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Abstract

Background: Elementary flux modes (EFM) are unique and non-decomposable sets of metabolic reactions able to
operate coherently in steady-state. A metabolic network has in general a very high number of EFM reflecting the
typical functional redundancy of biological systems. However, most of these EFM are either thermodynamically
unfeasible or inactive at pre-set environmental conditions.

Results: Here we present a new algorithm that discriminates the “active” set of EFM on the basis of dynamic
envirome data. The algorithm merges together two well-known methods: projection to latent structures (PLS) and
EFM analysis, and is therefore termed projection to latent pathways (PLP). PLP has two concomitant goals: (1)
maximisation of correlation between EFM weighting factors and measured envirome data and (2) minimisation of
redundancy by eliminating EFM with low correlation with the envirome.

Conclusions: Overall, our results demonstrate that PLP slightly outperforms PLS in terms of predictive power. But
more importantly, PLP is able to discriminate the subset of EFM with highest correlation with the envirome, thus

providing in-depth knowledge of how the environment controls core cellular functions. This offers a significant
advantage over PLS since its abstract structure cannot be associated with the underlying biological structure.

Background
An elementary flux mode (EFM) can be defined as a mini-
mal set of enzymes able to operate at steady state, with the
enzymes weighted by the relative flux they need to carry
for the mode to function [1]. The universe of EFM of a
given metabolic network define the full set of non-decom-
posable steady-state flux distributions that the network
can support. Any particular steady-state flux distribution
can be expressed as a non-negative linear combination of
EFM. Motivated by these unique properties, EFM analysis
has become a widespread technique for systems level
metabolic pathways analysis [1-8].

The number of EFM of a metabolic network is in gen-
eral very high, denoting the innate adaptability and
robustness of biological systems. As illustrative example,
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the central carbon metabolism of a genome-scale recon-
structed Escherichia coli metabolic network has approxi-
mately 26 million EFM [9]. However, not all of these
pathways are thermodynamically feasible or even physio-
logically reachable [10]. Over the last decade several
methods were proposed to reduce the number of EFM
founded on different principles (Table 1).

Some of the proposed methods reduce EFM based solely
on structural information of the metabolic network. de
Figueiredo et al. [11] presented a method to enumerate
the EFM in increasing order of number of reactions. This
approach enabled to identify the K-shortest EFM in
Escherichia coli and Corynebacterium glutamicum meta-
bolic networks, which are in principle energetically more
efficient. Song and Rambkrishna [12] proposed a reduction
algorithm based on the effect of EFM on the convex hull
volume. This allowed the a priori reduction, without any
experimental data, from the initial 369 to 35 EFM for a
yeast metabolic network fermenting both glucose and
xylose.
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Table 1 Classification of methods for EFM reduction
Principle Method Data required References
Network connectivity K-shortest EFM: Enumerates the EFM in increasing order of number of Parameter free [11]
and stoichiometry reactions. 2]
Yield Analysis: Excludes EFM with negligible contribution to convex hull in
yield space.
Thermodynamics Fractional contributions of EFM: Estimates the EFM Coefficients based on Thermodynamic data [13]
calculated EFM thermodynamic properties. [14]

Maximum Entropy Principle: Calculates the EFM Coefficient by maximizing
Shannon’s entropy, which is an indirect measure of system complexity.

(Non)linear
programming

a-spectrum: Uses linear optimization to maximize and minimize the weightings
of each metabolic pathway that produces steady state flux distributions.

-omics’ data can be used
to shrink the a-spectrum.

[15,16,38]
(18]

Flux regulation coefficients: Estimates the EFM coefficients that optimize a
given performance function (e.g. minimum error in flux or yield prediction).

Fluxomics and possibly [17]
other omic datasets

Quadratic program: Calculates the weights for a large set of EFM by using
quadratic program to reconstruct flux distributions from subsets of EFM.

Enzyme kinetics

Quantitative elementary mode analysis of metabolic pathways: Combines

Enzyme kinetic parameters [19]

structural and kinetic modelling to assess the effect of changes in enzyme
kinetics on the usage of EFM.

