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Abstract

Background: Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the
genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been
reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-
throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain,
and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no
integrated analysis between human tissues has been done.

Results: To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells:
adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on
known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach
was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate
known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology
with systemic properties. High-throughput data was integrated with the network to determine differential
metabolic activity between obese and type II obese gastric bypass patients in a whole-body context.

Conclusion: The multi-tissue type modeling approach presented provides a platform to study integrated metabolic
states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study
their interdependencies.

Background
Metabolism has been implicated in most major human
diseases including obesity, diabetes, cancer, and heart dis-
ease [1]. Thus, metabolism has been a field of study inte-
gral to many branches of medicine. In particular, obesity, a
leading preventable cause of death, increases the likelihood
of heart disease and diabetes, and represents one of the
most serious current public health care problems [2].
Studying and understanding such systemic diseases how-
ever requires a fundamental and comprehensive analysis
of not only the individual tissues and cell types, but also
their integrated functions and interlinked interactions.
Accurate physiological representation and analysis of

systemic diseases however cannot be achieved unless an
integrated multilevel and comprehensive modeling
approach is undertaken and the appropriate computa-
tional infrastructure is fully developed and utilized.
Genome-scale metabolic network reconstructions have

been shown to provide an appropriate context for analyz-
ing biological content [3]. Metabolic reconstructions are
important for elucidating the genotype to phenotype rela-
tionship and have proved to be useful in interpreting high-
throughput, omic data sets [4]. Genome-scale networks
can account for a combination of genetic and physiological
data [3]. Metabolic networks are built in a bottom-up
approach, consisting of the known genes, transcripts, pro-
teins, reactions, and metabolites. Recently, a global human
metabolic network (Recon 1) was reconstructed [5]. Recon
1 is a comprehensive map of all the known annotated* Correspondence: ifamili@intrexon.com
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metabolic reactions of human cells, containing 1496 genes,
3402 intracellular reactions, and 2785 metabolites.
Recon 1 was developed to provide a global genome-scale

description of human metabolic capabilities, without con-
sideration of tissue-specific information. As particular cells
in the human body do not use all the metabolic capabil-
ities encoded on the genome, procedures have been devel-
oped to tailor Recon 1 to tissue and cell specific functions
[6-8]. Models for the human liver [8,9], kidney [10], brain
[11], erythrocyte [12], and alveolar macrophage [13] have
been developed. To study diabetes in obese individuals,
three tissue-specific reconstructions of the liver (hepato-
cyte), skeletal muscle (myocyte), and adipose tissue (adipo-
cyte) were developed in this study. The liver plays the
biggest role in metabolism, with many functions including
gluconeogenesis, glycogen storage, urea production and
ketogenesis. Though the liver consists of many different
cell types, the major cell type pertaining to metabolism is
the hepatocyte. Skeletal muscle, one of the most abundant
tissues in the human body, has high metabolic require-
ments, and plays a major role in protein metabolism and
storage. Adipose tissue plays a major role in lipid metabo-
lism and storage. Skeletal muscle and adipose tissue pri-
marily consist of myocytes and adipocytes, respectively.
To study the metabolic interdependence within the

human body, a novel multi-tissue modeling approach was
developed to combine three cell type specific metabolic
reconstructions (see, Figure 1A). Using gene expression
data and constraint-based analysis methods [14], the meta-
bolic differences in obese and obese type II diabetic indivi-
duals were studied and the difference of activity in
metabolic reactions was investigated between the two
groups.

Results and Discussion
To clearly convey the characteristics and capabilities of
the three cell-specific reconstructions and the integrated
multi-tissue type network, the results presented here are
split into three distinctive sections.

• The reconstruction, the content, the quality controls,
and the properties of the individual hepatocyte, myo-
cyte, and adipocyte metabolic networks (designated as
HM, MM, AM, respectively) are detailed.
• The process of building the integrated multi-tissue
type network is described and the integrated network
is used to compute and compare three established
metabolic states (i.e., the Cori cycle, the Alanine cycle,
and the absorptive or post-feeding state).
• Expression-profiling data was utilized to build two
context-specific multi-tissue type models detailing
metabolism in i) obese vs ii) diabetic obese indivi-
duals to ascertain their differences.

The content of the cell-specific metabolic network
reconstruction
Three human cell-specific metabolic networks were recon-
structed for three major tissue types: liver (hepatocyte),
fat (adipocyte), and skeletal muscle (myocyte). The overall
metabolic network reconstruction workflow used to estab-
lish the three networks is depicted in Figure 2. First, the
human genome sequence and annotation was updated in
the SimPheny™ modeling platform (Genomatica, Inc.)
from Build 35 to Build 36.2. Utilizing tissue-specificity
information from UniProt, Recon 1 was filtered to draft
network reconstructions of the human hepatocyte, adipo-
cyte, and myocyte. The draft reconstructions were then
manually curated and augmented with additional informa-
tion taken from online databases and published literature.
Unlike current automated cell-specific models that are
based solely on Recon 1, significant changes were made to
build more accurate and quality controlled network con-
tent for the human hepatocyte, adipocyte, and myocyte
metabolism. This curation and validation process included
the followings:

• The models were tested for internal pathway cycles
that could generate excess energy when all exchanges
were closed. Appropriate changes were made to the
model to remove all futile cycles.
• All extraneous dead end and gap-containing path-
ways were removed to build fully functional networks.
• All reactions were elementally and charge balanced
and none of the metabolic pathways were lumped
into single reactions.
• Published data for the different tissues was used to
define biomass objective functions (see Additional
File 1). The biomass functions were used as mainte-
nance lower bounds for all cell-specific and multi-
tissue type simulations.

A detailed description of the cell-network reconstruction
pipeline, manual curation, removal of futile cycles, and
biomass definition is provided in the Methods section. In
general, the processes for generating quality controlled
and functional reconstructions of metabolism are well
established and available elsewhere [15,16]. The workflows
used to generate the multi-tissue type model adhere to
these established procedures.

