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biochemical networks into coherent subnets
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Abstract

Background: Compared to more general networks, biochemical networks have some special features: while
generally sparse, there are a small number of highly connected metabolite nodes; and metabolite nodes can also
be divided into two classes: internal nodes with associated mass balance constraints and external ones without.
Based on these features, reclassifying selected internal nodes (separators) to external ones can be used to divide a
large complex metabolic network into simpler subnetworks. Selection of separators based on node connectivity is
commonly used but affords little detailed control and tends to produce excessive fragmentation.
The method proposed here (Netsplitter) allows the user to control separator selection. It combines local
connection degree partitioning with global connectivity derived from random walks on the network, to produce a
more even distribution of subnetwork sizes. Partitioning is performed progressively and the interactive visual matrix
presentation used allows the user considerable control over the process, while incorporating special strategies to
maintain the network integrity and minimise the information loss due to partitioning.

Results: Partitioning of a genome scale network of 1348 metabolites and 1468 reactions for Arabidopsis thaliana
encapsulates 66% of the network into 10 medium sized subnets. Applied to the flavonoid subnetwork extracted in
this way, it is shown that Netsplitter separates this naturally into four subnets with recognisable functionality,
namely synthesis of lignin precursors, flavonoids, coumarin and benzenoids. A quantitative quality measure called
efficacy is constructed and shows that the new method gives improved partitioning for several metabolic networks,
including bacterial, plant and mammal species.

Conclusions: For the examples studied the Netsplitter method is a considerable improvement on the performance
of connection degree partitioning, giving a better balance of subnet sizes with the removal of fewer mass balance
constraints. In addition, the user can interactively control which metabolite nodes are selected for cutting and
when to stop further partitioning as the desired granularity has been reached. Finally, the blocking transformation
at the heart of the procedure provides a powerful visual display of network structure that may be useful for its
exploration independent of whether partitioning is required.

Background
The genome scale metabolic network of small molecule
reactions for cells (particularly eukaryotic cells) is suffi-
ciently complex that it is hard to visualize, let alone
interpret. Using conventional biochemical pathways is a
bottom-up approach that helps to bridge the complexity
gap between individual reactions and the complete net-
work. But this still leaves scope for an intermediate level
of granularity, namely subnets. A subnet allows the

study of the interplay between pathways and reactions
in a broader context, while still focussing attention on a
limited biological functionality of interest.
This line of thought has been pursued by many

authors in the recent literature, together with algorithms
that use a top-down approach utilising the inherent
structure of the complete network to determine its nat-
ural subdivision points. In addition to the conceptual
argument, there are also practical considerations that
motivate this endeavour in particular contexts. The use
of structural analysis tools such as elementary modes
and extreme pathways [1], suffers from the problem of a
combinatorial explosion [2] of the number of such
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modes in a complex network. In essence the problem is
that if two small networks are joined together sequen-
tially, each pathway in one can be joined to each path-
way in the other. So reversing this and partitioning a
large network into subnets is a useful strategy to keep
mode numbers manageable. Alternatively, significant
advances have also been made in large scale mode cal-
culations in genome scale networks [3] and analyzing
the results by sorting [4] or pattern matching [5] techni-
ques. Whether such methods or partitioning is prefer-
able depends on the goals of a particular project.
Another significant context is flux balance analysis

(FBA). There, knowledge of at least some measured
fluxes is needed in order to calculate others by applying
stoichiometric and other constraints. Current technology
allows simultaneous measurement of about a dozen flux
values or several hundred metabolite concentrations [6].
Optimization of an objective function such as biomass
production has been used successfully to supplement
the constraints for metabolic modelling of unicellular
organisms, but the choice of objective for multicellular
organisms is problematic and even for unicellular sys-
tems, maximising biomass is not always appropriate [7].
So in a study that focuses on a particular aspect of
metabolism, it would be helpful if a way can be found
to limit the FBA calculation to a “relevant” section of
the network and avoid needing boundary conditions
that only affect other metabolic aspects.
Depending on the priority allocated to these three sets

of considerations, different approaches have been advo-
cated, and a recent review including the application of
more general network theory approaches to biological
networks, can be found in a recent article by Nayak and
De [8].
The conceptual network simplification problem is

typically addressed by clustering- or community finding
algorithms. A typical example is the Markov clustering
(MCL) algorithm [9]. There, the focus is on identifying
groups of nodes that are closely connected to each
other, while intergroup connections are weaker by com-
parison. A clustering method somewhat similar to MCL
has also been applied to metabolic networks [10]. This
approach uses simulated annealing to process connectiv-
ity information to find modules with high connectivity
within and minimal links between modules, but takes
no account of mass balance constraints.
However, clustering of this kind is not really appropri-

ate for metabolic subnetworks. The most highly con-
nected metabolites are commodity or currency
compounds such as H2O and NADH, but generally
(depending on the context) they are of least interest in
terms of function. Conversely, the conventional path-
ways of biochemistry that should form the core of a
functionally oriented partitioning are typically linear or

circular and only weakly connected in terms of graph
structure.
An alternative approach to the conceptual clarification

of biochemical network structure is as hierarchy trees,
an approach advocated in the work of Holme, Huss and
Jeong [11] and of Gagneur, Jackson and Casari [12].
However, such hierarchies are not very amenable to iso-
lating a particular subnetwork for FBA or mode analysis.
An approach that prioritises the appropriateness of a

biochemical subnet for use in practical applications, was
demonstrated by Schuster et al [13]. The approach is
based on the observation that metabolite nodes in a bio-
chemical network are of two distinct types: Internal
nodes that have associated stoichiometric mass balance
constraints, and external nodes that represent metabolite
inflows and outflows from the environment and have no
associated mass conservation. The external nodes define
the periphery of the network, and so a new boundary
that separates a subset of nodes from the rest can be
created by reclassifying some of the internal nodes as
external. Changing the status of a node from internal to
external, can in a graphical network representation be
seen as splitting it into two: one copy becomes a sink in
one subnet, and the other a source in another subnet.
This demonstrates another difference from clustering,
where networks are usually partitioned by deleting links
rather than splitting nodes. The selection criterion used
[13], is that all internal metabolites that participate in
more reactions than a chosen threshold value are made
external. One rationale behind this criterion is that the
many reactions that contribute to mass balance of such
a highly connected metabolite are reasonably repre-
sented by considering it as buffered, in a subnet not
containing all those reactions. Another is that this
choice is particularly effective at avoiding the combina-
torial explosion problem. And finally, for a high enough
threshold, mainly carrier and commodity metabolites
are selected that are not the focus of interest in a typical
subnet.
Using a threshold connectivity of 5, the metabolic net-

work of Mycoplasma pneumoniae was found [13] to
divide into 19 subnetworks, with identifiable biological
functions. Similarly the human redox metabolism was
found [14] to split into 7 subnetworks for the threshold
value of 5. Although successful in these relatively small
metabolic networks, a criticism expressed by several
authors [11,12,15] is that it relies totally on a local prop-
erty, the degree of node connectivity, and takes no
account of the global network structure. Compared to
their method that uses the global “bow-tie” structure,
Ma et al [15] found that while both methods classify
most currency metabolites similarly, there are examples
in their method of both internal metabolites with high
connection degree and external metabolites with a low
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degree. It was also acknowledged in the original article
[13] that the fully automated selection on connection
degree alone can be improved by minor editing based
on biochemical knowledge. Despite these reservations,
connectivity selection is still implemented in the current
version of the network analysis software application
YANAsquare [16].
The network splitting procedure presented in this arti-

cle aims to incorporate the insights outlined above. In
addition it provides flexibility to interactively guide how
the splitting proceeds, based on the purpose and bio-
chemical knowledge of the user, within the limits set by
the inherent network structure.
The formulation adopts internal/external reassignment

as the splitting paradigm, but only uses the connectivity
degree as a preliminary coarse filter to identify the most
obvious external metabolites. This is optionally supple-
mented or refined by an explicit listing of metabolites that
are/are not taken as external. The main algorithm uses
random walks to explore long range network structure, in
a similar way as MCL clustering [9]. However instead of
the rigid automated cluster delineation produced by the
“inflation” step of the MCL, the results are displayed to
the user as a matrix that summarises network structure
even for large networks in a powerful visual form. At the
heart of the visualisation is a blocking transformation
designed to express subtleties of the status of each node in
relation to an underlying hierarchical clustering, in a way
that resembles fuzzy clustering algorithms. Optimisation
using linear programming delivers a small set of candidate
externals, which the user can accept or reject and this pro-
cess is repeated until acceptably small subnets are pro-
duced. In a final postprocessing step, externals that are
not essential for the partitioning achieved, are reincorpo-
rated to ensure that the inevitable loss of mass balance
information is kept to a minimum. The procedure
described here has been implemented in a software appli-
cation called Netsplitter, and is subsequently referred to as
the “netsplitter algorithm”.

Methods
General overview
Processing of a metabolic network consisting of an
unordered list of chemical reactions specified in the
standard way by a matrix of stoichiometric coefficients,
proceeds through four computational stages:

1. Generating a matrix representation of the network
connectivity structure from random walks, which
expresses each internal metabolite as a distinct
source or sink node in an associated directed acyclic
graph ( DAG).
2. Using hierarchical clustering and a blocking trans-
formation to rearrange the DAG matrix into latent

blocks that express the underlying partially separated
subnets.
3. Proposing prospective separator nodes for
approval to the user, implementing the decision and
recalculating the DAG with improved blocking, lead-
ing to the next round of separator selection.
4. Post-processing to consolidate subnets by reincor-
porating superfluous externals and to reconstitute a
stoichiometry matrix specification of each subnet
from the DAG matrix blocks.