EFM can also be discriminated on the basis of reaction
thermodynamics. Wlaschin et al. [13] demonstrated with
experimentally determined intracellular fluxes that EFM
weights are inversely correlated with the entropy generated
by the involved metabolic reactions. This suggests that evo-
lution induced cellular regulatory patterns to favour effi-
cient pathways with low entropy generation. Zhao et al.
[14] proposed a method for correlating enzyme activity
and flux distribution which uses the Shannon’s maximum
entropy principle, a measure of system complexity, as an
objective function to estimate the enzyme control flux.

Several methods have been proposed that merge linear
programming and experimental data. Palsson and co-
authors [15,16] suggested linear optimization to deter-
mine how extreme pathways (the systemically indepen-
dent subset of EFM) contribute to a given (measured)
steady-state flux distribution. There is a range of possible
nonnegative weighting values associated to extreme path-
ways that produce a given steady-state flux distribution.
This range was calculated by maximizing and minimizing
the extreme pathway weighting factors, resulting in the
so called a-spectrum. Wang et al. [17] presented a
method to calculate the EFM coefficients for a large set
of EFM by devising a quadratic program to explore the
possibility and performance of using a subset of the EFM
to reconstruct flux distributions. Alternatively, a frame-
work based on EFM analysis and the convex properties
of EFM was developed to calculate EFM flux regulation
coefficients (FRC) corresponding to an appropriate frac-
tional operation of this mode within the complete set of
EFM [18].

Schwartz and Kanehisa [19] showed that a combination
of structural and kinetic modelling in yeast glycolysis sig-
nificantly constraints the range of possible behaviours of
a metabolic system. All EFM are not equal contributors
to physiological cellular states, and this approach may

open a direction towards a broader identification of phy-
siologically relevant EFM among the very large number
of stoichiometrically possible modes.

In a previous paper [20], we have delineated a concep-
tual approach to map envirome factors to cellular func-
tions based on the correlation of EFM weighting factors
and measured envirome variables. Here we study in detail
the computational algorithm to reduce EFM based on the
degree of correlation of EFM weighting factors with mea-
sured envirome factors, which we call projection to latent
pathways (PLP). The underlying principles are: (i) only a
moderate number of EFM are active at given environmen-
tal conditions, (ii) the envirome plays a critical role in
their regulation, and (iii) active EFM deliver a characteris-
tic environmental footprint that can be used for their iden-
tification. In what follows we present all mathematical
details underlying PLP and compare it with PLS in relation
to a case study.

Results

Projection to Latent Pathways (PLP) Algorithm

Problem statement

By applying steady-state material balance equations to a
metabolic network with 7 metabolites and g metabolic
reactions, the following system of linear algebraic equa-
tions is obtained:

N-r=0 (1a)

(1b)

re >0

with r a vector of g metabolic fluxes, ry the subset of
fluxes associated to irreversible reactions and N a mxq
stoichiometric matrix. It is a well-known property of sys-
tem (1) that its null space solution takes the form of a
polyhedral cone [21]. Furthermore, the convex basis of
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system (1) is formed by a large number of base vectors,
which are the EFM studied in this paper:

ne"[
r= Z Ai - em; ()
i-1

with em; a ¢ x 1 vector of reaction weighting factors
that defines EFM i and A; a scalar variable defining the
partial contribution of em; to the overall flux phenotype,
1, and ng,, the number of EFM.

In this paper we study the reduction of EFM on the
basis of dynamical envirome data sets. The basic pre-
mise is that measured fluxome vectors can be systemati-
cally deconvoluted into genetic dependent factors (the
structure of EFM, em;) and envirome dependent factors
(the partial contribution of each EFM to flux phenotype,
A:). To implement this method, we developed a discri-
mination algorithm that works according to the follow-
ing criteria:

1. Maximisation of explained variance of flux data
sets, R = {r(t)}

2. Maximisation of correlation of A; against envirome
data, X = {x(t)}

3. Minimisation of the number of active EFM

with X = {x(t)} a np x nx matrix of np independent
observations of envirome vectors x(t) (dim(x) = nx), R =
{r(t)} a np x nr matrix of np independent observations
of reaction rates, r(t) (dim(r) = ¢). These criteria are
equivalent to a covariance maximisation problem (covar-
iance maximisation implies maximisation of correlation
and minimisation of redundancy) between envirome
data, X, and observed flux data, R, under the constraint
of a plausible set of EFM:

Maximize cov (X,R)
R=A x EM' (3)

S.t. A=XxCT
with EM = {em;} a nr x nem matrix of nem EFM, em,
(dim(em;) = g), A = {Mt)} a np x nem matrix of weight
vectors A(t) of EFM (dim(A) = nem) and C a nem x nx
matrix of regression coefficients.