Global and cell-specific validation using network models
for assessing functional states
In order to validate the three cell-specific networks, uni-
versal testing was completed for quality control and assur-
ance purposes. Universal testing consisted of validating
general metabolic functions of the human cells. The ability
to produce precursor metabolites of major metabolic
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pathways from glucose was confirmed. Production of the
nine non-essential amino acids, two conditionally essential
amino acids, the fatty acids, nucleotides, glycogen, and
cholesterol was also validated. Finally, the three cell-speci-
fic models were checked for production of biomass, repre-
senting cell growth.
After global testing, cell-specific functions were tested.

Cell-specific lipid production of each of the metabolic
models was validated. The hepatocyte has many metabolic
functions such as gluconeogenesis, ketogenesis, urea and
bile production, and glycogen storage. For the HM, we
validated that the metabolic network could synthesize glu-
cose from gluconeogenic substrates, such as amino acids,

glycerol, lactate, and pyruvate. The pathways for ketogen-
esis were not included in Recon 1, but were added to the
HM to produce ketone bodies. The HM’s ability to use
alternative sugars as energy sources, complete the urea
cycle, and process nitrogen to produce urea was also vali-
dated. Fat cells store energy as triglycerides and other
lipids. For the AM, the cell-specific model’s ability to gen-
erate lactate, glycerol, and fatty acids from glucose and
triacylglycerol was validated. Finally, skeletal muscle facili-
tates movement in the body by converting chemical
energy into mechanical energy. For the MM, the network’s
ability to produce ATP from glucose, branched chain
amino acids, ketone bodies, glycogen, and fatty acids was

Figure 1 General properties and characteristics of individual cell-specific metabolic reconstructions. (A) We modeled three cell-specific
metabolic networks of human tissues: hepatocyte from liver, myocyte from skeletal muscle, and adipocyte of adipose tissue. (B) The tissue
specific properties are broken up into three main sections. The first describes the topological and knowledge base characteristics of the
metabolic networks. The second shows the in vitro growth rate and the required non-glucose carbon amount to maintain that growth rate. This
growth rate was used as a maintenance function to model biological turnover. The third section details the energy and oxidative capacities of
the networks. Note that the growth rate was set as a constraint for these simulations. (C) The biomass maintenance functions for the three
metabolic networks were built based on the individual dry cell weight compositions. The AM is primarily composed of lipids while the MM is of
protein. The HM has a more balanced composition with protein, glycogen, and lipids being the major components.
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validated. In addition, a cell-specific objective function was
constructed that utilizes ATP to model the metabolic toll
of muscle contraction.
The final cell-specific reconstructions and mathemati-

cal models and a full breakdown of every universal and
cell-specific test is provided in the Supplementary Mate-
rial (see Additional Files 2, 3, 4).

Characterizing the cell-specific networks
After an extensive QC/QA procedure, the three cell-speci-
fic metabolic networks were characterized and tested for
network capabilities (Figure 1B). While the models contain

a relatively similar number of metabolites and reactions,
the HM has the largest model among all three. This differ-
ence is due to the HM’s diverse metabolic capabilities that
has been captured in the model. For all simulations, the
biomass function of each of the metabolic models was set
to a physiologically relevant lower bound determined from
the cells’ in vitro growth rate [17-19]. A lower bound was
set in order to simulate regular cellular maintenance such
as protein, mRNA, and lipid turnover as well as DNA
repair and ATP maintenance requirements. To examine
the models, the minimum required amount of carbon was
calculated for each of the models to match its in vitro

Figure 2 Workflow for building the cell-specific reconstructions. Human Recon 1 [5] was utilized as the starting point for modeling human
metabolism. The genome sequence annotation upon which Recon 1 was built was updated, and all incorrectly lumped and balanced reactions
were corrected. Multiple reaction and enzyme databases, including UniProt, were then used to build a draft model. The draft model was then
manually curated using literature and multiple high-throughput data sets. In addition, important metabolic pathways that were not in Recon 1
(e.g. hepatic ketogenesis) were added accordingly to the cell-specific reconstructions.
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growth rate. This value shows the metabolic requirement
for each of the individual cells to be viable. The HM has a
much greater need for carbon than the other networks to
maintain the in vitro growth rate (Figure 1B). This greater
need is not due solely to the higher set growth rate.
Though the lower bound of the HM’s growth rate is set
roughly two and a half times higher than the AM’s, the
HM’s non-glucose carbon uptake is almost seven times as
much showing a higher varied metabolic need from the
extra-system to function.
The metabolic capabilities of the three networks were

further tested. The three cell-specific models produce
approximately the same maximum ATP and NADH yields,
with the MM producing the most. The MM’s ability to pro-
duce more cofactors is probably due to its higher number
of metabolic reactions dealing with cofactor metabolism
(Figure 3A). Finally, after constructing the biomass func-
tions from the dry cell weight compositions, there was a
rather varied metabolic composition for each of the three
cells (Figure 1C). As expected, the AM biomass consists
mainly of lipids, the MM consists mainly of protein, and
the HM has a more heterogeneous composition with the
majority being protein.

Comparing the cell-specific networks
The three cell-specific reconstructions were also com-
pared based on the assigned subsystems and reactions.
The reactions of each model were grouped into subsys-
tems (Figure 3A). The majority of reactions in all of the
networks corresponded to transporters and lipid metabo-
lism. As the AM has the least metabolic variation and the
smallest network, it has the lowest number of reactions
in most subsystems except for lipid metabolism. The
hepatocyte is the most metabolically active and performs
the most metabolic functions of the three cell types.
Hence, the HM has the most reactions in each subsystem
except for cofactor metabolism. The MM has the most
reactions corresponding to cofactor metabolism, due to
the skeletal myocyte’s high conversion of cofactors for
producing chemical energy. Compared to Recon 1, which
consists of 3,311 metabolic and transporter reactions, the
three cell-specific models have much fewer reactions.
The network content and functional scope captured in
the cell-specific models reflects specific tissue function
with focus on developing high quality metabolic models,
as compared with comprehensive but less functional
metabolic maps. The three cell-specific reconstructions
share a core network of 349 reactions (Figure 3B), which
represents the majority of the metabolic reactions in all
of the models. Of the remaining reactions, the majority is
unique to each cell-specific model. The HM shares a sub-
stantial number of reactions with the AM and MM (54
and 74 respectively), while the AM and MM share only
six reactions that are not in the HM. Thus, as expected,

the three cell-specific metabolic models have functional
metabolic uniqueness, but require the same core reac-
tions for basal functionality.