Each of these stages is described in more detail in the
following subsections, followed by introduction of a
quantitative measure of effectiveness. Fuller justifications
for some of the steps are supplied in a separate subsec-
tion at the end of Methods.

Matrix representation of biochemical networks
Random walks and probability matrices
The procedure is based on representing the network as a
matrix of probabilities that reflect random walks on a
simple graph, similar to that used in the well-known
Markov Clustering (MCL) algorithm [9]. However, since
a metabolic network contains nodes of two distinct types
(metabolite and reaction), the first task is to reduce the
stoichiometry matrix (S-matrix) used conventionally to
specify a metabolic network, to a probability matrix for a
simple graph containing metabolite nodes only. For this
step it suffices to treat the metabolic network as a bipar-
tite graph, although it has been pointed out that meta-
bolic networks are best considered hypergraphs [17].
For a simple graph, one starts from a probability

matrix P1 where the elements in row i are the probabil-
ities that a random walk starting from node i in the net-
work will reach node j in a single step. For simplicity,
equal probabilities are assigned to all links emanating
from a particular node. To achieve this, one merely
needs to normalise each row of the adjacency matrix C
of the graph, by dividing each element by the sum of all
elements in the row. The probability matrix PN for a
random walk of N steps, is calculated by raising P1 to
the N-th power. Walks of n ≤ N steps, will be included
in this provided that there is a non-zero probability for
a random walk step to “stay put” on a node; in other
words self-loops are included in the adjacency matrix,
or in matrix terms a multiple of the identity matrix is
added before the row normalisation is carried out.
If we start from a state where there is a single “ran-

dom walker” on each node of the network at step 0, the
probability associated with each walker has the value 1
for being localised on its starting node. Then P1 repre-
sents propagation of this probability to nearest neigh-
bour nodes in step 1, and generally the potentiating of
the matrix can be visualised as the flow of probability
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through the network after increasing numbers of steps.
This is expressed in MCL terminology by referring to
potentiating as the “expansion” operation.
As constructed, the matrix P1 has non-negative ele-

ments with a row sum = 1, which makes it an example
of a right stochastic matrix. From the theory of stochas-
tic matrices [18], it is known that raising a matrix of
this type to consecutive powers converges to a matrix
denoted as P∞. In practice, for metabolic networks
numerical convergence to an approximation of P∞ is
obtained for values of N in the low tens. A typical fea-
ture of this matrix is that many of its columns are zero
vectors, implying that after a sufficient number of steps,
the probability of finding a random walker on the node
corresponding to that column approaches zero, regard-
less of the node from which the walker started at step 0.
Such nodes therefore act as sources, while the remainder
with non-zero columns are sink nodes. In a thought
experiment with one walker starting from each node of
the network at time 0, all walkers will congregate on the
sink nodes after the number of steps needed for conver-
gence. A binary version of P∞ , obtained by replacing all
non-zero elements by 1, can be interpreted as the adja-
cency matrix of a new graph, containing the same nodes
as the original network, but in which all links connect
sources directly to sinks in a star-like configuration.
This is formally described as a directed acyclic graph,
and is directed irrespective of whether any links in the
original network were directed. In what follows, either
P∞ or its binary version is referred to as the DAG-
matrix. Qualitatively the features described above are
quite similar to those in the MCL, but note that in
MCL terminology only the “expansion” operation (rais-
ing P1 to a power) is applied while the “inflation” opera-
tion that is key to the MCL, is not used. Consequently
the DAG obtained here does not usually separate into
disconnected clusters, and needs to be further manipu-
lated by the algorithm to extract subnetworks.
The generalisation of the procedure outlined above to

the bipartite metabolic network case, starts by defining
two separate adjacency matrices CR and RC. For a net-
work of m reactions and n metabolites, the S-matrix is
(n × m) with rows representing metabolites and col-
umns reactions. CR is similarly (n × m) and each row
contains the adjacencies of a metabolite node that act as
a substrate to each reaction column, while RC is (m × n)
and gives the adjacencies of reaction products but with
the roles of rows and columns reversed. Formally, these
are constructed from S by the relations

CR S S RC S S     1
2

1
2Sign Sign Transpose Sign Sign( ) ( ) ; ( ) ( ) (1:1)

Here the Sign function takes the values -1, 0 or 1 and
serves to ensure that CR and RC are nonnegative binary

matrices. From these the probability matrix for the
reduced metabolites-only network is calculated by

P CR RC I1 0 25      RowNorm RowNorm RowNorm . (1:2)

Here the function RowNorm normalises each matrix
row by a simple row sum, and converts the adjacency
matrices to probability matrices. The summation
implied in the matrix multiplication accumulates the
probabilities for a random walk jump from metabolite
node i to metabolite node j, over all reactions that con-
nect them. Note that links in the metabolites-only net-
work are directed in accordance with underlying
reaction directions, whether these are reversible or not.
In the added term, I represents an (n × n) identity
matrix to account for selfloops, and its coefficient is
chosen to scale their probabilities in accordance with
typical values in a sparse network. The results for the
DAG are found to be insensitive to the actual coefficient
value. Unlike for a simple graph, the selfloops could not
be introduced into the adjacency matrices because they
are non-square and even if not, it would have destroyed
the bipartite nature.
Calculation of the DAG matrix proceeds by straight-

forward iterative potentiation of P1, using convergence
of the Frobenius norm of the matrix to within an abso-
lute value of 10-10 as the criterion.
Matrix implementation of partitioning
Reclassifying an internal node as external to produce
network partitioning, is implemented by deleting the
corresponding row from CR and column from RC. This
implies that at any stage the DAG matrix only repre-
sents internal metabolites, and as this changes during
the course of the partitioning the DAG is regularly
updated. A detailed account of this implementation is
given in the justifications section further below.
Preprocessing the DAG matrix
The first step in processing the DAG matrix is to sort
its columns so all non-zero columns are collected on
the left and rows sorted in the same order, then deleting
the zero columns. In this way, by definition only sink
nodes remain in the column sequence and rows are
sorted with all sinks appearing first, followed by all
source nodes.
To demonstrate the method, an example network con-

sisting of 137 metabolites and 117 reactions is used in
what follows. This network happens to be a subnet for
flavonoid metabolism in Arabidopsis thaliana extracted
from the Aracyc [19] database, but serves here merely
as a realistic example of a small metabolic network. The
specification of this network in SBML format is available
as Additional File 1.
Figure 1(a) shows the DAG matrix for this network

using a colour scale to represent numerical values of the
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matrix elements. Of the original 137 metabolites, 66
have been identified as a structural external (i.e. it acts
uniquely as either a substrate or a product in all reac-
tions in which it participates) and eliminated. The
remaining 71 internals are found to separate into
16 sinks and 55 source nodes.
The top square 16 × 16 submatrix is seen to be

(block) diagonal. For the majority of single diagonal ele-
ments, this merely indicates the finite probability that a
random walk starting from a sink node will end there as
a result of a selfloop, while it will not terminate at any
other sink. There are also a few small blocks; they repre-
sent small clusters of nodes that are fully connected and
hence jointly act as a “supersink”. This top square does
not reflect much of the overall network structure and
further manipulation centers on the lower part, i.e. the
DAG matrix is further truncated to contain just the
(nsources × nsinks) lower left submatrix of the original.
Inspection of the lower 55 × 16 submatrix in Figure 1

(a) shows very little internal structure on which to base

network partitioning; almost all source nodes are con-
nected to almost all sinks. The reason is that in a meta-
bolic network there are typically a small number of
ubiquitous metabolites such as carrier molecules that
participate in many reactions. Sacrificing mass balance
for these, is arguably not a serious loss of information,
as an excess or lack of the molecule in the subnet can
be assumed to be made up by other subnets. The com-
mon convention of presenting metabolic pathways as a
backbone structure while suppressing secondary meta-
bolites, is an implicit recognition that such crosslinking
tends to obscure the underlying connectivity structure
that is important to understand functional units in a
metabolic network.
Reclassifying just the four highest connectivity internal

metabolites (Water, Coenzyme A, NADP and NADPH)
in the demonstration network produces the drastic
change shown by Figure 1(b). The truncated DAG now
exhibits clear structure, creating scope for further
manipulation as described in the next section.
A useful strategy to determine such a set of a priori

ubiquitous metabolites is to simply choose a fixed
threshold value and reclassify all internal metabolites
with connectivities higher than the threshold, in order
to reveal the connection structure. A threshold of 8 was
found to work well for networks over a wide range of
sizes, from about 100 metabolites upwards. Manual
adjustment of the threshold can also be done as its
effect is easily monitored by visual inspection of the
truncated DAG as in Figure 1.
Alternatively, an explicit list of commonly occurring

ubiquitous metabolites can be used instead of a thresh-
old, to avoid inadvertent reclassifications. The most effi-
cient strategy was found to be a combination, using a
threshold to automatically reclassify the most “obvious”
carrier metabolites automatically, and supplementing
this with an explicit list of less obvious ones.