Unconstrained maximisation of covariance can be per-
formed by the widely used method projection to latent
structures (PLS), also known as partial least squares.
Figure 1 shows the structural differences between PLS
and PLP. Since PLP is derived from PLS, in the lines
below we first review PLS decomposition and then show
how it can be extended to PLP.

Projection to Latent structures (PLS)
PLS is a multivariate linear regression technique
between an input (predictor) matrix, X, and an output
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response matrix, Y. It differs from traditional multivari-
ate linear regression in that it decomposes both the pre-
dictor and the response matrices into reduced sets of
uncorrelated latent variables, which are then linearly
regressed against each other.

The most widely used PLS algorithm is the NIPALS
(non-iterative partial least squares) algorithm [22],
which provides the basis for PLP derivation. NIPALS
proceeds according to the following steps:

1. Set the initial ny x 1 Y-loading vector, q, equal to
an arbitrarily chosen nonzero row of Y, y,

T
q-= Yi (4)
vl

in case of univariate PLS, ny = 1 and q = 1

2. Compute the np x 1 Y-score vector, u
u=Y-q (5)
3. Compute the nx x 1 weight vector, w

_ XT.u ©)
VX

4. Compute the np x 1 X-score vector, t
t=X-w (7)
5. Recalculate the Y-loading vector, q

R ®
= IyT
[Y* -

6. Repeat steps 1-5 until the convergence criterion ||
t-to1a|| <eps is obeyed with, for instance, eps = 1 x
10°%. In case of univariate PLS, Eq. 8 yields q = 1
hence no iterations are performed.

7. Compute the X data block loadings, p, and rescale

accordingly:
X't
= 9
Py ¥
p
= 10
t=t-[p] (11)
w=w-|p| (12)

8. Compute the regression coefficient of the inner
linear model
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Figure 1 Schematic representation of decomposition operations performed by PLS and PLP algorithms. The main differences between
PLS and PLP are related to the computation of Y-loadings. In PLS Q are abstract variables calculated to maximise correlation between X and Y,
while in PLP Q comprises a subset of active EFM.

T ¢ -u.-of 19
b:uT (13) Y=U-Q +Ey (19)
t-t
T

9. Compute the X and Y residuals U=T-B +Eu (20)

_ T with E; residuals matrices. Finally, the prediction of Y
Ex=X-t-p 9 fom X is given by

Y =X - RCT 21

Ey=Y—b-t-p' (15) Y=X-RC @D

with RC the ny x nx regression coefficients matrix
10. Then go back to step 1 and repeat the procedure given by

for the next latent variable after making

RC=Q-B- W' (22)
X = Ex (16)
For more details about PLS and NIPALS see Geladi
and Kowalski [23].
Y = Ey (17)

Projection to latent pathways (PLP)

PLP can be viewed as a constrained version of PLS that
maximises the covariance between X and R under the
X=T W' +Eyx (18)  constraint of known EFM. PLP performs essentially the

Steps 1-10 are repeated for k = 1, ..., Fac latent vari-
ables resulting into the following overall decomposition:
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same decomposition described by Eq. 18-22. The main
difference lies in the computation of the output load-
ings,Q. Since EFM are unique and non-decomposable
flux solutions, any observed flux distribution can be
expressed as a non-negative weighted sum of EFM (Eq.
2). Thus, EFM em; can be interpreted as latent variables
(or principle components of a metabolic network) while
the weights A; can be interpreted as score values of such
latent variables. According to this analogy, PLS was
modified as follows:

1. For each EFM £, set the loadings equal to emy
and compute the respective score vector, Ay

qy = emg (23)