Network integration: connecting the cell-specific
reconstructions through a blood compartment
After validation and characterization of the metabolic
models on an individual level, the next step was to simu-
late the integrated metabolic function of all three cell-
types. As the three cell-types represent the most important
metabolically active cells of their respective tissues, the
integrated modeling and simulations are termed multi-tis-
sue modeling and simulation.
In order to connect the three reconstructions, a new

blood compartment was created to simulate transport
functions of the blood, with the ability of metabolites to
leave the blood for physiological processes such as renal
clearance. Network exchanges with the extra-system were
facilitated through the blood. The three cell type models
imported or secreted metabolites into the blood through
gene-associated transporters and diffusion, when appropri-
ate (Figure 4). Though the process seemed straightfor-
ward, there was difficulty in computing a steady-state for
the integrated network. Interestingly, it turns out that the
intercellular transport of metabolites is not properly pro-
ton balanced. A bicarbonate buffer system was added to
the integrated model in the blood compartment to balance
protons. The buffer reaction was not initially thought to be
necessary until the requirement for balancing the protons
in the interstitial space became apparent during network
simulations. This requirement is consistent with the
underlying human physiology [20]. Thus, the multi-tissue
model is more than strictly a network addition of three
single cell models. The addition of the buffer system is
neither intuitive nor obvious, though its physiological role
was clearly relevant and became apparent in multi-tissue
metabolic modeling.

Forming a multi-tissue model
The integrated multi-tissue metabolic model was used to
simulate three physiologically important metabolic states
in the human body: the Alanine cycle, Cori cycle, and
absorptive state (Figures 5 and 6). The flux span of the
networks (see Methods) was determined to show the
metabolic differences between the cycles and the indivi-
dual cell-specific models. The flux span provides insight
on the flexibility of the network as well as the overall size
of the solution space. It is important to note that without
proper in vivo isotopomer flux measurements, all results
are qualitative. However, these three examples illustrate
the potential of multi-tissue metabolic models.
As the inputs are relative rather than absolute, the

fluxes were normalized to the amount of carbon input.
Using this reference point, the percentages of uptakes
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Figure 3 Comparison of the metabolic reactions in the three cell-specific reactions. (A) The three cell-specific reconstructions have a
similar number of reactions in most subsystems. It is interesting to note that the AM has much fewer amino acid metabolic reactions and the
MM fewer lipid metabolic reactions. The reaction number difference is in accordance with the cell composition differences. The HM has the
most reactions in most subsystems due to the liver’s varied metabolic states. For comparison, the number of reactions in each subsystem is also
provided for Recon 1. (B) The three cell-specific reconstructions share the most intracellular metabolic reactions that seem to be a “core” group
of reactions required for most human cells. The rest of the reactions are mostly exclusive. The AM and MM have very little reaction similarity that
is not also found in the HM.
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and secretions presented below demonstrate the physio-
logical behavior. In addition, because the liver, adipose
tissue, and skeletal muscle have different masses, the
canonical units for genome-scale reconstructions, mmol/
h/g cell DW, cannot be used. Using the g cell DW por-
tion of the units assumes that reactions in all three tis-
sues have the same mass. Such an assumption would
skew the intercellular fluxes. In order to account for the
mass discrepancy in different tissues, the units were
changed to mmol/h/body by modifying the biomass
objective functions to represent the entire maintenance
of each tissue (see Methods).
The Alanine and Cori cycles are physiologically rele-

vant metabolic cycles, but they do not occur exclu-
sively physiologically. In order to amplify and study
each one separately, constraints were set on the MM’s
ability to produce either alanine or lactate and hence
affect HM substrate utilization. An unconstrained
assessment of MM production and HM use of alanine
and lactate to produce glucose and urea in the liver is
presented in the Supplementary Material (Additional
File 5).

Metabolic state 1: the Alanine cycle
The Alanine cycle is an important physiological cycle
that occurs between the myocyte and hepatocyte under
glucose limiting conditions [21]. The cycle’s function is
to eliminate nitrogen from the myocyte and transport it
to the hepatocyte for degradation as urea in exchange for
energy in the form of glucose. In the liver, alanine is dea-
minated into pyruvate, which serves as a substrate for
gluconeogenesis. In return, glucose is supplied from the
liver to skeletal muscle. The multi-tissue simulation con-
sists of the HM, MM, and the blood compartment. In
this condition, alanine was imported from the extra-sys-
tem, i.e., the blood stream (Figure 5A). The HM imports
alanine and produces both glucose and urea. The carbon
conversion is not one-to-one due to the maintenance
requirements of the HM. The carbon split becomes
47:18:35 for glucose, urea, and cellular maintenance
requirements, respectively. Taking into account the cellu-
lar maintenance requirements provides a more realistic
carbon conversion of the Alanine cycle.
The flux spans of the individual HM and MM were

investigated and compared to the multi-tissue simulation

Figure 4 Schematic of the multi-tissue modeling approach. The three cell-specific reconstructions are combined into a multi-tissue model
by connecting them all to a new blood compartment. Metabolites enter the model through the extra-system through exchange reactions.
Metabolites are then imported into the different cells through gene associated intercellular transporters and/or free diffusion. For differentiating
the cell-specific models, all reactions in the model were annotated with [a], [h], [m], and [bl] for the AM, HM, MM and blood compartment,
respectively.
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(Figure 5). For the individual models, the same multi-tis-
sue simulation setup was used but all reactions in the
other cell types were inactivated. It became immediately
apparent that the two cells metabolically interact with
one another. For the Alanine and Cori cycle simulations,
because carbon is recycled between the liver and muscle,
the extra-system exchanges were not open for carbon
sources to exit the blood, thus the individual cell-type
models simulations yielded only infeasible solutions.
When simulating the individual cell-type models, the
exchanges with the extra-system had to be opened for a
proper mass balanced steady-state solution.
In contrast, the multi-tissue simulation finds a mass-

balanced steady state by exchanging metabolites between
the HM and MM. Combining the two models had two
major effects. First, since the HM and MM became depen-
dent on each other metabolically, the models constrained
each other, shown by a lower mean flux span and higher
number of fixed fluxes (Figure 5 and Table 1). A fixed flux
has equivalent minimum and maximum optimized values.

