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Background: Identifying cellular subsystems that are involved in the expression of a target phenotype has been a
very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or
proteins) that interact and carry out a common function in the cell. Most studies identify genes associated with a
phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze
functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a
specific question in mind while performing such analysis and most of the resulting subsystems obtained by the
existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate
biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting
subsytems would not only be related to the target phenotype but also contain information that the biologist is

Results: In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched
Subgraph Enumeration) that can take in as input a biologist's prior knowledge as a set of query proteins and
identify all the dense functional modules in a biological network that contain some part of the query vertices. The
density (in terms of the number of network egdes) and the enrichment (the number of query proteins in the
resulting functional module) can be manipulated via two parameters y and g, respectively.

Conclusion: This algorithm has been applied to the protein functional association network of Clostridium
acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify
relationships known to exist in literature and also some previously unknown relationships including those with
regulatory and signaling functions. Additionally, we were also able to hypothesize that some uncharacterized
proteins are likely associated with the target phenotype. The DENSE code can be downloaded from http://www.

1 Background

Application of genomic and systems-biology studies
towards environmental engineering (e.g., waste treat-
ment) generally requires understanding of microbial
response and metabolic capabilities at the genome and
metabolic levels. This includes understanding of rela-
tionships between phenotypes and the various cellular
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subsystems. In biological systems, phenotype-related
genes encode for a number of functionally associated
proteins that may be found across a number of different
metabolic, regulatory, and signaling pathways [1,2].
Together these pathways form a biologically important
network of proteins (or genes) that are responsible for
the expression of a particular phenotype. Through ana-
lysis of biologically conserved network models, insights
into the functional role of phenotype-related genes and
functional associations between these genes in these net-
works can be obtained. This knowledge can then be
used by metabolic engineers to identify which genes are
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potential candidates for modification studies and to
determine how modification of selected genes could
impact the desired outcome (e.g., hydrogen production).
Proteins encoded by these phenotype-related genes can
be present in a number of biochemical reactions, path-
ways, or motifs; understanding of the role and interac-
tions of these proteins within various networks is
necessary to identify which cellular subsystems are
important for enhancing or suppressing expression of
phenotypic traits. Typically, clustering can be used to
partition an organism’s biological network into interact-
ing protein subgraphs that can further be analyzed for
phenotype-relatedness. However, traditional, “hard” clus-
tering results in a partitioning of the data into non-over-
lapping clusters. And since proteins may belong to
multiple cellular subsystems, an approach that allows for
overlapping clusters is more appropriate than the one
that partitions the data. Retrieving all overlapping clus-
ters from the data not only increases the complexity of
the problem, but most of the resulting clusters maybe
irrelevant to the phenotype’s expression. The complexity
and the quality of the results can be improved if a biolo-
gist’s “prior knowledge” about the phenotype can be
directly incorporated into the search. For example, a
biologist might wish to search an organismal protein
functional association network for those modules asso-
ciated with motility using some of the known flagella
proteins as “prior knowledge” or a biologists may use
the enzymes in the TCA cycle pathway to identify sub-
systems related to aerobic respiration. Those proteins
with unknown functions in the resulting subnetworks
would likely have a function related to motility (or aero-
bic respiration) and may be appropriate for experiments
and further inquiry. In this paper, we describe a theore-
tically sound and fast method called the Dense ENriched
Subgraph Enumeration (DENSE) algorithm that capita-
lizes on the availability of any “prior knowledge” about
the proteins involved in a particular process and identi-
fies overlapping sets of functionally associated proteins
from an organismal network that are enriched with the
given knowledge. When applied to a network of func-
tionally associated proteins in the dark fermentative,
hydrogen producing and acid-tolerant bacterium, Clos-
tridium acetobutylicum, the algorithm is able to predict
known and novel relationships, including those that
contain regulatory, signaling, and uncharacterized
proteins.

Results and Discussion

Description of the Clostridium acetobutylicum ATCC 824
network

The gene functional association network for Clostridium
acetobutylicum ATCC 824 was obtained from the
STRING database [3]. The nodes in the networks are
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genes that encode enzymes, regulatory proteins, signal-
ing proteins, and others. An edge is placed between a
pair of genes if there is some evidence that they are
functionally associated. STRING builds these networks
based on various lines of evidence, including gene
fusion, co-occurrence across species, and co-expression
under similar experimental conditions.

