesting problem that
deserves further investigation. However, the important
point here is that all the feedback edges appear at least
once in Cgen.
For the NF-�B gene regulatory network, we apply the

cycle-searching technique and find that the total num-
ber of cycle generators are 33 with 15 1-cycles and 8 2-
cycles. 10 cycle generators have length greater than 2.
Selection procedure
For a graph with a tree structure, it is always possible to
find an order of the vertices, such that only forward
edges show up. For instance, the HVD of the graph could
generate such an ordering. With cycles present, at least
one feedback exists no matter how the vertices are
ordered. According the principle of minimal feedbacks,
we want to find an ordering under which the number of
feedbacks is minimized. That is to say, we set out to
extract a minimal set of the edges, the removal of which
leads to a cycle-free network. It is not uncommon that by
removing one edge quite a few cycles get destroyed. In
order to determine the forward and feedback edges in an
SCC based on the cycles found in the previous section,
we utilize the polarity of the network that determines the
flow direction. In a graph possessing polarity, for the
input vertex, every out-edge is regarded as a forward
edge and every in-edge a feedback. The opposite is true
for the output vertex. Note that 1-cycles (self-loops) and
2-cycles are special and need to be treated differently. 1-
cycles always attach to individual vertices and are not
regarded as feedback loops. 2-cycles are bidirectional
edges that are most likely representing the forward and
the backward reactions since many of biochemical reac-
tions are reversible. These 2-cycles are important for
keeping chemical balance but not usually regarded as

A B

Figure 9 The evolution of one important protein. The evolution
of the cytoplasmic CLK·CYC·Pc (x21). (A) with all the feedbacks
present and (B) of x1, ..., 23 without the feedback module.
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feedbacks from a signal transduction point of view. Each
2-cycle contributes exactly one feedback edge and one
forward edge, irrespective of the ordering of the vertices.
Therefore, they have no impact on the vertex ordering
regarding the search of minimal set of feedbacks. Hence,
in the selection procedure, we only consider cycles of
length greater than or equal to 3 and we call them “long

cycles”. We take the middle layer of the NF�B network
from the HVD result as an example. Here, the input
point is x2 as it receives signals from x1 and the output
point is x7 as it sends signals to x15. The goal is to find all
the forward paths that go from x2 to x7 and all the feed-
back loops. The algorithm is depicted as a flow chart in
Figure 11 and a detailed explanation is given below.

Figure 10 The flow chart for cycle search. The procedure displayed here is applicable to the strongly connected component (SCC) of a
network. The result is a set of cycle generators.
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(1) With the long cycles and the polarity determined,
we first look for cycles connecting x2 and x7 and thus
extract a set of forward paths that go from x2 to x7.
(2) From the remaining long cycles, we search for the

ones intersecting an extracted path at two nodes. If
more than two intersections are found, we choose the
two intersections that are most separated. This choice is
to put as many edges as possible to the forward direc-
tion and thus to minimize the feedback ones. Using the
edges on the cycle as a replacement of the edges in the
path that connect the two intersections, an alternative
path from x2 to x7 is constructed.
(3) We repeat the search until no more alternative

paths can be generated from the available long cycles.
(4) Now, it is possible to construct a subgraph F

expanded by the vertices and the edges contained in these
forward paths. A node in F belongs to the production
unit and to the feedback controller otherwise. For the mid-
dle layer of the NF�B network, the vertex set in F has
been computed as Vf = {x2 , x5 , x6 , x7 , x10 , x11 , x13}
which sit in the forward production unit and are displayed
inside the rectangle in Figure 2A. The complementary ver-
tex set consists of Vb = {x4 , x8 , x9 , x12 , x14} which should
be included in the feedback controller.

(5) The HVD is applied to F to partially order its
vertices and edges. We rearrange the order of the ver-
tices in F according to the partial order. In the new
order, an adjacency matrix only has subdiagonal non-
zero entries, which represent forward edges. If we
restore all edges in the original graph that connect
nodes in F , the adjacency matrix may have superdia-
gonal entries, which are considered as feedback edges.
For the NF�B network, the collection of the feedback
and the forward edges are clearly seen in the rectangle
in Figure 2A. For a complex feedback controller, if
needs arise, we may carry out further decomposition
with our cycle search and selection algorithm. For the
NF�B network, it is not necessary since the feedback
controllers are simple line graphs.

Additional material

Additional file 1: Examples of several other cell regulation
networks.

Acknowledgements
This work was in part supported by DARPA DSO under AFOSR contract
FA9550-07-C-0024. Approved for public release, distribution unlimited. This

Extract all paths
from     to    

Find a new 
alternative path

I O

No

Yes

Forward paths
determination

Nodes classification

HVD the subgraph

Adjacency matrix in
the new ordering

Find all generators
I

Select a node

Any node 
unselected?