Rearranging the DAG matrix to identify subnets
Subnetworks and matrix blocks
The key insight needed to use the mathematical infra-
structure described so far for network partitioning, is
that separated subnets can be made to appear in the
truncated DAG matrix as non-overlapping blocks.
A block is defined as a rectangular submatrix, formed

by the intersection of a horizontal band of rows and a
vertical band of columns, and where any non-zero
matrix elements in either band occur only inside the
intersection (so elements in the bands outside of the
block are all zero). It follows that the row and column
ranges of a block does not overlap with those of any
other block. So if it exhibits a non-trivial block struc-
ture, the full set of rows in the truncated DAG matrix
will be partitioned with no overlap into two or more

(a) (b) 

Figure 1 DAG matrix for demo network. Non-zero columns of
the DAG matrix (a) with only structural externals recognised
(b) after reclassifying 4 high connectivity internals as external. Colour
scaling expresses random walk probabilities between source nodes
(rows) and sink nodes (columns) of the network; comparison of
(a) and (b) shows how connectivity structure is revealed by an
appropriate high connectivity cutoff.
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bands, and similarly the columns into the same number
of bands. This definition does not require that blocks
are arranged diagonally.
The connection with disjoint subnets is established by

noting that a non-zero element (i,j) in a particular block
of the truncated DAG means that there is a finite prob-
ability, and hence a path through the network from
source node i to sink node j in the same block. Conver-
sely, the zero elements in the bands belonging to a par-
ticular block but outside that block, means that
probability does not flow from source nodes in one
block, to nodes in any other block; nor are sink nodes
in one block fed by sources in any other block. So the
collection of sources and sinks of each block, specifies
the internal nodes of an isolated subnet.
The truncated DAG as constructed so far will not

show such block structure, but two operations are avail-
able to produce the block structure:
• Rows and columns may be reordered. There is no

penalty to this, as the ordering of internal metabolites
inherited from the S-matrix is arbitrary.
• Internal metabolites may be reclassified as external

and deleted from the adjacency matrices. This carries a
penalty, as information is lost - the mass balance of the
metabolite is not enforced any more. The DAG matrix
needs to be recalculated in this case and usually has a
different allocation of sinks and sources.
Rearrangement of rows and columns
The first step is to rearrange rows and columns so that
metabolites belonging to a block are grouped together.
For computational efficiency, operations described here
are performed on a binary version of the truncated
DAG matrix, on the grounds that it is the connectivity
of the network that is relevant rather than detailed
probabilities from the random walk. In a binary matrix
with simple rectangular blocks, all rows/columns in a
particular block are identical but are orthogonal to
those in any other block. However, the definition of a
block given previously allows zero elements inside a
block as well, so this is relaxed to say that rows/columns
belonging to a block needs to be similar to each other
but dissimilar from those in other blocks - i.e., it
reduces to a vector clustering problem. The Sokal-
Sneath vector dissimilarity is used to quantify this, as
discussed in more detail in the justifications section.
Using this measure the rearrangement problem

reduces to one of finding row and column sequences
that give optimal clustering. Of various standard cluster-
ing methods that were considered the hierarchical clus-
tering method [20] was found to be most suitable.
Hierarchical clustering, as expressed in a dendrogram

representation, has the advantage that - unlike most
other clustering methods - it gives a definite sequence
(the ordering of leaves in the dendrogram) while not

committing to a fixed number or size of clusters. These
can be subsequently determined by choosing a cutoff
level in the dendrogram, a property exploited in the
next stage of the procedure.
Figure 2 shows the result of reordering rows and col-

umns in the truncated binary version of the matrix of
Figure 1(b) according to an agglomerative hierarchical
clustering using single linkage and the Sokal-Sneath
dissimilarity criterion. The figure shows a far better
organised structure with black regions identifying
associations between metabolites groups, but no sepa-
rated blocks. This is expected - reordering alone can
only isolate blocks if the underlying network (after
removal of externals) was already divided into disjoint
subnets.
Blocking transformation
The next challenge is to identify latent blocks that can
be separated in further processing. A crucial decision to
be made is the optimal number, size and shape of
blocks. Reordering alone as in Figure 2, does not give
any obvious clues to whether many small blocks or
fewer large ones will best represent the network.
The decision is facilitated by introducing a blocking

transformation that expresses the extent to which the
hierarchical clusters succeed in defining blocks. The
transformation proceeds in five steps:

1. Truncating the column dendrogram at a particular
chosen level, defines a collection of consecutive

Figure 2 Rearranged binary. Binary truncated DAG matrix,
reordered according to hierarchical clustering of rows and columns.
Clustering groups nodes with similar long range connections
together, so that black areas that form the cores of latent block
structures appear.
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column clusters such as C = (1-3,4-8,9,10-11,...). In
the matrix, these clusters define vertical bands. In
row i of the rearranged, truncated DAG matrix with
elements pij, we make the replacement

p r

b

b
ij ij

ij

j C

ij

j

j 




(1:3)

Here bij are the binary matrix elements and Cj is the
column cluster to which column j belongs.
In the case of a perfectly blocked matrix, all non-zero

elements in a row will belong to the same unique clus-
ter and their values are left unchanged at 1. Any zero
element in the same cluster is replaced by 1, i.e. any
gaps inside the cluster are filled in. All row elements in
the remaining clusters will be, and remain, zero.
However, for an imperfectly blocked matrix, any non-

zero element outside the range of a particular cluster
will serve to dilute the common value of elements inside
the cluster to a fractional value. Hence in a gray-scale
representation the row appears as a sequence of bands
in different shades of grey; the darkest grey identifies
the cluster containing the largest fraction of non-zero
elements.
Applying this transformation to all rows of the matrix

in Figure 2 produces the row blocking matrix shown in
Figure 3(a). Analogously, columns are blocked next:

2. Truncating the row dendrogram at a particular
chosen level, defines a collection of consecutive row
clusters Ci. In column j of the rearranged, truncated
DAG matrix, we make the replacement

p c

b

b
ij ij

ij

i C

ij

i

i  



(1:4)

Application of this transformation to all columns simi-
larly gives the column blocking matrix shown in Figure
3(b).
In a perfectly blocked matrix, blocks based on group-

ing rows or columns are identical, but the demonstra-
tion example shows that for imperfect blocking the row
and column blocking matrices are similar but not identi-
cal. The next step superimposes the information from
the two separate hierarchies.

3. Combine row and column blocking matrices by
elementwise averaging:

s r cij ij ij 1
2 ( ) (1:5)

The combined blocking matrix obtained in this way is
shown in Figure 3(c). In this matrix, grey shades again indi-
cate deviations from perfect blocking - whether by leakage
of amplitude from hierarchical clusters or by discrepancies

(a) (b) 

(c) (d) 

Figure 3 Blocking matrices. Transformed versions of the truncated
binary matrix, constructed by (a) blocking rows (b) blocking
columns (c) superimposing row and column blocking matrices (d)
reordering rows and columns to consolidate blocks. Grey shades in
effect expresses the degree to which rows conform to column
grouping and vice versa. Combining these and optimising the
clustering, expresses subnet cores visually as dark areas and overlaps
by lighter shades.
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between row and column blocking. Black areas, on the
other hand, identify areas where all evidence from the
grouping procedures agrees and that can plausibly be taken
as cores for blocks still to be further delineated. Moreover,
the gap filling effect mentioned above serves to highlight
the intrinsically rectangular shape of blocks.
An important aspect of the algorithm has been glossed

over above. The dendrograms used in steps 1 and 2
define hierarchical lists of distances between subclusters.
It is by choice of a particular cutoff value in each list
(defining the minimal distance for subclusters to be
recognised as separate) that one can choose between
many smaller clusters or fewer larger ones.
To exploit that, a quantitative criterion Q for the opti-

mal blocking has been defined as detailed in the justifi-
cations section, leading to the next step:

4. Calculate Q from equation (1.8) after repeating
steps 1-3 for each of the trial list of cutoff values,
and select the one that maximises Q.

The blocking matrices shown in Figure 3(a)-(c) are
those that maximise Q for the demonstration network
and represent the visual structure of Figure 2 quite well.
However, there is still one noticeable deficiency in Fig-

ure 3(c). Some blocks appear split - for example, there
are two medium grey horizontal lines in the lower half
of Figure 3(c) that each clearly belongs with the large
dark areas directly above it. The reason for this is a con-
flict between similarity at the fine-grained (element)
level used when grouping, and the coarse-grained
(block) level that applies after blocking. This is rectified
by the final step of the blocking transformation.

5. Consolidate blocks by reordering rows and col-
umns according to hierarchical clustering now
applied to the combined blocking matrix.

As Figure 3(d) shows, the final result of the blocking
transformation gives a succinct and visually appealing
overview of the size, shape and location of blocks, as
well as indicating areas that produce block overlap.
Finally, in order to computationally process individual

subnets, automated recognition of separated blocks is
required. This is a fairly straightforward image proces-
sing problem, and a heuristic procedure based on the
block definition given above is described in Additional
file 2. A side effect of the heuristic is that matrix rows
and columns are rearranged once more, aligning recog-
nised blocks along the matrix diagonal.