M = R q (= u) (24)
2. Perform a univariate PLS (with q = 1) with input
X and target Y = Ay for Fac latent variables as
described in the previous section and compute the
predicted Ay

Ak : predicted Ay from univariate PLS (25)
3. Compute the predicted R by the kK EFM and the
respective explained variance

Ry = Ak - qp (26)

Z (R — f{k>T . (R— f{k>
' (27)

var, (%) =100-]1 -
1 (%) SRR
i

4. Repeat steps 1-3 for every EFM k = 1,...,, nem and
choose the best, kopt, as the one that exhibits the
highest variance value given by Eq. 27.

kopt : EFM with highest var, value (28)
5. Remove kopt from the list of EFM and make
R=R-— IA{kopt (29)

6. Go back to step 1 and repeat the procedure for a
maximum number of EFM or until the explained
variance of R does not increase any further.

With this procedure the output loadings, Q, hold a
subset of EFM from matrix EM while the output scores,
U, are equivalent to the EFM weights matrix, A:

R=A x EMT + Bg (30)
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As such, while PLS and PLP are structurally equiva-
lent, the loadings and scores in PLS are abstract vari-
ables while in PLP they have a physical interpretation:

1. The number of latent variables in PLS is analo-
gous to the number of active EFM in PLP. Thus the
subset of EFM that explain most of the variance of
R are interpreted as the set of metabolic pathways
activated by environmental factors.

2. The regression coefficients vector, RCyepy, of the
inner univariate PLS, being directly associated with
EFM, show the contribution of each environmental
factor to the up- or down-regulation of EFM.

The PLS and PLP algorithms were coded in Matlab™(-
Mathworks, Inc). The code is freely available for academic
use under a free academic license and can be downloaded
at http://www.dq.fct.unl.pt/sbegroup.

In what follows we compare both algorithms in rela-
tion to a case study.

Case study: recombinant BHK cell line

Data of a recombinant baby hamster kidney (BHK) cell
line expressing a fusion glycoprotein IgG1-IL2 was used to
compare PLS and PLP. The data set comprises 134 obser-
vations acquired from 7 independent bioreactor experi-
ments operated in batch and fed-batch modes. The
predictor matrix, X (dim(X) = 134 x 26), includes mea-
sured data of 26 environmental factors (pH, osmolarity
and concentrations of viable cells, glucose, lactate, ammo-
nia, IgG1-IL2 and 19 amino acids) while the target matrix,
R (dim(R) = 134 x 24), comprises 24 production or con-
sumption fluxes of extracellular compounds. Further
details about the data can be found elsewhere ([20]).

A relatively small BHK metabolic network comprising
35 metabolites and 57 metabolic reactions was con-
structed. Its EFM were computed using Metatool 5.0 [24]
resulting in 251 EFM. Details can be found as Additional
Files 1 and 2. These 251 EFM were used as constraints to
PLP decomposition.

Comparing PLP and PLS decomposition results

The full data set was divided into two partitions of ran-
domly selected points with equal size for calibration and
validation (with 67 points each). The results of a single
run of PLS and PLP decomposition for the calibration
data set are shown in Tables 2 and 3 respectively. PLS
decomposition stops at latent variable 18, when the X var-
iance reaches 100%. The final explained R variance is
90.1%. As for PLP, decomposition progresses up to the
17" EFM, explaining 82.5% of R variance, thus 7.5% less
than PLS. PLP decomposition stops when the threshold
degree of correlation between A; and Xcan no longer be
satisfied (r* > 0.75 and p-value < 0.05, see Table 3). This
procedure ensures that the identified EFM are the ones
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Table 2 PLS decomposition results in terms of % of
explained variance (Var) over number of latent
variables (LV)

# Lv Var X (%) Var R (%)
1 489 324
2 596 518
3 79 580
4 84.6 64.3
5 89.8 674
6 922 709
7 94.5 74.1
8 96.2 764
9 97.7 786
10 98.3 82.1
11 98.9 83.0
12 994 84.1
13 99.6 858
14 99.8 86.7
15 99.9 879
16 99.9 89.0
17 99.9 89.6
18 100 90.1

Var(X) and Var(R) are % of explained variance of envirome and fluxome data,
respectively.

with highest correlation with environmental state. Figure 2
depicts predicted against “measured” A; illustrating the
high degree of correlation with envirome variables for the
discriminated set of EFM.