A multi-tissue model thus can properly simulate a physio-
logical cycle and show intercellular interactions that an
individual cell model cannot. Second, the number of fixed
zero fluxes decreased in the multi-tissue simulations
(Table 1). The HM and MM are linked, allowing for one
cellular model to act as another’s sink or source. More
metabolic pathways can be potentially active in a mass
balanced steady-state solution, making the multi-tissue
models more robust in a nutrient limited state.

Metabolic state 2: the Cori cycle
The Cori cycle is a metabolic cycle, similar to the Alanine
cycle, that metabolically connects the peripheral tissues
with the liver [21]. Lactate acts as substrate for hepatic
gluconeogenesis. As with alanine in the Alanine cycle, lac-
tate is taken up by the liver and is converted into pyruvate,
in this case by lactate dehydrogenase. Unlike the Alanine
cycle, no major byproducts (e.g. urea) are generated, and
thus the Cori cycle is a cycle of energy transfer between
two tissues. The Cori cycle simulation involves the HM,

Figure 5 The Alanine and Cori cycles of human metabolism. (A) The Alanine and Cori cycles are methods for peripheral tissues to receive
glucose under nutrient limited situations. Gluconeogenic substrates (e.g. alanine and lactate) are released from peripheral tissues and absorbed
by the liver to produce glucose. The glucose is then returned to the peripheral tissues for their metabolic requirements. (B) The flux spans for
the HM and MM under individual or integrated simulations are shown. The multi-tissue modeling approach has a constraining effect on the HM
and MM models (see Table 1). GLC = glucose, ALA = alanine, PYR = pyruvate, LAC = lactate.
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MM, and blood compartment. It is set up with an input of
lactate into the blood from the extra-system (Figure 5B).
The Cori cycle’s efficiency was validated using flux balance
analysis of the integrated multi-tissue model. The HM
takes up lactate and converts it into glucose. The remain-
der of the carbon is used for cell maintenance purposes, as
described earlier. The carbon split for this cycle is 57:43
for glucose and maintenance respectively. Lacking a
byproduct, the cycle converts about 10% more carbon into
glucose for the peripheral tissues than the Alanine cycle.
As before, the flux span of the multi-tissue simulation

and individual cell-type models was compared (Figure 5).
The approach was used as before with similar results. The
solution space had shrunk, and the number of zero fluxes
had dropped in the multi-tissue simulation. The similarity

in results is due to the fact that the two cycles having simi-
lar physiological purposes. The HM takes up a gluconeo-
genic substrate and produces glucose for the MM in a
glucose-poor environment.

Metabolic state 3: the absorptive state
The final multi-tissue simulation presented, the absorptive
state, is physiologically different than two metabolic cycles
already discussed. Thus different results were obtained
when investigating its flux span. The absorptive state is an
anabolic process during which absorbed glucose is used by
the human body to produce glycogen, triaclglyerol, and
amino acids [20]. Metabolic function of the liver during
the absorptive state is closely linked to the adipose tissue
and skeletal muscle for energy storage (Figure 6A).

Figure 6 The absorptive state of human metabolism. (A) In the absorptive state, food is digested and absorbed primarily as glucose and
amino acids. The schematic shows influx of glucose into the blood and the modeling-defined fractions of intake into each of the three models.
Essential amino acids and fatty acids were also provided. For the multi-tissue simulations, the AM model stores triacylglycerol, the MM stores
protein and glycogen, and the HM stores glycogen. Some of the glucose delivered to the HM was converted to fatty acids that are transported
to the AM for triacylglycerol production. (B) The flux spans for the three cell-specific reconstructions individually and when integrated are
shown. Integration had a constraining effect on the HM and MM models, but had an opposite effect on the AM. This was due to fatty acid
production by the HM that was then transported to the AM. GLC = glucose, GGN = glycogen, AA = amino acids, FAs = fatty acids.
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During the absorptive state, carbohydrates and proteins
in food are primarily absorbed as monosaccharides (i.e.,
essentially glucose) and amino acids. The liver absorbs a
fraction of the blood glucose and the rest is taken up by
peripheral tissues in the body to generate ATP for energy
maintenance requirements. In addition to energy genera-
tion, the absorbed glucose is stored as triacylglycerol in
the adipose tissue and as glycogen and proteins in the
muscle tissue. The excess glucose in the liver is similarly
stored as glycogen and triacylglycerol, however unlike the
adipocyte, only a small amount of the synthesized triacyl-
glycerol is stored in the liver and the rest is transported to
adipose tissue.
An absorptive multi-tissue simulation was performed

and consisted of the three cell types, HM, MM, AM, and
blood compartment connecting them. Nutrients were
absorbed from the extra-system entering the blood com-
partment. Absolute values for glucose uptake rates were
taken from literature [22]. In vivo amino acid levels in
the blood are elevated between two- to seven-fold during
the absorptive state [23]. Assuming that the minimum
requirement of amino acids for biomass maintenance is
the baseline level in the blood, the amino acid influx was
scaled between two to seven times depending on the spe-
cific amino acid. Fatty acids were similarly scaled, in the
absence of specific data.
Due to the many metabolic objectives of the absorptive

state, for simulation, a Pareto optimality approach was
used [24]. Briefly, this optimization framework involves
optimizing for a specific objective, then fixing that flux,
then optimizing for another objective. If there are more
than two objectives, the process is repeated. First, AM

triacylglycerol production was optimized and the resulting
flux was fixed. Then, a baseline level of amino acid pro-
duction by the MM was set. The amino acid lower bound
for the MM was scaled to a ratio similar to the MM bio-
mass amino acid makeup. Finally, concurrent production
of glycogen in the HM and MM was optimized.
When comparing the multi-tissue absorptive flux span