Biological Relevance

To discover clusters related to phenotypes and sub-phe-
notypes associated with hydrogen production from
waste materials, the DENSE algorithm was applied to
the hydrogen producing bacterium, Clostridium aceto-
butylicum ATCC 824. C. acetobutylicum is a widely stu-
died and well-characterized organism for hydrogen
production in nutrient-rich systems [4,5]. In addition to
dark fermentative hydrogen production, C. acetobutyli-
cum exhibits a number of phenotypes important for
bacterial growth and for production of hydrogen. Such
phenotypes include dark fermentative hydrogen produc-
tion and acid-tolerance down to pH of 4.4-6.0 [6].
While Clostridium species are often associated with
dark fermentative acidogenesis, they are also known for
production of solvents [6,7]. During solventogenesis,
hydrogen produced is consumed and butanol, ethanol,
and acetone are generated [6]. The following sections
present a description of biological networks identified
and predicted interactions between proteins (and genes)
that play a role in uptake and production of hydrogen
through regulation, signaling, or synthesis of key
enzymes. Specifically, emphasis is placed on key proteins
and networks identified in the previous methodologies
(e.g, hydrogenases or enzymes for butyrate production).
To identify dense, enriched protein-protein interaction
networks, three experiments were conducted. In the first
experiment, proteins directly related to the [FeFe]-
hydrogenase (HydA) were identified. In the last two
experiments, hydrogen-related and acid-tolerant knowl-
edge priors identified using the statistical Student’s t-
Test and our method for discovery of phenotype-related
metabolic pathways [8] method were incorporated into
the algorithm and clusters were analyzed.

Dark fermentative hydrogen production

In fermentative hydrogen-producing organisms, such as
C. acetobutylicum, hydrogen yields are dependent on
the presence and activation of hydrogen producing
enzymes, called hydrogenases [9]. Studies evaluating the
role of hydrogenase in hydrogen production have shown
that organisms can contain more than one type of
hydrogenases that can each require sets of accessory
proteins for activation. As such, the presence or absence
of specific accessory proteins plays an important role in
regulating the activity of hydrogenase and hydrogen
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production or uptake in microorganisms. In addition,
many hydrogenases are thought to either directly or
indirectly regulate other metabolic processes, such as
nitrogen metabolism [10]. Therefore, understanding of
phenotype-related proteins required for activation and
maturation of hydrogenases is important for metabolic
engineering of organisms.

Hydrogenase

When applied to HydA, a hydrogen producing hydroge-
nase enzyme, the DENSE algorithm was able to identify
three maturation proteins that are essential for expres-
sion of a [FeFe]- hydrogenase [11]. They are HydE
(CAC1631), HydF (CAC1651), and HydG (CAC1356)
(Figure 1; Table 1). When these proteins are present
and interact with HydA1l, activation of the hydrogen
producing [FeFe]-hydrogenase occurs. According to stu-
dies on hydrogenases, deletion of one of the proteins
will result in inactivation of the [FeFe]-hydrogenase [11].
In addition to identifying key protein clusters, the algo-
rithm predicted an association between an uncharacter-
ized protein (Figure 1; CACO0487) and the three
maturation proteins. According to the STRING data-
base, CAC0487 is an uncharacterized protein. Since
CACO0487 is highly interconnected with the maturation
proteins, it can be predicted that the protein is involved
in development of the [FeFe]-hydrogenase (HydA1). Uti-
lizing this information, the role of CAC0487 in relation
to the three maturation proteins could be characterized
through genetic studies and then applied to bioengineer-
ing hydrogen producers. Application of the algorithm
using hydrogen-related enzymes identified with Schmidt
et al [8] resulted in prediction of over 6,000 clusters
(see Additional File 1) of phenotype-related protein-pro-
tein functional associations. Of these clusters, a number
of protein functional association networks containing
proteins associated with expression of key enzymes
related to either hydrogen uptake were identified. Exam-
ples of enzymes include those involved in maturation of
hydrogenase (HypE and HypD) and nitrogenase (Nif),
and key fermentation pathways for hydrogen production
in anaerobic organisms. Within these clusters, both
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Table 1 Protein-protein functional association network
corresponding to Figure 1 and description of
hydrogenase-related proteins present in Clostiridum
acetotbutylicum

STRING Protein Protein Description

ID ID

CAC0028  HydA1 Hydrogenase | (Hydrogene dehydrogenase)