Selection of separation nodes
Having prepared the DAG matrix to express any under-
lying partial block structure, the procedure now enters

an iterative loop in which in each round, a small num-
ber of nodes are identified that when “cut” (i.e., the cor-
responding metabolite is reclassified as external), will
lead to separation into subnets. The goal is to keep this
set of separation nodes as small as possible, both to
minimise the loss of mass balance information and to
preserve as far as possible the local structure of the full
network.
For example, applying block recognition scanning to

the matrix of Figure 3(d), recognises only the full matrix
as a single block. That is also visually apparent - there
are four or more latent blocks highlighted in black, but
none are fully separated as signified by grey areas.
For a number of reasons, it is postulated that the

lighter grey cells in the figure are the most promising
candidates for removal to induce separation. One ratio-
nale is that by construction they reflect a status as
exceptions while the majority of cells in their row or
column belong to the same group and end up as dark
grey. Also, they tend to result from cases where there is
already separation from the perspective of the row
grouping and only weak overlap from the column
grouping, or vice versa. Middle grey, on the other hand
reflects either strong evidence from one of the group-
ings, or moderate consensus that may solidify once the
weakest overlaps are removed. Also, there is some ana-
logy to the effects of the “inflation” step of the MCL. In
that method, “inflation” is produced by taking the Hada-
mard power of a probability matrix; that tends to sup-
press low probabilities and leads to the “weakest” links
between node clusters to be removed first. These argu-
ments can be made more elaborate, but in the final ana-
lysis the justification lies in the result obtained. As
detailed in the justifications section, linear programming
is used to select a small number of metabolites that
optimally cover the lighter grey cells in the blocking
matrix and propose these to the user as candidate
externals.
An example is illustrated in Figure 4(a) where this is

applied to the case of the consolidated blocking matrix
in Figure 3(d). The picture shows that two columns, i.e.
metabolites that produce block overlaps (separation
nodes), are identified by solving equation (1.9). These
metabolites are made external, i.e. they are deleted from
the adjacency matrices RC and CR, the DAG matrix
recalculated and the blocking transformation repeated
to identify further candidates in a second round, and
this iteration is continued until either sufficiently fine-
grained splitting has been achieved, or no more separa-
tion nodes are found.
Figure 4(b) shows the result in selection round 5. The

blocking matrix still shows only one block, but has
decreased in size, firstly because of the removal of
separation nodes. Also, at each round the algorithm
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inspects the blocking matrix for any non-overlapping
block that consists of a single row or column, like the
two middle blocks shown in Figure 4(c). Such blocks
cannot be split further, and are therefore removed from
the blocking process to be restored later.
Another case of such irreducible blocks that is usually

encountered, is the appearance in the DAG matrix of iso-
lated sinks or “orphans”. These appear as entries in the
top, diagonal section of the DAG matrix with no accom-
panying source node entries in the corresponding column
of the truncated matrix used for blocking. Such an orphan
metabolite node signifies the simplest possible subnet,
with only a single internal metabolite, and typically con-
taining only two reactions. As these can obviously not be
further split and the presence of an empty column compli-
cates block recognition, they are best eliminated in each
round from the adjacency matrices along with single row/
column irreducible blocks.

Postprocessing and reconstruction of subnetworks
Once the iterative process of progressively selecting
separation nodes has terminated, the main outcome is a
list of internal metabolites, partitioned into disjoint sub-
sets that belong to each block. The remaining metabolites
constitute a list of external metabolites. This list may

contain entries that are not, in fact, essential for block
separation. For example, a metabolite may have been
made external during initialisation on the grounds that it
participates in a large number of reactions, but if all of
those reactions belong to the same subnet it should be
reinstated as an internal metabolite in this subnet. Also,
it can happen that the effects of a metabolite selected
early on in the progressive selection process, are super-
seded by one selected later. In the interests of maintain-
ing maximal network integrity compatible with the
separation, all such superfluous externals need to be rein-
corporated before finalising the subnets.
This is done in a loop that inspects the stoichiometry

matrix for each external metabolite on the list, to deter-
mine all internal metabolites to which it connects by
reaction links in either direction in the bipartite repre-
sentation. If all those belong to a single block, the exter-
nal metabolite is reincorporated into that block. If they
belong to a single block, except for a connection to one
or more orphan metabolite nodes, those orphan nodes
are also reincorporated into the block as detailed below.
As this reincorporation loop changes the composition of
the lists of internal and external metabolites, the loop is
repeated iteratively until there is no further change in
the composition of the lists.

(a) (b) (c) 

Figure 4 Eliminating separation nodes. Blocking matrices as presented to the user for selecting separation nodes in subsequent rounds. Rows
and columns proposed for cutting are highlighted in colour. (a) First round (b) Round 5 (c) Final result, after seven rounds and restoring all
blocks and reincorporation of superfluous externals. The four non-overlapping blocks represent separation into four subnetworks, the largest two
still showing minor internal structure.
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The approach that was chosen to select separation
nodes progressively, a few at a time, has the advantage
that it allows the user to steer the network splitting by
accepting or rejecting proposed separation nodes and
terminating the process at the desired level of granular-
ity. However, a disadvantage is that the results may
become dependent on the order in which separation
nodes are identified. That is counteracted by performing
a one-off blocking step in which the full list of external
metabolites are applied simultaneously. This step is per-
formed as part of the post-processing done after the
selection process is finished; but the question arises
whether it should be done before or after the reincor-
poration step. Each choice has some advantages, and the
most robust result is in fact achieved by repeating the
reincorporation step. So the full post-processing proce-
dure consists of the 3-step sequence: a first reincorpora-
tion step, then the one-off blocking, followed by a
second reincorporation. Figure 4(c) shows the effects of
the reincorporation for the demonstration network.
Once the partitioned list of internal metabolites is

finalised by this post-processing, the individual subnets
can be reconstructed in a straightforward way from the
original stoichiometry matrix S. For each subnet, all
reactions in which its internal metabolites participate
are extracted from S and allocated to this subnet. All
metabolites that participate in these reactions are col-
lected; those not appearing on the list of internals for
the subnet, are by definition the external metabolites of
the subnet. The submatrix of S pertaining to the reac-
tions and metabolites so identified is extracted and
saved in appropriate format as a full specification of the
subnetwork, which can be further analysed by standard
network analysis or FBA software tools.
By construction, the internal metabolites of different

subnets are mutually exclusive sets. External metabo-
lites, on the other hand, are often shared between sub-
nets. In the vast majority of cases, there is also no
overlap between external metabolites of any subnet and
the internals of any other.
There are, however, rare exceptions where an external

of one subnet is in fact an internal of another. This phe-
nomenon can be considered an artefact of the way that
the algorithm mainly operates on a reduced metabolites-
only simple graph. At this level where the blocking pro-
cedure is carried out, there is a strict distinction
between internal and external metabolites; they form
non-overlapping sets. However, when translated back to
the underlying bipartite graph representation, cutting all
metabolite nodes that were identified as external, can
sometimes still leave subnets connected by a shared
reaction node.
A typical case is shown in Figure 5(a), where subnets

A and B are connected by reaction node R1 which has

input reactants a and b respectively from each subnet.
Figure 5(b) shows the metabolites-only representation,
where splitting node c by making metabolite c external
will separate the subnets. But then, after the blocking
procedure, the external metabolites of each subnet are
found by collecting metabolites that participate in all
the reactions in which each internal metabolite is
involved. In the case of subnet A, both nodes b and c
are connected to its internal node a by reaction R1 and
will be added to its list of externals; and conversely, for
subnet B, metabolite b is internal while a and c become
externals.
The existence of this kind of limited overlap between

two subnets does not compromise the integrity of either
as a coherent subnet: it remains true that for all internal
metabolites in a subnet, all reactions in which they par-
ticipate are included in the subnet, and so the mass con-
servation constraints of all internal metabolites are
identical in the subnet and in the full network. However,
it does uniquely create the complication that the same
reaction is present in both subnets, which can lead to
conflicting values for the flux through this reaction in
separate FBA calculations for each subnet. To avoid
that, it may be preferred to merge the two subnets into
a larger one when this exceptional case arises.
It should also be noted that for a similar reason the

reincorporation of orphan metabolite nodes is slightly
more complicated than outlined above. By definition, an
orphan node is isolated from all other internal nodes in
terms of probability flow, but it could still be connected
by a unidirectional link towards the orphan. Conse-
quently, incorporation of an orphan takes place in two
steps. When an external connected to an orphan

Figure 5 Example of internal-external overlap between
subnets. Subnets A and B, connected by a common product of
reaction R1. Metabolite nodes are shown as squares and the
reaction node as an octagon. (a) Bipartite representation of the
network (b) Reduced metabolites only network. In (b) subnets are
fully separated by making c external, but in (a) reaction R1 is
included in subnet A to ensure full representation of the network
environment of internal node a .Hence node b acts as an external
for subnet A, but as internal for subnet B.
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metabolite node is incorporated into a block, the orphan
is first promoted to an external of that block. In the
next round of the incorporation loop, it is then tested
for links to internals of other blocks and only incorpo-
rated as an internal if no such links in either direction is
found.