with the individual models in similar conditions, there
were some differences as compared to the Cori and Ala-
nine cycles (Figure 6B). Initially, the individual AM flux
span could not be calculated due to its inability to pro-
duce as much triacylglycerol as the set lower bound for
the multi-tissue simulation. The glucose uptake of the
AM was set from a physiological constraint [22], limiting
triacylglycerol production. To reach the triacylglycerol
production lower bound, the HM converts some of its
glucose to triacylglycerol precursors that are then trans-
ported to the AM, very similar to what occurs physiologi-
cally [20]. Because the multi-tissue simulation does not
have a triacylglycerol lipoprotein transporter, the fatty
acid precursors were formed by the HM and transported
to the AM for maximal triacylglycerol production. In the
individual AM, fatty acid uptake was increased to com-
plete the study. The HM providing fatty acids to the AM
for triacylglycerol has two consequences on the solution
space: 1) the multi-tissue HM’s solution space is highly
constrained compared to that of the HM for the indivi-
dual hepatic cell-type, while 2) the multi-tissue AM solu-
tion space is much larger than for the individual cell-type
AM. Despite these differences, on the whole, the mean
flux span of all three networks is reduced. There were
also a larger number of fixed fluxes in the multi-tissue

Table 1 Flux span and number of reactions participating in internal loops and carrying zero and fixed fluxes of
individual and multi-tissue models

Cell Type Mean Non-Zero
Flux Span

(mmol/h/body/
mmol C)

Number of
Reactions
in Loops

Number of
Zero Flux
Reactions

Number of
Fixed Flux
Reactions

Individual HM (Alanine) 0.141 38 217 111

Individual MM (Alanine) 0.149 43 188 63

Individual HM (Cori) 0.172 38 225 125

Individual MM (Cori) 0.153 43 186 64

Individual AM (Absorptive) 0.044 22 54 15

Individual HM (Absorptive) 0.13 38 123 0

Individual MM (Absorptive) 0.18 40 100 0

HM (Alanine) 0.0588 38 178 111

MM (Alanine) 0.0619 43 143 100

HM (Cori) 0.0543 38 178 111

MM (Cori) 0.0712 43 141 100

AM (Absorptive) 0.062 22 59 99

HM (Absorptive) 0.070 38 125 94

MM (Absorptive) 0.13 40 99 51
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simulation, due to the higher interdependence between
the three cell-specific models. The absorptive state is not
limiting and all input metabolites were provided in
excess. When simulating the individual models, there
were very few to no fixed fluxes in the individual models
due to the non-limiting constraints.

Recap of results for the three multi-tissue metabolic state
computations
Three physiologically relevant cycles were simulated
using the multi-tissue approach. The flux span computa-
tions yielded two main results: 1) the intracellular depen-
dence between different cell types in a multi-cellular
organism and 2) the transfer of fatty acids to the AM
from the HM. Multi-tissue models can provide a plat-
form for mapping isotopomer flux measurements to
further increase quantitative accuracy of physiological
cycles and holistically understand human metabolism.

Metabolic Differences in Obese and Diabetic Obese
Individuals
A major application of genome-scale reconstructions is
providing a systems context for integrating high-through-
put data, also known as “context for content” [25]. Tran-
scriptomics and proteomics can be appropriately mapped
onto the reactions of metabolic networks to allow for a
systems analysis of the data.
The metabolic differences between i) obese and ii) Type

II diabetes obese individuals were analyzed using the
multi-tissue type model developed above. Transcriptomic
data was obtained from adipose, liver, and skeletal muscle
tissue samples of gastric bypass surgery patients in a fast-
ing state (see Methods). In order to properly simulate the
flux conditions, a baseline metabolic state was established.
The absorptive state was adapted to simulate a prolonged
starvation state. To perform this analysis, the objectives of
the absorptive state (AM triaclyglycerol production and
MM protein production) were converted into the inputs
of the system and the objective was set as the HM glucose
production. The changes in the multi-tissue simulation
provide a functional backdrop to analyze the obese and
Type II diabetes obese states.
Context-specific multi-tissue networks were built using

the GIMME algorithm [7] that maps transcription data
onto the reconstruction removing the reactions asso-
ciated with absent transcripts. Flux variability analysis is
then used to determine and remove the reactions that
cannot carry flux in both context-specific networks. The
remaining reactions represent potentially active reactions
under that context and provide a qualitative capacity/
capability measurement of the network. In order to
examine the differences between candidate metabolic
functions of the two disease states, the reaction activity

of both context-specific models were compared. The
workflow is shown in Figure 7A.
There is a considerable difference in reaction activity

between the two context-specific states (Figure 7B). 29
reactions are present only in the normal obese model
while 94 reactions are present only in the diabetic obese
model. The majority of the reaction activity difference is
in the AM. In addition, the multi-tissue models were
required for providing proper context for the gene
expression data. Ignoring the reconstruction context, the
gene expression data predicted 27 and 40 exclusively
expressed reactions in the normal and diabetic obese
patients, respectively. 39 of the 67 expression predicted
reactions were not differentially active in the context-spe-
cific models. This difference was due to either the unex-
pressed reaction being added back in for growth rate
requirements or that the expressed reaction was a false-
positive in terms of the entire network. Thus, the con-
text-specific models predicted 95 differentially expressed
reactions due to stoichiometric and flux constraints that
the expression data could not solely predict.
The reaction activity changes determined by the con-

text-specific networks can be grouped into three main
categories, as detailed below. The first two categories were
differences that were not necessarily obvious, but under-
standable through known macroscopic physiological
changes found in diabetic patients. Importantly, the multi-
tissue model provides mechanistic explanations as to why
the macroscopic physiological changes occurred. These
two groups can be viewed as validations of the multi-tissue
model and the importance of using a reconstruction, as
almost all of the predictions made were not evident in the
expression data. The third group consists of one reaction
that was completely non-obvious and provides new and
interesting metabolic insights into diabetes in obese indivi-
duals. A full listing of all differentially active reactions
found in the expression data and the final context-specific
models are provided in the Supplementary Material for
further research (see Additional File 6).
The first group of differentially expressed reactions in