CAC0487 Uncharacterized protein

CAC1651  HydF Predicted GTPase with uncharacterized
domain

CAC1631  HydE Biotin synthase family enzyme

CAC1356  HydG Thiamine biosynthesis enzyme

known and new associations between proteins involved
in regulation, synthesis, and signalling of hydrogen pro-
ducing pathways are identified. Review of our predicted
protein-protein association clusters for the hydrogen
production phenotype revealed the presence of only one
cluster containing known hydrogenase proteins (Figure
2; Table 2). Within this cluster are two [NiFe]-matura-
tion hydrogenase proteins (HypE and HypD) and phos-
phoheptose isomerase (GmhA). HypD (CAC0811) and
HypE (CACO0809) proteins are depicted as associated,
further strengthening the importance of [NiFe]-matura-
tion proteins in impacting the overall hydrogen yields in
hydrogen-producing organisms. Since Hyp proteins are
involved in activation and synthesis of uptake hydroge-
nase enzymes [9], down-regulation of HypD and HypE
in Clostridium species are potential targets for enhan-
cing biological hydrogen production. The HypABC pro-
teins, HypD and HypE are together functionally
important for expression of the [NiFe]-hydrogenase and
deletion of one of the proteins may lead to inactivation
[9]. While the interaction between the two Hyp proteins
is clearly defined by previous studies [9,12,13], their
interaction with phosphoheptose isomerase is not well
understood. Phosphoheptose isomerase or GmhA
(CAC3054) is an enzyme involved in biosynthesis of gly-
cerol-manno-heptose [14]. In Escherichia coli, phospho-
heptose isomerase is involved in biosynthesis of ADP-L-

CAC0028

CAC1356

CACI1651

CAC1631
Figure 1 DENSE cluster containing hydrogenase and associated proteins identified by DENSE.
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CAC3054

CAC0811  CACO0809

Figure 2 DENSE cluster containing phosophoheptose and interacting proteins identified by DENSE algorithm.
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Identified by DENSE
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glycero--D manno-heptose, a compound required in
development of lipopolysaccharide (LPS) [14,15]. Specifi-
cally, ADP-L-glycero--D manno-heptose utilized in
biosynthetic pathways resulting in production of S-layer
glycoproteins and production of the inner-core of LPS
[15]. While development of lipolysaccharides is typically
found in gram negative bacteria, the presence of LPS in
Clostridium has been reported [15]. According to the
results, all three proteins are shown to be functionally
associated with one another (Figure 1). However, from
Figure 2, it is unclear why and how the two hydrogenase
proteins (HypD and HypE) interact with GmhA.
Pyruvate: Ferredoxin Oxidoreductase and Associated
Proteins

Another important enzyme for hydrogen production in
C. acetobutylicum is pyruvate: ferredoxin oxidoreductase
(CAC2229). In anaerobic, hydrogen-producing organ-
isms, pyruvate: ferredoxin oxidoreductase or PFOR is
responsible for the conversion of pyruvate to acetyl-CoA
[16-18]. Acetyl-CoA is then utilized by a number of
pathways, including acetate and butyrate fermentation
routes. During production of acetate and butyrate,
hydrogen is also produced as a by-product. In this
regard, the DENSE algorithm was able to predict the
association of this important enzyme when pyruvate
lyase was given as a hydrogen-related knowledge prior
enzyme. While pyruvate formate lyase (PFL) is utilized
to generate formate and acetyl coenzyme A (Acetyl-
CoA) in facultative anaerobic bacteria [16], it is not
uncommon to find genes encoding PFL in anaerobic
organisms, such as Clostridium [19]. In this study, many

Table 2 Protein-protein functional association network
corresponding to Figure 2 and description of
hydrogenase-related proteins present in Clostiridum
acetotbutylicum

STRING ID  Protein ID  Protein Description

CAC3054 GmhA Phosphoheptose isomerase

CACO811 HypD Hydrogenase expression-formation factor
CAC0809 HypE Hydrogenase formation factor

clusters containing PFL were identified, but only one
that contained PFOR. Figure 3 andTable 3 demonstrate
an example of one cluster containing PFL (CAC0980)
identified by the DENSE algorithm. In this cluster, the
algorithm identified interactions between the two acetyl-
CoA forming enzymes, PFL and PFOR (CAC2229) and
a third enzyme involved in the acetyl-CoA pathway-
phosphotransacetylase (CAC1742). Phosphotransacety-
lase (Pta) is involved in the conversion of acetyl-CoA to
acetyl-phosphate [20]. Interactions between phospho-
transacetylase and PFOR are consistent with known bio-
chemical data. Although the presence of PFOR and PFL
has been described in Clostridium, the direct interaction
between the two enzymes is not well known. In C. acet-
obutylicum, PFOR is involved in the pathway for acetyl-
CoA and acetogenesis [20]. However, PFL, if utilized,
may be involved in production of other products, such
as solvents, through alternative pathways.