Table 3 PLP decomposition results showing the subset of
EFM with highest correlation with the envirome (as
denoted by the r* and p-value)

EFM #LV r? p-value Var(\) Var(R)
179 4 0.95 1.14E-32 88.90 52.60
1 4 0.89 5.16E-23 79.90 57.30
210 4 0.87 1.56E-20 65.90 57.80
173 4 0.82 8.78E-17 6240 5830
116 4 0.82 249E-16 5840 58.70
139 4 0.86 1.34E-19 52.50 5890
206 4 092 2.14E-27 7390 60.20
143 4 0.86 9.71E-20 66.70 60.60
69 4 0.82 1.04E-16 57.30 61.00
72 4 0.84 3.52E-18 57.80 61.30
4 4 092 1.96E-27 8140 64.10
68 4 0.81 3.96E-16 60.20 64.80
" 4 091 4.16E-25 76.80 79.20
6 4 094 1.99E-30 84.60 80.90
7 4 0.82 1.72E-16 59.10 81.60
12 4 0383 1.52E-17 58.30 82.10
2 4 0.85 7.26E-19 71.00 82.50

Var(X;) and Var(R) are % of explained variance of EFM weighting factors and
flux data, respectively.
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Assessment of EFM reduction consistency

PLS belongs to a class of multivariate regression techni-
ques that can be used to model high dimensional data sets
with low number of sampling points [25]. However, when
the number of samples is too low, the partitioning into
calibration and validation sets may have a high impact on
the final model structure. Since stemming from PLS, the
same problem does in principle apply to PLP. In order to
assess EFM discrimination variability due to data partition-
ing, a bootstrapping technique was implemented, in which
PLP and PLS were repeated 200 times with randomly
selected calibration and validation partitions with 67
points each. Figure 3 shows the frequency of selection of
EFM resulting from the bootstrapping analysis. The com-
plete set of results is provided as Additional File 3. These
results evidence a subset of frequently selected EFM,
which include EFM1, EFM2, EFM4, EFM6, EFM11,
EFM179 and EFM210 with frequency of selection higher
than 75% and EFM69, EFM72, EFM173 and EFM206 with
frequency of selection higher than 50%. Less frequently
selected EFMs are very sensitive to the data partitioning
and to experimental noise and thus less reliable to
interpret.

Metabolic interpretability

As mentioned previously, while in PLS the output latent
variables have no physical meaning, in PLP they are EFM.
To illustrate this difference we plot in Figure 4 the output
loadings of the first two PLS latent variable (Table 2)
against the reaction weighting factors of the first two
selected EFM (179 and 1) (Table 3).

It can be seen that the first PLS loadings vector q; cal-
culated by Eq. 8 does show a residual correlation with
the first selected EFM 179 structure (r*> = 0,26). However,
the second loadings vector q, shows no correlation at all
with second select EFM 1. Despite the fact that both the
calculation of the output loadings q and the selection of
EFM obey to the same criterion of maximization of the
correlation between X and Y, it is clear that the data
structure identified by PLS cannot be easily associated
with the underlying biological structure.

It is beyond the scope of this paper to present a detailed
metabolic interpretation of the discriminated EFM by PLP
(for a detailed analysis see [20]). Here we just highlight a
few illustrative examples, the most frequently selected
EFM for biomass synthesis is EFM 179 followed by
EFM173. The product formation EFM (EFM 1) is also fre-
quently selected. The anaerobic conversion of glucose into
lactate was also frequently selected (EFM 11). Serine trans-
amination into glycine (EFM 6) was also among the most
frequently selected EFM. EFM 4 corresponds to the gluta-
minolysis pathway, well known as a major carbon source
for energy production in mammalian cells. In general,
these are important pathways known to be active in mam-
malian cells.
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Figure 2 Correlation between EFM weighting factors and envirome variables. Observed weighting factors are plotted against a linear
function of 26 envirome variables for the BHK data set. Blue circles and red triangles represent the calibration and validation data points,