the context-specific models deal with known metabolites
that have elevated blood concentrations in diabetes: free
fatty acids and lactate [26-28]. First, the AM diabetic
obese model has many active fatty acid oxidation and
carnitine shuttle reactions that are not active in the AM
normal obese model. The hyperactivity in the diabetes
model can be attributed to a diminished insulin response.
The diminished insulin response during the fasting state
leads to two attributes common in diabetics. There is a
lack of regulation of lipolysis, beta-oxidation of triglycer-
ides into free fatty acids, leading to elevated free fatty
acid levels [29] and a lack of regulation of oxidation of
fatty acids into acetyl-CoA. The increased breakdown of
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fatty acids into sugars partially accounts for observed
hyperglycemia in diabetics as the fatty acids stimulate
gluconeogenesis in the liver [30]. Inhibition of the fatty
acid oxidation reactions that lead to the hyperglycemic

effect has been previously proposed as a potential
method to inhibit the condition [30].
Second, HM and MM lactate dehydrogenase are solely

active in the normal obese patients. The absence of

Figure 7 Workflow and characteristics of context-specific models. (A) Two context-specific multi-tissue metabolic networks were built using
post-absorptive exchange constraints, gene expression data, the GIMME algorithm, and flux variability analysis. The two models detailed the
metabolism of obese and type II diabetes obese individuals based on the prolonged starvation multi-tissue simulation. (B) We compared the
reaction activity of the two context-specific models. First, we looked at how reactions were expressed based solely on the gene expression data
(left column). Second, we looked at reaction activity by determining the flux variability of the two context-specific models from the expression
data and GIMME algorithm (right column).
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lactate dehydrogenase in diabetic patients is a potential
metabolic mechanism for higher levels of lactate in the
blood as the liver and muscle are unable to utilize
lactate as a carbohydrate source. In addition, the differ-
ential activity of lactate dehydrogenase in the simula-
tions demonstrates the power of the context of the
multi-tissue simulation. The lactate dehydrogenase reac-
tions were not differentially expressed in the transcrip-
tion data, but the model provided proper context for
predicting proper reaction activity. An individual model
simulation would not yield the same results because the
degradation of triacylglycerol from the AM and protein
from the MM is critical for proper fasting state contex-
tualization. The lack of lactate dehydrogenase can
potentially attribute to the macroscopic observation of
high levels of lactate in the blood of obese diabetics, as
compared to normal obese individuals [28].
The second group of reactions provides clues into the

metabolic mechanisms of oxidative tissue damage seen in
diabetic patients [31]. There were changes in catalase reac-
tion activity throughout the three cell-specific portions of
the multi-tissue models. Catalase is a ubiquitous enzyme
in aerobic organisms. The enzyme decomposes hydrogen
peroxide into oxygen and water. Hydrogen peroxide is
generated by free radical via superoxide dismutase. In our
context-specific models, catalase was solely active in the
AM of the diabetic obese model, but was solely active in
the MM of the normal obese model. It has been previously
shown that the inherited disorders of acatalasemia and
hypocatalasaemia, which lead to defective catalase,
increase the likelihood of type II diabetes [32]. The pro-
posed mechanism involves pancreatic beta cells, which are
susceptible to oxidative damage. Goth and Eaton proposed
that defective catalase increases oxidative species, thus
destroying pancreatic beta cells. To detect the defect,
erythrocyte catalase was studied. However, no previous
studies have been done with the activity of healthy catalase
enzyme. Simulations show that catalase activity is not pre-
sent in the skeletal muscle of diabetic obese patients dur-
ing the fasting state. Absence of catalase in a cell would
have a similar functional effect as expression of defective
catalase. The absence of catalase activity probably attri-
butes to oxidative tissue damage as well as may play a role
in diabetes development.
Thirdly, AM cysteine dioxygenase (CDO) is only active

in the normal obese model. CDO has been shown to be
an important regulator in cysteine and sulfur metabolism
in adipocytes and hepatocytes [33] but has not been
shown to be related to diabetes. HM CDO has activity in
both context-specific models because the hepatic version
of the enzyme is post-translationally regulated [33]. CDO
is very responsive to dietary changes to protein and sulfur
amino acid intake in normal individuals. It is responsible
for breaking down excess cysteine into other important

metabolites, such as pyruvate and taurine. Very little
research has been done on CDO in diabetics. Elevated
levels of cysteine in tissues have been shown to be cyto-
toxic and could be another potential mechanism for the
observation of tissue damage in diabetic patients. In addi-
tion, taurine has been implicated as an important meta-
bolite in diabetes and supplements of taurine have been
shown to reduce diabetic symptoms [34,35]. The lack of
CDO reaction activity in the diabetic context-specific
model is a potential reason for the diminished taurine
concentration.

Conclusion
Fine-grained studies of integrated human metabolic states
have proved to be difficult due to complex intracellular
and intercellular interactions. The recently available
human genome-scale reconstruction, Recon 1 [5], is a bio-
logical knowledgebase for studying intracellular human
metabolism that now enables such an undertaking. This
paper presents the first effort to build a multi-tissue meta-
bolic network that is global in the sense that all metabolic
functions described on the human genome are taken into
account. Thus, three cell-specific genome-scale metabolic
networks were reconstructed. They were integrated using
a multi-tissue modeling approach and the integrated
model was used to study physiologically relevant cycles.
High-throughput data was integrated in the context of the
integrated metabolic network to study differences in obese
and diabetic obese individuals. Several findings resulted
from this study.
First, using Recon 1 we generated cell-specific recon-

structions for three key tissues involved in diabetes and
obesity: adipocytes, hepatocytes, and myocytes. The
three cell-specific reconstructions were converted into
mathematical models and put through stringent testing
to validate tissue-specific physiological functions.
Second, intercellular metabolic interactions were then

described by developing a multi tissue-type modeling
paradigm that combines the cell-specific models through a
blood compartment. The multi-tissue model is not simply
a trivial sum of the cell-specific reconstructions. As an
example, a bicarbonate buffering system was required to
simulate the mathematical model.
Third, using the multi-tissue models, simulations for the

Alanine and Cori cycles and the absorptive state are possi-
ble. These three physiologically relevant cycles are pre-
sented. When comparing the nutrient limited cycles to the
individual models (e.g. Alanine and Cori cycles), the multi-
tissue simulation approach showed a constrained solution
space. In a nutrient rich environment (e.g. absorptive
state), the HM and MM were constrained while the AM
was not. The AM is not as metabolically independent as
the HM and MM and thus gains potential phenotypes
when integrated with the other metabolic reconstructions.