Butyrate Kinase and Associated Proteins

During dark fermentative hydrogen reactions, such as
those that occur in anaerobic wastewater reactors, acetic
acid and butyric acid are the two metabolites, sought
after by scientists and engineers. One reason for this is
that through production of these two metabolites hydro-
gen gas is also co-evolved as a by-product. Therefore,
through production or absence of acetate or butyrate by
microorganisms, scientists could verify if metabolic
fluxes are directed towards hydrogen production rather

O Knowledge prior

. Identified by DENSE

CAC0980

CAC1742  CAC2229
Figure 3 DENSE cluster containing pyruvate-ferredoxin
oxidoreductase and interacting proteins identified by DENSE
algorithm.
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Table 3 Pyruvate: Ferredoxin oxidoreductase and
associated proteins present in Clostiridum acetobutylicum
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Table 4 Description of butyrate kinase and associated
proteins present in Clostiridum acetobutylicum

STRING ID Protein ID Protein Description STRING ID Protein ID Protein Description
CAC0980 - Pyruvate-formate lyase CAC3076 Ptb Phosphate butyryltransferase
CAC2229 - Pyruvate:ferredoxin oxidoreductase CAC1660 Buk Butyrate kinase, buk
CAC1742 Pta Phosphotransacetylase CAC3075 Buk Butyrate kinase, BUK

than hydrogen consumption. As such, understanding the
mechanisms involved in production of acetic acid (acet-
ate) or butyric acid (butyrate) is important for enhan-
cing hydrogen production yields.

In this study, application of the DENSE algorithm
resulted in identification of a number of clusters includ-
ing proteins involved in acetate and butyrate formation.
From the results, one cluster that contained butyrate
kinase, a key enzyme in butyrate formation was identi-
fied. Within this cluster, two butyrate kinase proteins
(CAC1660 and CAC3075) and one phosphate butyryl-
transferase (CAC3076) protein are predicted as asso-
ciated with one another (Figure 4; Table 4). Such
associations between these two proteins are consistent
with known biochemical data regarding butyrate forma-
tion [20]. In these studies, both butyrate kinase and
phosphate butyryltransferase (Ptb) are described as
essential for production of butyric acid [21]. While asso-
ciations between the proteins do not appear to be trivial,
it is important to note the involvement of Ptb in regula-
tion of metabolic shifts between butyrate and butanol
formation. In C. acetobutylicum, the switch between
acidogenesis and solventogenesis has been shown to
occur after formation of butyanol-CoA. In studies evalu-
ating activities of the two enzymes, potentially important
feedback mechanisms between the activity of Ptb and
butyrate formation, and between Ptb and ATP forma-
tion were detected [21,22]. One example of a feedback
mechanism is the inhibition of Ptb by ATP during buty-
rate formation [21]. Based on these flux studies,
researchers suggested that Ptb may serve a regulatory
role as a signaling protein. When additional interactions
between Ptb and other proteins are evaluated, results
predicted that Ptb also interacts with two aldehyde

CAC03076 Knowledge prior

Identified by DENSE
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CAC3075  CACI1660

Figure 4 DENSE cluster containing butyrate kinase enzymes
and phosphate butyryltransferase identified by DENSE.

dehydrogenases (AdhE2) and acetyl-CoA dehydrogenase.
During solvent production, AdhE proteins are responsi-
ble for butanol production. Since C. acetobutylicum is
capable of both solventogenesis and acidogenesis, and
Ptb is interacting with proteins involved in both buty-
rate and butanol formation, it can be hypothesized that
Ptb is responsible for metabolic shifts involving butyrate
fermentation.