Regression coefficients

While PLS regression coefficients are associated with
latent variables lacking physical meaning, PLP regression
coefficients are directly associated to the discriminated
EFM (see Figure 5). Thus they provide information of
how the envirome up- or down-regulates each EFM.
This interpretation should however be done with care as
regression coefficients cannot disclose between a cause
and an effect. An EFM is per definition a non-decompo-
sable sub-network. Most of them start and end in extra-
cellular compounds. Each EFM produces a characteristic
dynamic footprint in the environment in terms of con-
sumed or produced metabolites, which is more an effect
rather than a cause. Moreover, it is an important feature
of PLS and per inheritance of PLP that the X-loadings
are computed in a way to maximise predictive power of
Y in detriment of interpretability of the individual con-
tribution of X variables. Although many papers have
attempted to develop interpretation of PLS regression
coefficients (e.g. [26,27]), other techniques are in princi-
ple better suited for this purpose. Even so, main causal-
effects can be extracted from the analysis of regression
coefficients. For this analysis it is however important to
calculate the confidence intervals of the regression coef-
ficients, which can be obtained from the previously
described bootstrapping technique [28]. From the z =
200 PLP runs with randomly selected calibration and

validation data sets, z = 200 vectors of regression coeffi-
cients are calculated (see Additional File 3). The respec-
tive mean and standard deviation can be estimated as
follows:

Zlei

z
_ 1 o B — B2
Voo 2o (BB
The 95% confidence intervals can then be calculated

from the t-student distribution with 0.975 half interval
and z-Fac degrees of freedom

B = (31)

(32)

B =B=£S X (0,975 Fac (33)

As illustrative example, Figure 6 plots the confidence
interval against the mean of the regression coefficients
for the product formation EFM (EFM 1). It can be
observed that only a subset of regression coefficients lay
below the one half threshold line. These include the
regression coefficients associated with pH, osmolality,
glutamine, lactate, IgG, valine and lysine. These regres-
sion coefficients are the most statistically significant and
thus more reliable interpretations can be withdrawn from
them. As example, it is a rational result that the weight-
ing factor of the product EFM 1 is highly correlated with
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the product concentration since the product results from
EFM 1. All other identified environmental parameters are
potential targets for manipulation in order to improve
product synthesis. This analysis can be systematically
extended to the full set of envirome components and full
set of EFMs to support the concept of cell functional
enviromics as defended in [20].

Predictive power

To test the predictive power, PLS and PLP models were
calibrated with the calibration data set composed by 50%
of data points and then simulated on the validation data
set composed by the remaining 50% measured points.
The PLS model with 18 latent variables explained 90.1%
of R variance in the calibration dataset but only 76.8% of
the validation dataset. The quality of the results can be
visually inspected in Figure 7. The degradation of accu-
racy in the validation dataset is rational given that the
model is requested to predict data points, which may lay

outside of the domain of experience defined by the cali-
bration data set. As for PLP it is a very interesting result
to verify that despite explaining a lower variance in the
calibration data set (83.2% against 90.1% for PLP and PLS
respectively), the accuracy of the validation data set was
higher than that of PLS (81.9% against 76.8% for PLP and
PLS respectively). Moreover, the variance of the valida-
tion data set is almost equal to that of the calibration
data set, denoting a more consistent model, with higher
predictive power than the PLS one (Figure 8).

In order to screen out the possibility of a casual better
performance of PLP in relation to PLS due to the particu-
lar data partitioning employed, the same variance analysis
was performed for the z = 200 PLP and PLS runs per-
formed with randomly selected calibration and validation
data points according to the bootstrapping technique pre-
viously described. The results show that the explained var-
iance of the validation data set varied between 78.8-85.6%
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loadings of the first and second PLS latent variable plotted against the corresponding metabolic reaction weighting factor of the first and
second selected EFM (EFM179 and EFM1 respectively; see Tables 2 and 3).
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for PLP and 50.4-82.7% for PLS (see Additional File 3). In
194 out of 200 runs the PLP outperformed the PLS, thus
confirming that while PLS is consistently more accurate in
describing the calibration data than PLP, the latter is con-
sistently more accurate at predicting the validation data
than PLS.