Bordbar et al. BMC Systems Biology 2011, 5:180
http://www.biomedcentral.com/1752-0509/5/180

Page 13 of 17



Fourth, utilizing the multi-tissue approach, the meta-
bolic differences in obese and diabetic obese individuals
were studied by incorporating gene expression data as a
constraint on the metabolic networks. The approach was
validated and provided potential mechanisms for known
macroscopic physiological changes seen in diabetic
patients such as increased blood metabolite concentra-
tions and oxidative damage of tissues. In addition,
cysteine dioxygenase was found to be differentially active
and could be a potential factor in oxidative damage to tis-
sues and lower concentrations of taurine in adipose and
liver tissues. The differences in the two context-specific
models were not obvious and required the multi-tissue
modeling approach, as the differential activity of reac-
tions could not be ascertained from the transcription
data alone.
The first genome-scale metabolic network reconstructed

was H. influenzae, representing the first sequenced prokar-
yote [36]. Other prokaryotic genome-scale metabolic net-
works have been reconstructed (e.g. M. tuberculosis
[37,38], H. pylori [39], S. aureus [40]). The most notable
prokaryotic reconstruction is that for E. coli with many
successive expansions [41-43]. The next step was recon-
structing a eukaryotic cell, with the introduction of the
S. cerevisiae metabolic network [44]. With the need for
understanding human metabolism for the health sciences,
Recon 1 was introduced. Recon 1 is a comprehensive
knowledge base for human cells allowing integration of
high-throughput data to build cell type specific models. In
this study, a multi-tissue type modeling approach is
detailed that allows for an increased understanding of
intercellular interactions. Integrating high-throughput data
allows for the study of pathophysiological states. Multi-tis-
sue simulations can provide a basis for designing isotopo-
mer flux experiments and allow for mapping flux results
onto the network. Utilizing the multi-tissue models for
designing and analyzing flux experiments can increase the
accuracy and quantitative utility of the multi-tissue
approach, further expanding the usefulness and necessity
of genome-scale metabolic networks for studying the
health sciences.

Methods
Building a Tissue Specific Metabolic Model
Using the human genome sequence and annotation, bio-
chemical, and physiological data available through online
databases and published literature, three metabolic net-
works were reconstructed for the human hepatocyte,
myocyte, and adipocyte. A workflow for this procedure is
shown in Figure 2. We began with tailoring Recon 1. The
gene index was updated from Build 35 to Build 36.2 (the
current release at the time). The GeneID numbers in
Recon 1 are not unique and were replaced by the unique
RefSeq transcript IDs. All transporters and lumped

reactions were redone with proper elemental and proton
balancing. Tissue specificity information was obtained
from the UniProt (Universal Protein Resource) database
[45]. An automated draft model was reconstructed in
SimPheny from the cell-specific open reading frames
determined from UniProt and the updated Recon 1
model.
The draft models were finalized through manual cura-

tion. Metabolic pathways in each cell type were included
based on the existing knowledge of cell physiology and
cell-specific biomass requirements. For each pathway, the
presence of each reaction was supported by one or more
of the following information obtained from online data-
bases and/or published literature: biochemical data,
genetic data, localization data, sequence data, physiological
data, and modeling data. Reaction properties were verified
through online databases such as KEGG [46] (for stoichio-
metry and cofactor specificity), NCBI (for organism speci-
ficity), UniProt (for localization), and BRENDA [47] (for
reversibility, localization, and tissue-specificity). Presence,
mechanism, and localization of metabolic pathways were
also verified using textbook references [48-51] and tissue
specific gene expression data (cDNA library, NCBI). If
possible, reactions with dead-end substrates and products
were deleted from, or interconnected within, the network
to reduce metabolic gaps. Pathways for synthesis of known
essential cell components, including the essential amino
acids, vitamins, and fatty acids, were removed if present,
and appropriate transport reactions were included to allow
the uptake of the essential cell components into the net-
work. Additional metabolic pathways that were not
included in Recon 1 but were present in the tissue specific
models were also added at this stage. For example, keto-
genesis is present in the HM but not in Recon 1 and was
accordingly added to the reconstruction. To preserve a
standardized QC/QA procedure for building the three net-
works, the HM was not augmented with previously pub-
lished liver metabolic reconstructions [8,9]. The additional
hepatic metabolism covered in these two models is outside
of the scope of multi-tissue interactions studied. A com-
parison of the two previous models and the one in this
study is presented in the Supplementary Material (Addi-
tional File 7).

Biomass Formulation
Biomass maintenance functions were constructed for the
three cell-specific metabolic models. The process
involved gathering primary literature data on the meta-
bolic make up of the human tissue or related mammals if
human-specific data was scarce. The overall process of
formulating biomass objective functions for eukaryotes
has been described in previous publications [44]. The
composition of the HM is broken down into proteins,
neutral lipids, phospholipids, glycogen, DNA, and RNA.
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The MM biomass function consists of non-collagen pro-
tein, collagen protein, lipids, DNA, RNA, and glycogen.
The AM is composed of carbohydrates protein, lipids,
DNA, and RNA (Figure 1C). A full breakdown of each
macromolecular component and final weighting in the
objective function is provided in the Supplementary
Material (see Additional File 1).