Acid-Tolerance

Incorporation of acid-tolerant knowledge priors identi-
fied by the Student’s t-Test and Schmidt et al [8] for
the dark fermentative, acid-tolerant, hydrogen producing
bacterium, Clostridium acetobutylicum resulted in iden-
tification of 889 dense, enriched protein-protein clusters
(see Additional File 2). Due to limitations in identifying
a diverse set of completely sequenced organisms, the
acid-tolerant proteins incorporated are representative of
a small subset of acid-tolerant organisms from the Phy-
lum Firmicutes (9 species) and Proteobacteria (1 spe-
cies). As such, the clusters identified are based on
organisms representative of three classes of bacteria—
Bacilli, Clostridia, and o-proteobacteria. Of these clus-
ters, the DENSE algorithm identified 158 as containing
proteins involved in a sugar phosphotransferase system
(PTS). PTS is a system consisting of a number of pro-
teins involved in uptake of sugar (e.g., glucose and fruc-
tose) [23]. Each of these proteins are divided into one of
two components—E1 and E2. The E1 component con-
sists of two proteins, E1 enzyme and histidine (Hpr), is
responsible for phosphorylation of substrates within the
system [23,24]. The E2 component contains the cyto-
plasmic proteins, EIIA, EIIB, and EIIC. In Figure 5 and-
Table 5 a densely enriched cluster of PTS proteins
identified by DENSE is presented. Proteins involved in
this cluster include E1 proteins (CAC0231), EII enzymes
(CAC0233 and CACO0234), a transcriptional regulator
involved in sugar metabolism (CAC0231), and fructose
1-phosphate kinase (CAC0232). The EII proteins and
fructose 1-phosphate kinase are shown to interact with
each protein in the cluster. Whereas the transcriptional
regulator and EI protein are the only two proteins that
are not directly associated. This suggests that the tran-
scriptional regulator is likely involved in controlling the
interactions between the cytoplasmic proteins in PTS
and fructose 1-phosphate kinase. Fructose 1-phosphate
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kinase is responsible for conversion of D fructose 1-
phsophate to fructose 1,6 biphosphate [23]. Thus, the
regulator may play a role in regulating sugar metabolism
in C. acetobutylicum. While PTS and sugar metabolism
are thought of as involved in acid tolerance, literature
reports for acid response mechanisms in Escherichia coli
and Streptococcus sobrinus suggested that proteins asso-
ciated with PTS were upregulated during growth at low
pH (pH <6.0) [24,25]. In a study by Nasciemento et al.
[24], PTS activity was shown to be upregulated in S.
sobrinus when cells were exposed to a pH of 5.0. How-
ever, they found the opposite to be true for Streptococ-
cus mutans, with PTS activity decreasing by half when
exposed to a pH of 5.0. For E. coli, Blankenhorn et al.
[25] showed the phosphocarrier protein PtsH and the
protein N(pi) phosphohistidine—sugar phosphotransfer-
ase (ManX) were induced by E.coli during acid stress.
While there is no consistent reaction to acid stress by
organisms regarding sugar metabolism and PTS, it does
appear that PTS in C. acetobutylicum is regulated by a
transcriptional factor. Since hydrogen production studies
often rely on utilization of glucose (and fructose) as
their carbon source, understanding the metabolic
response to acid is important. As such, studies evaluat-
ing the role of the transcription regulator (CAC0231) on
PTS and sugar metabolism in C. acetobutylicum under
varying pH conditions are necessary.

Effectiveness of DENSE at Efficiently Detecting u, y-quasi-
cliques

In this section, we present several empirical results to
demonstrate the effectiveness of our algorithm at effi-
ciently detecting dense and enriched subgraphs in large,
sparse graphs. For these experiments, we ran our algo-
rithm three times in order to detect different types of 4,
Y-quasi-cliques. The three types of quasi-cliques we
detect are: high density, low enrichment ("clique”) sub-
graphs where Q contains every vertex of the graph; high
enrichment, low density ("enriched”) subgraphs with a
small query set (every 10th vertex of V (G)); and moder-
ate enrichment and density ("dense”) subgraphs with a
medium-sized query set (every 6th vertex of V (G)).
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Table 5 Description of acid tolerent cluster identified by
DENSE

STRING Protein  Protein Description

ID ID

CAC0233 - PTS system, IIA component

CAC0231 - Transcriptional regulator of sugar metabolism

CAC3087 - Phosphoenolpyruvate-protein kinase (PTS system
enzyme |)

CAC0232 1-phosphofructokinase (fructose 1-phosphate
kinase)