Edges classification

No Yes

Edge below
diagonal?

Done

Feedbacks

Yes No

Is it on
any path?

Production 
unit

Feedback 
controller 

Forward edges

Yes No

of forward paths

generators, input−  

herteit is

output−    nodes 
I

O

cut any path ?

Do the  
rest of generators 

Oconnecting    −       

Figure 11 The flow chart for cycle selection. Started with the cycles already determined and given polarity, the procedure here identifies the
forward part and the feedback part of the network.

Lan and Mezić BMC Systems Biology 2011, 5:37
http://www.biomedcentral.com/1752-0509/5/37

Page 14 of 15

http://www.biomedcentral.com/content/supplementary/1752-0509-5-37-S1.PDF


work was in part supported by AFOSR contract FA9550-09-1-0141 and
DARPA DSO under AFOSR contract FA9550-07-C-0024. Approved for public
release, distribution unlimited.

Author details
1Department of Physics, Tsinghua University, Beijing 100084, China. 2The
Center for Control, Dynamical Systems and Computation, University of
California, Santa Barbara, CA 93106, USA. 3Department of Mechanical
Engineering, University of California, Santa Barbara, CA 93106, USA.

Authors’ contributions
IM conceived the dichotomy structure of cell regulation network and
emphasized the importance of the feedback loops in understanding
network function. YL designed the decomposition scheme based on the
cycle search and selection and did the analysis on various networks. Both
authors read and approved the final manuscript.

Received: 7 April 2010 Accepted: 2 March 2011 Published: 2 March 2011

References
1. Alberts B, Johynson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology

of the Cell. Fourth edition. New York: Garland Science; 2002.
2. You L: Toward computational systems biology. Cell Biochem Biophys 2004,

40:167.
3. Endy D, Brent R: Modelling cellular behavior. Nature 2001, 409:391.
4. Barkai N, Leibler S: Robustness in simple biochemical networks. Nature

1997, 387:913.
5. Lu T, Shen T, Zong C, Hasty J, Wolynes PG: Statistics of cellular signal

transduction as a race to the nucleus by multiple random walkers in
compartment/phosphorylation space. Proc Natl Acad Sci USA 2006,
103:16752-16757.

6. Lan Y, Wolynes P, Papoian GA: A variational approach to the stochastic
aspects of cellular signal transduction. J Chem Phys 2005, 125:124106.

7. Hasty J, Collins JJ: Translating the noise. Nat Genet 2002, 31:13.
8. Swain PS, Elowitz MB, Siggia ED: Intrinsic and extrinsic contributions to

stochasticity in gene expression. Proc Natl Acad Sci 2002,
99(20):12795-12800.

9. Kærn M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression:
from theories to phenotypes. Nat Rev Genet 2005, 6:451.

10. Oda K, Matsuoka Y, Funahashi A, Kitano H: A comprehensive pathway
map of epidermal growth factor receptor signaling. Mol Syst Biol 2005,
2005.0010:1.

11. Oda K, Kitano H: A comprehensive map of the toll-like receptor signaling
network. Mol Syst Biol 2006, 2006.0015:1.

12. Barabási AL, Oltvai ZN: Network biology: understanding the cell’s
functional organization. Nature Rev Gen 2004, 5:101.

13. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the
transcriptional regulation network of Escherichia coli. Nat Genet 2002,
31:64.

14. Goldbeter A: A minimal cascade model for the mitotic oscillator
involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 1991,
88:9107-9111.

15. Kaern M, Blake WJ, Collins JJ: The engineering of gene regulatory
networks. Annu Rev Biomed Eng 2003, 5:179-206.

16. Freeman M, Gurdon JB: Regulatory principles of developmental signaling.
Annu Rev Cell Devel Biol 2002, 18:515-539.

17. Csete ME, Doyle JC: Reverse engineering of biological complexity. Science
2002, 295:1664.

18. Ravasz E, Barabási AL: Hierarchical organization in complex networks. Phys
Rev E 2003, 67(2):026112.

19. Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ dynamics.
Nature 1998, 393:440.

20. Mason O, Verwoerd M: Graph theory and networks in biology. IET Syst Biol
2007, 1(2):89-119.

21. Kuo PD, Banzhaf W, Leier A: Network topology and the evolution of
dynamics in an artificial genetic regulatory network model created by
whole genome duplication and divergence. BioSystems 2006, 85:177-200.

22. Brandman O, Meyer T: Feedback loops shape cellular signals in space
and time. Science 2008, 322:390.

23. Lewis J: From signals to patterns: space, time and mathematics in
developmental biology. Science 2008, 322:399.

24. Clauset A, Moore C, Newman MEJ: Hierarchical structure and the
prediction of missing links in networks. Nature 2008, 06830:98.