Integrating Metabolic Models
The overall compartment schematic of the integrated
multi-tissue model is presented in Figure 4. There were
two main steps for integration: mathematical integration
and blood compartment refinement. For the first step,
the reactions and metabolites in the three cell-specific
models were renamed for proper compartmentalization.
A new blood compartment representing the interstitial
fluid, urine, and blood was constructed. The exchanges
of the cell-specific models were removed and only gene-
associated transporters and free diffusion allow for inter-
cellular metabolite transport. Exchange reactions were
added to allow the blood compartment to uptake and
secrete metabolites into the extra-system. The second
step involved refining the blood compartment. It was
not possible to properly simulate using flux balance ana-
lysis due to improper proton balancing. A bicarbonate
buffer reaction, similar to the function of the kidney,
was added to account for proton balancing.
Other metabolic changes and degradation in the blood

were assumed to be negligible due to the large time-scale
differences between small metabolite stability in whole
blood versus the amount of time a metabolite spends in
the blood for transport. In particular, Liu et al. have
shown through time course metabolomic profiling of
plasma drawn from incubated whole blood that most
small metabolites accounted for in the multi-tissue mod-
el’s blood compartment are stable (25 of 33 metabolites
showed no significant change in the 4 hr study) [52]. The
rest of the metabolites are stable until the later time
points, except for pyruvate that showed significant
change by the first time point (1 hr). All originally
detected metabolites were still present at the end of the
study. On the other hand, blood circulates throughout
the body in about a minute. The microvasculature is
structured in a way for convective forces to dominate dif-
fusive forces to increase the rate of uptake of solutes. In
particular, metabolic uptake is in the time scale of sec-
onds and minutes [53]. Such a large time scale difference
(two to four orders of magnitude) makes blood degrada-
tive processes negligible. The metabolites spend only a
few minutes in the blood compartment while their degra-
dation takes hours. Thus, the amount of degradation in
the blood compartment is negligible as metabolites are
primarily located in the cells and tissues and it can be

assumed that metabolic changes occur predominantly
there.
In the human body, the three tissues have varying

masses. Initially, the simulations were set up using the
units: mmol/h/g cell DW; which assumes that all three
tissues have the same weight. To properly simulate inter-
cellular fluxes, the biomass objective functions were
scaled to the units: mmol/h/body. Thus, the three tissue
model fluxes were scaled to represent the entire tissue
mass in the average human body. The units were scaled
by the mass of the tissue [54-56], the cellular composi-
tion of the tissue, and subtracting the water weight (see
Additional File 1). For the white adipose tissue and skele-
tal muscle tissue, it was assumed that adipocyte and myo-
cyte were the cells present. For the HM, it was assumed
that 80% of the cellular mass of the liver are hepatocytes
[57].

Flux Balance Analysis
After reconstruction in the SimPheny platform, the cell-
specific metabolic models were converted into a mathe-
matical format for analysis. The reactions and metabo-
lites were represented with the stoichiometric matrix
(S). The stoichiometric matrix is very sparse and has
dimensions of m × n. The metabolites (m) are repre-
sented in the rows as nodes in the network, while the
reactions (n) are represented in the columns as links.
Ordinary differential equations for the time derivatives
of the metabolic concentrations are set up for the
reconstruction using the stoichiometric matrix and reac-
tion fluxes (v):

dx
dt

= S · v (1)

Due to the lack of kinetic parameters available for
intracellular biochemical transformations at the gen-
ome-scale, Equation 1 is set to a steady state and flux
balance analysis (FBA) is used to characterize the sys-
tem. FBA uses linear programming techniques to calcu-
late the flow of metabolites throughout the network
under mass balance (S·v = 0) and thermodynamic con-
straints (lb, ub) (Equation 2). For those unfamiliar with
linear programming and FBA, a primer is now available
[58].

max(cT · v)

subject to S · v = 0

lb < v < ub

(2)

Characterizing the extremities of the system’s solution
space is done using a variant of FBA called flux variabil-
ity analysis (FVA). FVA involves iteratively and indepen-
dently determining the minimum and maximum fluxes
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through the metabolic network. The flux span for a
reaction is defined as the difference between the maxi-
mum and minimum flux. When analyzing the flux span,
we did not consider reactions that were perceived to be
part of thermodynamically infeasible internal loops.

Context-Specific Multi-tissue Simulation
Context-specific metabolic networks for obese and dia-
betic obese individuals were built using the prolonged
starvation multi-tissue model and the Gene Inactivity
Moderated by Metabolism and Expression (GIMME) algo-
rithm [7]. The GIMME algorithm is a linear programming
problem that uses gene expression data to minimize the
flux of down regulated genes. The procedure results in a
smaller context-specific model built from the original
multi-tissue model as unexpressed reactions are removed
from the metabolic network. Gene expression data for
obese and diabetic obese individuals was obtained through
the Gene Expression Omnibus (GSE15773, GSE15653,
GSE18732) [59,60]. Expression data was normalized using
GCRMA and presence and absence calls were made using
the PANP function in the R statistical platform (p < 0.01)
for each patient group (diabetic, non-diabetic) of each tis-
sue (adipose, liver, muscle). For the GIMME simulations,
genes were deemed present if they were present within all
samples of the particular tissue and group. Before using
GIMME, a permutation sensitivity analysis was completed
by removing up to 50% of the samples from each tissue
and patient group. The expression data was very stable for
all groups (see Additional File 8). Flux variability analysis
was used to compare which reactions could carry flux in
both context-specific models and thus ascertain the meta-
bolic differences in reaction activity between obese and
diabetic obese individuals.

Additional material

Additional file 1: Biomass Formulation. Supplementary information on
sources and methods used to constract tissue-specific biomass functions.

Additional file 2: Tissue specific models and multi-tissue model XLS
(in compressed zip format). Metabolic models for adipocyte,
hepatocyte, mycocyte, and multi-tissue network in XLS format

Additional file 3: Tissue specific models and multi-tissue model
SBML (in compressed zip format). Metabolic models for adipocyte,
hepatocyte, myocyte, and multi-tissue network in SBML format. The
SBML format can be imported into Matlab and COBRA Toolbox for
simulations

Additional file 4: QC/QA Tests and Futile Cycle Tests. Quality control
tests to validate universal and tissue specific functionality and model
consistency

Additional file 5: Unconstrained simulations of Cori and Alanine
Cycles. Additional information on simulating the metabolic interaction
between the liver and muscle based on sensitivity analysis of objectives
(hepatic glucose and urea production)

Additional file 6: Reaction Activity Changes in Obese and Diabetic
Obese Individuals. Differential metabolic reactions in simulations of

obese and diabetic obese individuals determined by flux variability
analysis

Additional file 7: Liver metabolic network reconstruction
comparison. Comparison of HM, Recon 1, and two existing liver
metabolic networks in terms of metabolites and reactions.

Additional file 8: Expression Data Sensitivity Analysis. Sensitivity
analysis involving removing random permutations of patient samples
from each group to determine robustness of expression data.
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