Detailed justifications
Internal and external metabolites and network partitioning
Conventionally, external nodes are placed on the periph-
ery when drawing a network to indicate that they form
the interface between the metabolic system that the net-
work represents and its environment. However, the dis-
tinction between nodes that are associated with mass
balance constraints (internal metabolites), and those that
are not (external metabolites) is not apparent when the
network topology is simply specified as a list of reac-
tions. Most external metabolites can be recognised com-
putationally by the fact that an external metabolite is
either taken up or delivered to the environment so that
all network links impinging on an external node are
directed away from or towards the node; but in cases
where the metabolite is exchanged with the environ-
ment that distinction is lost.
A convention commonly used in FBA of metabolic

networks [1] to keep track of externals, is to order the
rows of the S-matrix so that internal metabolites appear
first and externals last. Then the lack of stoichiometry
constraints for externals is easily implemented by using
only the top (internals) section of the matrix for FBA
calculations.
Another feature of representing a chemical network by

a bipartite graph, is that as reaction nodes represent a
chemical transformation of one or more reactants, reac-
tion nodes can never be external.
These issues become relevant for partitioning a net-

work, because in isolating a subnetwork a new periphery
is created for it. Severing the connection between the
subnet and the rest of the network, some metabolites
are received from or/and delivered to the rest of the
network. Their mass balance can no longer be guaran-
teed by the subnet alone; in other words, the status of
these metabolites is changed from internal to external.
From a graph theory perspective, partitioning corre-
sponds most naturally to deleting a link of a graph.
However, that will not do for the biochemical network;
in the bipartite representation, that would make a reac-
tion node external, and it makes even less sense in the
metabolites-only simple graph representation where a
link represents a sum over several reactions. In cluster-
ing methods such as MCL, each node is allocated to a
particular cluster, but that would not make sense here
either as a metabolite that is made external by partition-
ing belongs to both subnets - as a product of one, and

substrate of the other subnet. Clearly the appropriate
way to represent partitioning is to split the metabolite
node into two, each becoming an external node in either
subnet. This leaves all reaction nodes as internal and
uniquely assigned to a subnet. The effect of splitting a
node is to stop probability flow through the node, and
the simplest way to implement that in the matrix repre-
sentation, is to delete the corresponding row from P1

and hence ultimately from the DAG.
The problem of partitioning the network hence

reduces to finding a suitable (by criteria to be formu-
lated) subset of internal metabolites such that when
deleted, the network divides into self-contained subnets
with no probability flow between them.
Recognising that the algorithmically found externals

are due to be deleted in this way, it follows that metabo-
lites that are already external in the full network should
similarly be deleted from P1 even before the partitioning
starts. This step in fact corresponds to the restriction of
FBA calculations to the internal rows of the S-matrix as
mentioned before. However, in the procedure presented
here rows are deleted from the adjacency matrices CR
and RC while S is left intact, so that the reaction stoi-
chiometries can be used to restore the externals to each
subnet once partitioning is complete.
Vector clustering
A quantitative measure of dissimilarity d for binary vec-
tors can be based on the formula

d
n n

n n a n b n
 

  
10 01

10 01 11 00
(1:6)

Here, corresponding elements in two equal length bin-
ary vectors are paired, and nij is the number of pairs
with value (i,j). Commonly used such measures are
known as Matching (a = 1, b = 1), Jaccard (a = 1, b =
0), Sokal-Sneath (a = 1/2, b = 0), Rogers-Tanimoto (a =
1/2, b = 1/2) and Dice (a = 2, b = 0) dissimilarities.
Experimentation with all of these in the present context
has shown that Matching and Rogers-Tanimoto give
low contrast. Dice, Jaccard and Sokal-Sneath are similar
but the best contrast and hence block identification is
obtained with Sokal-Sneath dissimilarity.
Hierarchical clustering in addition needs a measure for

the distance between clusters (a “linkage criterion”), and
again several common measures were tried: single link-
age (minimum intercluster dissimilarity), complete
(maximum intercluster dissimilarity), average dissimilar-
ity, dissimilarity of cluster centroids or medians, and
finally the Ward minimum variance criterion. Single
linkage was found to be both fast to calculate and gives
good contrast; average, centroid and median are slower
but give similar results, while complete and Ward lead
to excessive fragmentation of the network.
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Clustering of the combined blocking matrix in step 5
of the blocking transformation is performed broadly as
described for the DAG. However since the combined
blocking matrix can contain fractional values, the binary
dissimilarity measure described by equation (1.6) is
replaced by a generalisation of the Dice dissimilarity to
real values and known as the Bray-Curtis distance
between vectors a and b:

d
a b

a b

i i

i i


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(1:7)

Blocking quality
Experimentation with various possibilities yielded the
following scoring formula for the blocking quality Q of
an (I×J) combined blocking matrix:

Q
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Here, W is the total number of zero (white) elements
in the matrix. The two factors in this formula express
distinct features that seem qualitatively reasonable to
judge the quality of the blocking matrix. The first,
squared, factor would be 1 if all non-zero elements are
1 (black) and decreases when there are more and lighter
grey cells; so it is a measure of “how black” the block
parts of the matrix is. On its own, however, maximising
this tends to favour a small number of large blocks
because that makes it easier to capture all the non-zero
values inside blocks. To counteract that, the second fac-
tor represents the fraction of cells that are white, so this
tends to be maximised by keeping blocks as compact as
possible. It clear that for a perfectly blocked matrix, a
maximum Q value Qmax < 1 will be achieved if the cut-
off produces clustering that coincides exactly with the
blocks.
In an imperfectly blocked matrix, adjusting the den-

drogram cutoff gives unpredictable fluctuations in the Q
value and so a search method is necessary to maximise
Q. Three strategies are employed to keep this manage-
able. First, as the number of recognised clusters only
changes when the cutoff rises above an actual interclus-
ter distance value in the dendrogram, the search space
is restricted to a trial list of discrete cutoffs falling mid-
way between values in the ordered intercluster distance
list. Second, the same cutoff value is applied to both the
row and column dendrograms. Although it constrains
the flexibility of the search, this helps to avoid large dis-
parities in the number of clusters for rows and columns

(which ideally should be equal) despite the fact that the
truncated DAG matrix generally has far more rows than
columns. To implement that, the intercluster distance
lists for rows and columns are merged before selecting
midpoints. Finally, bearing in mind that distance values
from equation (1.6) fall between 0 and 1, the discrete
list of trial cutoffs is truncated to values in the range
[0.2,0.7]. This avoids either very few or very many
blocks that would not be desirable for subnet partition-
ing and rarely produce high Q scores anyway.
Optimal selection of separator nodes
To implement the recognition of light grey cells in the
blocking matrix as most promising for eliminating block
overlap while keeping the metabolites taken as external
to a minimum, the strategy is to select the smallest set
of rows and columns that together cover all matrix cells
with values below a chosen threshold. The threshold is
determined as the value that selects a total number of
light grey cells, no more than a low multiple of the col-
umn dimension of the matrix. This gives a flexible
threshold value adapted to the size and nature of the
matrix, which will lead to only a few metabolites elimi-
nated at a time before checking for adequate subnet
separation.
As any light grey cell could be eliminated by taking

either its row or column metabolite external, the opti-
mal selection from both sets is determined by reformu-
lating this as an integer linear programming (ILP)
problem. To set that up mathematically, introduce a
binary column vector x of dimension = number of inter-
nal metabolites. Each vector element is 1 or 0 according
to whether the corresponding metabolite is selected.
The total number selected is obtained by premultiplying
x with a row vector b of the same dimension with all
elements equal to 1. The constraints are that for each
light grey element sij included, either its row or column
or both needs to be present in x. That is codified by a
constraints matrix A in which each row corresponds to a
light grey cell, and in such a row the only non-zero ele-
ments are 1’s for the columns corresponding to i and j.
Then the ILP problem is:

Minimize subject tob x A x b   (1:9)

This problem is to be solved in the domain of binary
vectors, and is guaranteed to be feasible, since all con-
straints are satisfied by x = b. Solution by standard
methods typically yields small sets of selected
metabolites.

A quantitative measure of overall splitting effectiveness
The goal of subnet splitting is to reduce the complexity
of interpretation (mentally or by further computation)
by reducing the size of networks that need to be
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considered. It is shown here that a robust quantitative
measure of how effective a particular splitting procedure
is in achieving this goal can be developed under quite
general assumptions.
The original network constitutes the obvious lower

limit of simplification. In the opposite extreme where
the network is fragmented into subnets consisting of a
single node each, no overall simplification has been
achieved either: while the subnets are simple, their inter-
connections reconstitute exactly the original network.
This suggests that to judge overall effectiveness, the sub-
nets should be considered together with a “metanet-
work” which is derived from the original network by
contracting the internal nodes of each subnetwork to a
single meta-node. It should then be possible to con-
struct a measure that evaluates to zero at the two
extremes, and reaches at least one maximum at a suita-
ble intermediate network partitioning.
To quantify the concept of simplification, it useful to

introduce a monotonically increasing function f(n) that
represents the effort to interpret a network with n inter-
nal nodes. Having split a network with N internal nodes
into k subnets, each with ni internal nodes, the metanet
has k nodes and the total effort F to interpret the meta-
network and all the subnets is then given by

F n k f k W f n
i

k

i( , ) ( ) ( )


 