25. Alon U: Network motifs: theory and experimental approaches. Nature
2007, 8:450.

26. Hoffmann A, Leung TH, Baltimore D: Genetic analysis of NF-κB
transcription factors defines functional specificities. EMBO J 2003,
22(20):5530.

27. Rangamani P, Sirovich L: Survival and apoptotic pathways initiated by
TNF-α: modeling and predictions. Biotech Bioengr 2006, 97:1216.

28. Kuczenski RS, Hong KC, García-Ojalvo J, Lee KH: PERIOD-TIMELESS interval
timer may require an additional feedback loop. Plos Comput Biol 2004,
3:1468.

29. Lipniacki T, Paszek P, Brasier AR, Luxon B, Kimmel M: Mathematical model
of NF-κB regulatory module. Biophys J 2004, 228:195-215.

30. Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IκB-NRκB signaling
module: temporal control and selective gene activation. Science 2002,
298:1241.

31. Scheidereit C: Iκ B kinase complexes: gateways to NF-κB activation and
transcription. Oncogene 2006, 25:6685.

32. Fujarewicz K, Kimmel M, Swierniak A: On fitting of mathematical models
of cell signaling pathways using adjoint systems. Math Biosci Engr 2005,
2(3):527-534.

33. Mezić I: Coupled nonlinear dynamical systems: asymptotic behavior and
uncertainty propagation 2004, [43rd IEEE Conference on Decision and
Control].

34. Craciun G, Feinberg M: Multiple equilibria in complex chemical reaction
networks: I. the injectivity property. SIAM J Appl Math 2005, 65(5):1526.

35. Craciun G, Feinberg M: Multiple equilibria in complex chemical reaction
networks: II. the species reaction graph. SIAM J Appl Math 2006,
66(4):1321.

36. Tarjan R: Depth first search and linear graph algorithms. SIAM J Comput
1972, 1:146-160.

37. Kitano H, (Ed): Foundations of Systems Biology Cambridge: The MIT Press;
2001.

38. Barkai N, Leibler S: Circadian clocks limited by noise. Nature 2000, 403:267.
39. Cheong R, Bergmann A, Werner SL, Regal J, Hoffmann A, Levchenko A:

Transient IκB kinase activity mediates temporal NFκB dynamics in
response to a wide range of Tumor Necrosis Factor-α doses. J Biol chem
2006, 281(5):2945.

40. Ihekwaba AEC, Wilkinson SJ, Waithe D, Broomhead DS, Li P, Grimley RL,
Benson N: Bridging the gap between in silico and cell-based analysis of
the nuclear factor-κB signaling pathway by in vitro studies of IKK2. FEBS
J 2007, 274:1678.

41. Rao CV, Kirby JR, Arkin AP: Design and diversity in bacterial chemotaxix: a
comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2004,
2:0239.

42. Rangamani P, Sirovich L: Survival and apoptotic pathways initiated by
TNF-α: modeling and predictions. Biotech Bioengr 2006, 97:1216.

43. Kuczenski RS, Hong KC, García-Ojalvo J, Lee KH: PERIOD-TIMELESS interval
timer may require an additional feedback loop. PLoS Comput Biol 2007,
3:1468.

44. Arkin AP: Synthetic cell biology. Curr Opin Biotech 2001, 12:638-644.
45. Golub G, van Loan C: Matrix Computations Baltimore, Maryland: Johns

Hopkins University Press; 1996.
46. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP:

Universally sloppy parameter sensitivities in systems biology models.
PLoS Comput Biol 2007, 3(10):e189.

47. Walther H: Ten applications of graph theory Dordrecht: D. Reidel Publishing
Company; 1984.

doi:10.1186/1752-0509-5-37
Cite this article as: Lan and Mezić: On the architecture of cell regulation
networks. BMC Systems Biology 2011 5:37.

Lan and Mezić BMC Systems Biology 2011, 5:37
http://www.biomedcentral.com/1752-0509/5/37

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/15054221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11201753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9202124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17071742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17071742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17071742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11984558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12237400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12237400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15883588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15883588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11967538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1833774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1833774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11872830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9623998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17441552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16650928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16650928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16650928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14532125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14532125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10659837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16321974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16321974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17313484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17313484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11849948?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	The NFκB regulatory network
	Controllers of the NFκB network
	Extracting the minimal production unit
	Biological significance of the MPU and the feedbacks
	Decomposing the E. coli chemotaxis network
	Survival and apoptotic pathways initiated by TNF-α
	Circadian clock in Drosophila

	Conclusions
	Methods
	Identification of forward and feedback edges
	Principle of minimum feedbacks
	Cycle search
	Selection procedure


	Acknowledgements
	Author details
	Authors' contributions
	References