Discussion

The key PLS feature is identifying independent X and Y-
scores so that the relationship between successive pairs of
scores is as strong as possible. PLS may be thus viewed as
a robust form of redundancy analysis, seeking directions
in the factor space that are associated with high variation
in the response Y but biasing them toward directions that
are more accurately predicted. Due to its advantages in
handling highly redundant data sets, PLS has become a
widely used regression analysis technique in systems

biology. It has been applied as an inference tool for pre-
dicting metabolic fluxes using isotopomer flux data [29],
analysing genomic and proteomic data [25], identifying
signalling networks by inducing cellular response to differ-
ent stimuli [30-32] and network structure using metabolo-
mic data [33]. Moreover, PLS has also been applied for the
identification of active cellular pathways as a function of
the environment using metabolic and gene expression
profiles [34], detection of gene-gene interactions from
microarrays data [35,36] and culture media optimization
using nutritional profiling data [26,27].

The main disadvantage of PLS lies in its empirical data-
driven nature with limited added-value in terms of
mechanistic knowledge generation. Although carrying
some internal structure, this structure is not inspired by
any a priori mechanistic knowledge of the system. PLP
may be viewed as a constrained version of PLS, attuned
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to the structure of the biological system under study.
While in PLS the loadings and score are abstract vari-
ables, in PLP loadings and scores refer to well defined
metabolic structures. Specifically, PLP explores EFM as
“principle components” of a metabolic network. Indeed,
EFM obey to the principle of non-decomposability,
meaning that any particular flux distribution can be
expressed as a nonnegative weighted sum of EFM. Thus
the ranking obtained in PLP refers to active pathways as
inferred by their level of correlation with the environ-
mental state. In terms of data requirement, PLS belongs
to the class of multivariate regression techniques particu-
larly suitable to handle highly dimensional data sets even
if the number of observations is limited [25]. PLS is typi-
cally used to model spectral data such as near infrared or
2D-fluorescence maps [37]. A basic requirement is that
the number of latent variables must be lower than the
number of observations in the calibration data set. This
means that reliable linear models can be identified from
a moderate number of observations of highly dimensional
datasets. The same properties apply to PLP. A basic con-
straint is that the number of discriminated EFM cannot
be higher than the number of observations in the calibra-
tion data set. However the method offers no restriction
in terms of the dimensionality of the input data set.

Finally it should be commented on the computational
power requirements, which scales linearly with the num-
ber of EFM. In the present study with 251 EFM, compu-
tation requirements are in the order of seconds in a
common PC. For a genome scale network with several
million of EFM, computation power might easily rise to
the scale of days in a common PC.

Conclusions

In this work we have developed an algorithm for the dis-
crimination of active EFM on the basis of dynamical envir-
ome data called projection to latent pathways (PLP). The
algorithm is designed to maximise the covariance between
envirome data and observed flux data under the constraint
of universe of genes translated into a plausible set of EFM.
In general lines, the algorithm discriminates a minimal set
of envirome correlated EFM that maximise the variance of
measured flux data. Thus the algorithm may be viewed as
a reverse, envirome-to-function metabolic reconstruction
methodology as opposed to the generally accepted gene-
to-function reconstruction approach. Although presented
here as a method to analyse envirome data sets, PLP has
broader scope. It is rather a general methodology for sta-
tistical elimination of redundant metabolic structures that,
in a broader sense, has the potential to bring together all
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Figure 8 Predicted metabolic fluxes by PLP. Predicted against measured fluxes computed by the PLP model for the BHK data set. Blue circles
and red triangles represent the calibration and validation data points, respectively.

layers of ‘omic’ information under a common computa-
tional framework.

Additional material

Additional File 1: BHK metabolic network. Biochemical reactions/
pathways, enzymes and biomass composition considered in the
metabolic model of BHK cells.

Additional File 2: BHK elementary modes. List of elementary modes
obtained from the BHK metabolic network (Additional File 1). Elementary
modes are represented in reduced form in terms of extracellular
metabolites.

Additional File 3: Envirome factors regression coefficients. List of
PLP regression coefficients and the respective confidence intervals

resulting from the bootstrapping analysis.
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