1

(1:10)

and this is subject to the constraint n Ni  . With

a weight W = 1, equation (1.10) represents the effort to
interpret the metanet and all subnets; choosing W = 1/k
is relevant to the case where a single subnet and its
interconnections to other subnets are of interest. The
latter case is algebraically simplest so is considered first.
The term “effort” is used to emphasize that this is not

about network complexity as such. Many sophisticated
measures of network or graph complexity have been
defined by various authors, and network size usually
does not play an important part in this - for example,
both a square lattice and a fully connected network are
conceptually simple, irrespective of size. Also, biochem-
ical networks are known to be scale-free (having a
power law distribution of node connectivity) and so
complexity measures should give a similar value when
applied to the full network and its subnetworks.
For a given k, it follows by straightforward differentia-

tion of equation (1.10) that the constrained minimisa-
tion of F is achieved by choosing all subnets of equal
size, i.e. ni = N/k , provided that f(n) is concave up, i.e.
increases monotonically faster than n. This is quite rea-
sonable, considering that the number of reaction links
in a metabolic network rises approximately quadratically

with the number of internal metabolites and the number
of pathways to be interpreted much faster than that.
Moreover, setting ni = N/k into (1.10) shows that the

minimum is achieved at the optimal number of subnets

k = N , irrespective of the functional form of f. This

result makes intuitive sense, as it implies that all subnets

and the metanet have the same number ni = N of

internal nodes, so the interpretative effort is spread
equally across them all. The value of F at its minimum
is given by the simple formula

F N f Nl( )   2 (1:11)

When N is not integer, this minimum cannot actu-

ally be reached, but it still serves as a lower limit to the
range of F, while the upper limit is obviously Fu(N) = f
(N). In these terms the goal of partitioning can be for-

mulated as finding a vector

n n n nk ( , ,... )1 2 that

comes as close as possible to Fl, having started from Fu.
This leads to defining a performance measure (desig-
nated as the efficacy) as

E
Log f N Log F n k
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This may be interpreted as the percentage of the dis-
tance between the upper and lower limits that has been
achieved by a given partitioning, as measured on a loga-
rithmic plot. Use of logarithmic scaling is not concep-
tually essential but helps to smooth the distribution of
efficacy values when f is a fast-rising function.
It is easily checked that E evaluates to zero for the ori-

ginal network and could even reach a slightly negative
value for the case of complete fragmentation, while it

gives 100% if the optimum k = ni = N is reached.

To get concrete values, a power law assumption pro-
duces the required concave up behaviour while still
allowing the actual rate of increase to be adjusted:

f N N pp( ) ;  1 (1:13)

A value p = 2 to reflect the size of the adjacency
matrix that fully specifies the network seems reasonable,
but the choice is left open for now. The proportionality
constant a cancels out in constructing (1.12) so is sup-
pressed in what follows.
The efficacy curves calculated from equations (1.12)

and (1.13) for equal-sized subnets, at subnet counts k
ranging from 1 to N, are shown in Figure 6 for p = 1.5
and p = 10. With a smooth variation and quite a steep
gradient, in particular near the optimal subnet count,
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E gives a sensitive measure of how well a particular net-
work split performs in terms of its subnet count. The
figure also shows that this behaviour is almost indepen-
dent of the p-value, with higher values merely sharpen-
ing the maximum slightly.
The main significance of the p-value is in determining

the discrimination between partitionings with the same
k, but homogeneous versus distributed subnet sizes.
Raising the power value increases the dominance of lar-
ger subnets over smaller ones in the summation term of
equation (1.10), which tends to lower the efficacy value
for a split with a large spectrum of subnet sizes. Experi-
menting with various networks has shown that for large
networks p values in the range 6 to 8 are required to
adequately discriminate between network splits that are
dominated by large subnets, and those with more even
size distributions. For small networks the available range
of subnet sizes is correspondingly small and the value of
p less important. The best results are obtained by
adjusting p to the network size, and the following
empirical formula performs this adequately:

p N 0 25. (1:14)

This formula is merely a calibration of the efficacy
scale and has no fundamental significance. The results
below illustrate its effects.
It is finally noted that the efficacy measure is con-

structed quite independently of the Netsplitter method;
as its only required input is a list of subnet sizes, it can
equally well be applied to diverse partitioning
algorithms.

Results
The results obtained from the Netsplitter procedure are
illustrated by considering the problem of investigating

the flavonoid metabolism of the model plant Arabidop-
sis thaliana. The complete network was obtained by
extracting all stoichiometrically balanced reactions from
the Aracyc 4.5 database as curated by the Arabidopsis
Information Resource (TAIR) [19] and contains 1468
reactions and 1348 metabolites. Reaction directions and
reversibilities were assigned in accordance with the
pathways and enzymes tables of the database. It is not
intended as a definitive metabolic network for the
organism (no further curation e.g. using flux balance
calculations was done) but for the demonstration pur-
pose it is considered adequately representative of gen-
ome scale metabolic networks. The specification of
this network in SBML format is available as Addi-
tional File 3.
For comparison, Figure 7 first shows the performance

of the simple connection degree partitioning [13] for
various threshold values. Visual representation of the
DAG matrix is as in Figure 1, but elaborated here by
the addition of a blue background that displays automa-
tically recognised block limits.
For a large threshold value of 20, Figure 7(a) shows

that only a few small blocks are split off from the main
block that still contains more than 90% of all internal
metabolites. As observed in the demonstration example,
internal structure in this large block is not resolved.
Reducing the cutoff threshold to a value of 5 used in
previous work [13,14], the internal structure is well
resolved but the main block still contains 20% of all
metabolites. Reducing the threshold still further to 4
finally avoids the domination of a single large block, but
at the cost of fragmenting the network into 164 very
small blocks containing only 4 internal metabolites on
average.
Figure 8 shows that the netsplitter algorithm achieves

a much more even distribution of subnet sizes. Using
the same initial threshold value of 10 shown in Figure 7
(b) but supplementing this with a targeted list of general
external metabolites as specified in Additional File 4,
has the effect shown in Figure 8(a) of resolving the
internal structure of the initial main block. The netsplit-
ter algorithm exploits this internal structure to split it
progressively. In its first round, a medium sized block
which turns out to contain all flavonoid compounds is
split off as seen in Figure 8(b). For the purpose outlined
above the procedure can be terminated at this point,
and this subnet extracted for further study as was done
to create the flavonoid demonstration network used
above. However, if the procedure is allowed to run its
course, the final result is shown in Figure 8(c). There is
a substantial improvement, in that rather than a single
large block, there are several medium sized ones. Quan-
titatively, 66% of all internal metabolites are captured in
the 10 largest blocks which range in size between 20
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40

60

80

100

Figure 6 Efficacy curves. Efficacy % as function of subnet count k
for equal size subnets from a network with N = 1000 internal
nodes. Top (blue) curve is for a power law with p = 1.5, lower (red)
curve for p = 10. The curve peaks sharply at k = N but is
insensitive to p.
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and 76 internal metabolites. There is still some fragmen-
tation, with the remaining 34% spread over 68 small
blocks containing 3.6 metabolites on average. Some frag-
mentation is probably inevitable when making cuts to a
network, but future work will be aimed at reducing this
to a minimum.
The reincorporation step is important to keep the num-

ber of externals as low as possible. For example, in the full

Arabidopsis network, 17 of the 57 high connectivity exter-
nals and 12 of the 22 orphan metabolite nodes created by
taking a connectivity degree threshold of 10, can be rein-
corporated without disturbing the block structure in
Figure 8(a). When the netsplitter algorithm is subse-
quently applied, these numbers are reduced because of the
increased partitioning achieved, but in turn 112 of the 150
externals proposed during the course of externals selection

(a) (b) (c) (d) 

Figure 7 Matrix visualisation of simple connection degree network partitioning. DAG matrix for genome-scale network of Arabidopsis
thaliana after applying connection degree partitioning with different cutoffs. Subnetworks are displayed as non-overlapping blocks (coloured
pixels on blue background) for connectivity threshold value (a) 20 (b) 10 (c) 5 and (d) 4. Large values leave a monolithic unresolved block, while
small cutoffs produce extensive fragmentation.
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rounds are in fact reincorporated in the final stage. Even in
the case of the small flavonoid network where only a single
separation round is needed producing 8 proposed exter-
nals, 6 of these get reincorporated leaving only two separa-
tion nodes. The overall effect is that in both cases less than
5% of the significant mass balance constraints in the full
network are sacrificed to decompose it into subnetworks.

It is also instructive to see the action of the netsplitter
procedure in an explicit network diagram. The actual
layout of the flavonoid demonstration network, for
which stages in the procedure were traced out in matrix
form in Figure 1 to 4, is shown in Figure 9. A larger
version of this figure identifying the metabolites is avail-
able as Additional File 5.

(a) (b) (c) 

Figure 8 Stages in partitioning the network by the netsplitter procedure. Arabidopsis thaliana network (a) After application of connectivity
threshold 10 and external metabolite list only (b) After first round of separation node selection (c) Final result after 29 selection rounds. Most of
the network is partitioned into medium sized to small subnets, with some fragmentation remaining.
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The algorithm identifies two separation nodes in this
case - the metabolites trans-cinnamate and coumaroyl-
CoA (shown in red); cutting these, the network falls
apart into four natural subnets, plus two small frag-
ments or “orphans”. By inspection of the metabolite
names (not shown in the figure) the subnets can be
identified as synthesis of flavonoids (purple), lignin pre-
cursors (green), benzenoids (blue) and coumarin (yel-
low). While in this relatively small network it may have
been possible (although not easy) to identify these
separators by inspection, it should be borne in mind
that much of the work to group nodes coherently has
already been done in the manual construction of the
two-dimensional layout displayed. In a realistic example,
the input to the algorithm is merely arbitrarily ordered
lists of metabolites and reactions, making the task much
harder.
To place the results in a more general perspective,

Table 1 compares efficacy values for various cutoff
values in simple connectivity-based partitioning
[13,14,16], with Netsplitter results applied to four differ-
ent networks of increasing size. In addition to the flavo-
noid demonstration network and the genome scale
model plant Arabidopsis discussed in detail above, gen-
ome scale networks for a simple bacterial species and a
mammal are included. The first of these is a metabolic
model for M. pneumoniae recently published by Yus
et al [21]. Details of the application of Netsplitter to this
model has been published elsewhere [22] and is shown

there to give a partitioning that is virtually identical to
the assignment by Yus et al of pathways to functional
blocks, based on biochemical knowledge. The second is
a model for Mus musculus validated by FBA [23].
Considering first the connectivity based splitting,

Table 1 illustrates that as expected, lower efficacies are
calculated for large connectivity cutoffs where a large
part of the network remains undivided, and also for
small cutoffs where the network is fragmented. This
produces an intermediate maximal efficacy, at cutoff
values close to 5, in accordance with the values chosen
empirically [13,14] on similar small networks. The
p-values assigned by equation (1.14) fall well within the
range between the curves in Figure 6 in all cases.
In judging efficacy percentages, its increased sensitivity

near the optimum as illustrated in Figure 6 should be
borne in mind - e.g., a partitioning with an efficacy E =
80% is about six times closer to the optimal subnet size
than one with E = 40%.
While a single numerical score can hardly be expected

to capture all the varied considerations (some subjective)
of what constitutes the best partitioning, the more
detailed graphical representation in Figure 10 of the
most interesting cases, suggests that E as calculated here
does give a good overall quality indication.
In that figure, each bar segment corresponds to a sub-

net and the total height of each bar represents the total
number of internal metabolites for that partitioning.
Thus the height difference from the reference bar on the
right, indicates the total number of internal metabolite
mass balance constraints that have been sacrificed to
achieve a particular split. The reference bar also shows
the theoretical maximal efficacy N size partitioning of
the original network. As this totally ignores the network

Figure 9 Example flavonoid network split into four
subnetworks. Simplified layout omitting commodity and currency
metabolites, to show partitioning into 6 subnetworks by converting
the two separator metabolites identified by Netsplitter from internal
to external. Reactions are shown as arrows or small circles.
Metabolites are shown as rectangles or ovals, colour coded as
follows: white - external; yellow, green, blue, purple: subnetwork
internals; red - separation nodes, light blue - orphan metabolite
nodes. The reaction indicated by “X” is eliminated from the network
because after conversion it only involves external metabolites.
A fully labelled version of this figure is available in Additional File 5.

Table 1 Efficacy values

Flavonoid M. pneumon Arabid. t. M. musculus

S-matrix size 137 × 117 189 × 229 1468 × 1348 2016 × 2158

p-value 2.1 2.8 7.2 7.6

Threshold High connectivity cutoff
method

20 0 33 18 25

10 19 33 24 32

8 19 33 27 37

6 31 37 49 41

5 80 45 54 33

4 76 60 43 27

3 29 32 32 21

Netsplitter Default automated externals and
reincorporation

88 85 70 48

Values are shown as percentages, and peak values highlighted in bold. The p-
value increases with network size as described in the text.
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topology, no actual partitioning can be expected to
achieve that. But a reasonable aim would be for subnets
to have this size on average without too large deviations
on either side.
Figure 10(a) illustrates that a large connectivity cutoff

for the bacterial network (the first bar) gives the oppo-
site effect, with one large block and a few very small
ones, and this has a correspondingly low efficacy value
of 33%. The cutoff C = 4 in this case splits the large
block into medium sized ones approximating the refer-
ence value, but at the price of considerably increasing
both the number of small blocks and the number of lost
constraints, while achieving an efficacy of 60%. The
Netsplitter result improves on both aspects and gives
E = 85%.
In the case of Arabidopsis, the C = 5 value that maxi-

mises E gives a couple of rather large blocks and many
small ones, including fragments too small to be resolved
graphically and appearing as black or grey areas at the
bottom. Decreasing the cutoff to 4 worsens the

fragmentation, and this is reflected in the E-values of
54% and 43% respectively. It is again visually obvious
that the Netsplitter result improves on both of these by
spanning the reference subnet size more effectively, and
has a moderately high score of E = 70%. It has less frag-
mentation than either of the cutoff results, and it also
retains more constraints than either.
A rather similar situation is shown in Figure 10(c) for

the case of M. musculus, The best cutoff value increases
slightly to C = 6 for this larger network, but already
shows large fragmentation reflected in E = 41% and
again this worsens both visually and in terms of the cal-
culated efficacy to E = 33% if C is reduced to 5. Visually,
the Netsplitter result has a slightly better spread of sizes
at the top and somewhat better but still significant frag-
mentation at the bottom, giving an only moderately
improved efficacy score of 48%.
In all cases, the efficacy score based on equation (1.14)

accords quite well with observations from the more
detailed graphical display.

Figure 10 Stacked bar chart representation of network splits. Subnet sizes for different partitioning of genome size networks of three
organisms. Yellow bars represent connectivity partitioning with the indicated cutoff values C, magenta bars the Netsplitter partitioning followed
by a cyan reference bar that shows theoretical maximal efficacy partitioning of the original network. In each bar, each subnet is represented by a
segment with height proportional to subnet size, and subnets have been sorted in order of increasing size towards the top. Fragmentation is
indicated by dense stacking at the bottom. Decreasing the cutoff to split the monolithic bar at the top increases fragmentation, but Netsplitter
results improves both aspects.
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The analysis above of the performance of the netsplit-
ter algorithm for the larger networks, shows that there
is a decline with size but that this is not due to its effi-
ciency in splitting, but rather that fragmentation
becomes an increasing problem as networks grow.
A direct approach to solve that is to introduce con-
trolled merging of subnets and this will be further
explored in a subsequent article.

Discussion
Previous work [24] has shown that graph theory algo-
rithms to trace pathways through a network can give
results in conflict with stoichiometric constraints. Nets-
plitter is not of this kind; graph analysis is merely used
to identify a list of external metabolites, but network
splitting is done directly on the stoichiometry matrix
and (apart from the reclassifications) all the constraints
that it expresses are maintained intact. Nevertheless, the
concern may exist that e.g. elementary modes may be
lost through the partitioning.
A general counterargument is that removal of con-

straints cannot reduce the number of solutions to a pro-
blem. More specifically, consider for example a single
mode that in the full network traverses two of the sub-
sequent subnets. When the subnets are separated by
reclassifying the metabolite node on their interface as
external, the mode is correspondingly split into two
parts. Since the original mode satisfied all constraints
set by mass balances of internal compounds along its
path, the two parts must separately continue to be
viable. One part will now belong to the first subnet and
terminate at the boundary node, which has become an
unconstrained external sink and cannot affect its viabi-
lity. The other will start at the corresponding uncon-
strained boundary source node in the second subnet
and similarly remain viable because by construction the
network context of internal metabolites nodes in each
subnet is identical to that in the full network.
A direct demonstration of this is obtained from a

comparison of the null space of the internal stoichiome-
try matrix in the full network and in the subnetworks.
As the flux vector of a mode lies in the null space, a
reaction can only be active (i.e., participate in any of the
modes) if there is a non-zero entry in at least one basis
vector of the null space. For example, in the flavonoid
demonstration network shown in Figure 9, there are 117
reactions, and calculation of the null space basis shows
that 116 of those are active. Repeating this calculation
for the internal stoichiometry matrix of each of the six
subnets gives (42, 17, 5, 47, 2, 2) active reactions respec-
tively in each subnet. As reactions are uniquely allocated
to subnets in this case, the counts can be added to give
a total of 115 reactions that are active collectively in the
subnets. That leaves a discrepancy of one reaction, the

one indicated by an “X” at the top of Figure 9. This
reaction becomes excluded from the flux space because
reclassification of the separator metabolite trans-cinnamate
(indicated as the red oval node nearest the top) implies
that after partitioning the reaction becomes irrelevant as it
then only involves external metabolites. The single inactive
reaction in the full network, ends up in subnet 4 and
remains inactive there.
Performing this null space analysis for genome scale

networks such as those shown in Figure 10 reveals the
same behaviour in all cases. Reclassification can result
in some reactions involving only external metabolites
and consequent reduction of the flux space; but in the
remainder, all reactions that are active in the full net-
work remain active in the subnets, and inactive ones
remain inactive in subnets as well. This confirms that
subnets collectively support the same set of modes as
the full network.
The reduction of the flux space is another perspective

on the desirability of keeping the set of external metabo-
lites as small as possible, as is implemented in Netsplit-
ter. Nevertheless, it is observed that the reactions
eliminated are (like the one in Figure 9) mostly those at
the periphery that only involve a single internal metabo-
lite in the full network, and that their removal has a
minimal effect on the structure of modes.
Computing efficiency has been taken into account in

several aspects of the Netsplitter procedure. Performing
the main computation on a metabolites only simple
graph rather than the bipartite representation, reduces
matrix dimensions roughly by a factor of two, since the
numbers of metabolites and reactions are usually simi-
lar. As about half of the metabolites are typically exter-
nal, including only internals gives a further dimension
reduction by a factor of about two. Focussing on the
(nsources x nsinks) submatrix of the DAG gives a further
reduction by a similar factor, enhanced also by using
binary representations for clustering. Bearing in mind
that matrix manipulations usually scale quadratically or
worse, the overall reduction in complexity could
approach two orders of magnitude.
This is borne out by moderate computing times. The

total running time observed for the demonstration net-
work of 117 reactions × 137 metabolites is 1.25 seconds,
while for a genome scale network of 2037 reactions and
2179 metabolites this increased to 59 seconds, on a
Core 2 Duo PC with 4 Gb of memory running at 2.66
GHz. These values appear quite acceptable and indicate
that the algorithm scales better than quadratic with net-
work dimension. It may be possible to achieve better
performance by rewriting the code in a compiled lan-
guage, but as extensive use is made of sophisticated
graph theory and user interface functions built into
Mathematica, this would be a major undertaking.
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Experimentation with Mathematica options to compile
the most computing-intensive sections of the code did
not produce significant performance improvements, sug-
gesting that the coding of these functions is already
quite efficient.
The procedure as presented is quite elaborate and

requires considerable programming for its implementa-
tion. To facilitate its practical use, a software application
“Netsplitter” has been developed as a Mathematica [25]
notebook which is available for download [26]. This
application provides an interactive interface that displays
the progress of the subnet separation in the way illu-
strated by Figure 4, and offers additional facilities not
discussed here such as the merging of selected subnets
and display of subnet layouts. A more complete descrip-
tion of the software aspects and illustrations of its appli-
cation to large scale networks, will be presented in a
subsequent article.
An intriguing observation made in applying Netsplitter,

is the radical change in resolving network structure that
results from excluding high connectivity metabolites. An
example is seen by comparing Figure 1(a) and 1(b).
It is surmised that the reason for this behaviour can

be understood from percolation theory [27]. In networks
where only a random subset of the potential links in an
infinite regular lattice are occupied (i.e., present in the
actual network), it is found that there is a critical occu-
pancy of potential links, termed the percolation thresh-
old pc. Long range paths that penetrate the entire
network only exist for occupancies greater than pc .
Values [28] of pc for a variety of lattices have been
derived mathematically or numerically; for a simple infi-
nite 2-dimensional square lattice this is 0.5 and typical
values range between 0.3 and 0.6, including some non-
regular or randomized lattices, while lower values are
obtained in higher dimensions. The values also depend
strongly on the coordination number z (i.e. the number of
links impinging on a node). While a metabolic network is
not a regular lattice nor necessarily 2-dimensional, a
rough estimate of the occupancy can be made from the
adjacency matrices by the formula

p
z N


CR RC

(1:15)

where a simple sum over all matrix elements is taken,
and N is the total number of nodes. Applying this to the
example network, it is found that the removal of the four
high connectivity metabolites produces a sharp drop in
the value of the occupancy from a value of 0.630 for the
network in Figure 1(a) to 0.295 for Figure 1(b). This is
consistent with the interpretation that the disappearance

of long-range connectivity displayed by the figure, is
caused by a drop of the occupancy number below an
unknown percolation threshold. The same phenomenon
has been observed in several other networks including
those of genome-scale size discussed above.
Based on this understanding, an automated strategy

could be pursued to progressively reclassify the highest
connectivity internal metabolites as external until there
is a sharp drop in the p value calculated from equation
(1.15). In practice, however, it works equally well to sim-
ply choose a fixed threshold value and reclassify all
internal metabolites with connectivities higher than the
threshold.
Regarding the proposed efficacy measure, it was indi-

cated above that it relies mainly on a general framework
and even where a particular functional form such as the
power law in equations (1.13) and (1.14) was postulated,
its parameters merely readjust relative sensitivities to
detailed features of the partitioning. This was further
tested by experimenting with different functional forms
such as an exponential dependence instead of a power
law, taking W = 1 as might seem more plausible in
equation (1.10), and even replacing the arithmetic mean
term in that equation by a geometric mean expression.
These changes were found to have marked effects on
the complexity of the analysis, some of which could as a
result only be done numerically. In the end the results
were quite similar (but in some cases inferior in terms
of smoothness and stability) and the simple option pre-
sented is deemed adequate.
The efficacy score measures the degree of simplifica-

tion achieved by a given network partitioning. As shown
in its derivation this is mathematically maximised for
equal sized subnets. That does not mean that equal
sized subnets is the ideal partitioning outcome; simplifi-
cation is not the only criterion by which to judge suc-
cess. Clearly there would be no special functional or
biological relevance to an equal sized partitioning. On
the other hand the low efficacy opposite extreme
(towards which simple degree-based partitioning tends
for large networks) of a large monolithic block and
small fragments, or even complete fragmentation, is also
functionally meaningless. As the M. Pneumoniae exam-
ple illustrates, good agreement with conventional path-
way assignments accompanies a moderately high
efficacy value. In this sense, despite the inherent limita-
tions of a single number score to represent varied con-
siderations for judging the success of splitting a network
for a particular purpose, efficacy values are useful as an
overall guideline. It is noted that the efficacy measure is
only used after the fact, optimising it does not form any
part of the Netsplitter algorithm.

Verwoerd BMC Systems Biology 2011, 5:25
http://www.biomedcentral.com/1752-0509/5/25

Page 20 of 22



Conclusions
The modularization of a large, complex biochemical net-
work into subnets that can be associated with recognisable
biological functions, can be helpful both in the conceptual
understanding and interpretation of the network, and to
reduce practical problems that arise in the application of
analysis methods such as constraint-based modelling. The
challenge in constructing an algorithm for this task is to
accommodate both the objective structural properties of
the network, and more subjective requirements such as
the desire for a manageable number of subnets of roughly
similar sizes. Also, while it is inevitable that some informa-
tion will be lost when a subnet is isolated from its larger
context, it is desirable to restrict this loss to information
that is not subjectively relevant for a particular study.
In the procedure proposed here, dealing with the

information aspect is facilitated by selecting metabolite
node cutting as the partitioning operation, since this
pinpoints the nature of the information loss as removal
of a mass balance constraint. Then the subjective
requirements are met by allowing the flexibility to veto
the selection of particular nodes to be cut, or to termi-
nate partitioning at a suitable subnet size. Both local
and long range network structure is taken into account
by the use of random walks and clustering strategies,
and finally information loss is minimised by using opti-
misation techniques in selecting candidate separation
nodes and by explicit reincorporation of nodes not
essential for the separation.
The combination of these strategies succeeds in mod-

erating the extremes of the subnet size distribution that
results from partitioning based simply on connectivity
degree.
This point is illustrated by considering Figure 7(c) and

8(c) as alternative outcomes for somewhat similar levels
of intervention with Figure 7(b) as a common starting
point. Figure 7(c) shows how simply decreasing the con-
nection degree threshold from 10 to 5, introduces 61
new externals and increases the block count by 70, but
most of these are very small and a large block encom-
passing 20% of the network remains. In Figure 8(c) the
netsplitter algorithm incurs a similar but smaller infor-
mation loss of 52 new externals, but only forms 30 addi-
tional blocks and encapsulates 66% of the network in 10
medium sized blocks. This is clearly a much better cost:
benefit ratio, although it is recognised that parts of the
network are still dispersed into small fragments leaving
room for future improvements.
The efficacy measure E that was introduced encapsu-

lates these considerations into a single quantitative qual-
ity score.
At present, it seems that the most promising applications

of subnet splitting would be to studies and interpretation

of network structure, such as those based on elementary
mode analysis, rather than for the more quantitative FBA.
In this context, subnetworks can play an important role in
reducing the often very large number of elementary modes
in a large network. The use of subnets for FBA would simi-
larly simplify the problem and allow the elimination of
extraneous detail not relevant for study of a particular
aspect of metabolism. However, the obstacle that arises is
that it would usually be more difficult to fix the boundary
conditions ( i.e. flux values for metabolite exchange with
the environment) for a subnet than for the full network. At
least for a single cell organism, full network boundary
fluxes reflect overall nutrient uptake or waste elimination
rates that are relatively easy to measure. Externals of a sub-
net are likely to include metabolites shared with another
subnet and measuring the associated fluxes may require
much more detailed metabolic measurements. In special
cases, such as when the subnet is spatially localised e.g. to a
particular cellular organelle, this might present less of a
problem.
A by-product of the matrix oriented approach used by

the netsplitter algorithm, is the visually powerful display
of network structure. Even for large networks for which
a network layout diagram is totally unintelligible, fea-
tures of network connectivity can be recognised at a
glance from the colourscale plot of the truncated DAG
matrix.
Even more striking is the characterisation of fully and

partially resolved subnetworks afforded by grayscale
plots of the blocking matrices. The blocking transforma-
tion that was introduced as the basis for computational
recognition and optimisation of blocks and their over-
laps, serves this second purpose to visualise rather subtle
structural network properties. Quite apart from the pur-
pose to separate subnets, this visualisation should be a
useful tool e.g. to explore the structure of large net-
works or to compare how related networks differ from
one another.

Additional material

Additional file 1: Demonstration model. Specification of the network
model used for demonstration in the Methods section, as an SBML file.

Additional file 2: Heuristic for block recognition. A description of the
heuristic employed by Netsplitter for automated recognition of non-
overlapping matrix blocks as defined in the text.

Additional file 3: Genome scale Arabidopsis model. Specification of
the network model extracted from Aracyc 4.5 and used for
demonstration in the Methods section, as an SBML file.

Additional file 4: External Metabolites. Listing of default external
metabolites, specified as Biocyc compound ID’s.

Additional file 5: Demonstration network layout. The network layout
shown in Figure 8, with all metabolite and reaction nodes labelled with
their Biocyc ID’s and names.
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