CAC0234 - PTS system fructose-specific IIBC component

These settings were chosen to test the algorithm (and
various candidate vertex constraints) under a wide vari-
ety of conditions. The parameter settings for these three
types of subgraphs appear in Table 6. For these experi-
ments, we used the R-MAT random graph generator
[26] to generate sparse graphs of increasing size. The
graphs were generated to have vertices equal to a power
of two, with an average vertex degree of 14 (|E(G)| = 7|
V (G)]). The graphs were then processed to remove iso-
lated vertices, which do not contribute to our search for
dense, enriched subgraphs. All graphs were generated
using the default R-MAT parameters of a = 0.45, b =
0.15, ¢ = 0.15, and d = 0.25. More details on the gener-
ated graphs can be found in Table 7. For our implemen-
tation, we select the candidate vertex to add to the
subgraph using a trivial heuristic: the candidate that
appears first in the array is chosen. We tested our algo-
rithm on the R-MAT graphs described in Table 6 using
all three of the parameter settings in Table 7 and we
calculated the rate at which the y, y-quasi-cliques were
produced. The results appear in Figure 6. From Figure
6, we can see that the “clique” subgraphs were generated
much more quickly than the “dense” or “enriched”
quasi-cliques, likely due to the extremity of the density
requirement for the “clique” subgraphs, which ensures
that the resulting quasi-cliques are fully connected. Also
notable is that the time required per quasi-clique
appears to increase linearly on the log plot, implying
that the time per quasi-clique increases polynomially
with the size of the graph. Using a best fit curve, we see

CAC0233 .
. Identified by DENSE

CAC0231
CAC0232
C0234
CAC3087
Figure 5 DENSE cluster containing phosphotransferase system (PTS) enzymes identified by DENSE algorithm.
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Table 6 Parameter settings for the various types of
dense, enriched subgraphs to test DENSE

Description Y u |Q|
clique 0999 0.001 V(G)
enriched 0.5 0.90 |V(@G)|/10
dense 0.85 0.85 V(G)|/6

that the time per “clique” quasi-clique increases at a rate
of approximately O(1n°*°), where 7 is the number of ver-
tices in the graph, and the time per “dense” and
“enriched” quasi-clique increases at a rate of approxi-
mately O(n°®®). Thus, we can estimate the time com-
plexity as approximately O(kn°?°) for the “clique”
subgraphs and O(kn®®°) for the “dense” and “enriched”
subgraphs, where k is the number of subgraphs pro-
duced. While this scaling is obviously dependent on the
graphs being analyzed, this result does suggest that our
algorithm would be able to efficiently calculate dense
and enriched subgraphs on large, sparse graphs with a
power-law degree distribution. As a second experiment,
we wished to evaluate the effectiveness of using the
hierarchical bitmap index described in the methods sec-
tion. For the purposes of this test, we implemented a
second version of the algorithm that used only a flat
(non-hierarchical) bitmap index, and we compared the
time per quasi-clique for both implementations. The
results appear in Figure 7.

From Figure 7, we can see that as the size of the
graph increases, the hierarchical bitmap index provides
a significant speedup in the rate of identifying “clique”
subgraphs. When calculating “dense” and “enriched”
subgraphs, the flat index offers a moderate improvement
over the hierarchical index (as much as 53%), though
this advantage disappears on graphs larger than 2,048
vertices. These results are likely due to the fact that the
graphs in question have significantly more “clique” sub-
graphs than “dense” or “enriched” subgraphs—as the size

Table 7 Graph size and number of maximal quasi-cliques
for graphs generated using R-MAT

Graph size Quasi-cliques

V(@) |E(G)| clique enriched Dense

127 889 569 23 14

255 1785 1199 64 21

510 3570 2593 104 72
1022 7154 5563 270 257
2039 14273 11831 485 432
4079 28553 24930 943 659
8132 56924 52025 1915 1774
16285 113995 106973 3991 4031
32526 227682 219092 8158 8307
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of the index grows, so does the potential advantage in
using a hierarchical index. As such, we conclude that
the hierarchical index is successful at improving the
algorithmic runtime as the size of the index grows.

Conclusion

In this paper we describe an algorithm to identify sub-
graphs from organismal networks with density greater
than a given threshold and enriched with proteins from
a given query set. The algorithm is fast and is based on
several theoretical results. We show the application of
our algorithm to identify phenotype-related functional
modules. We have performed experiments for two phe-
notypes (the dark fermenation, hydrogen production
and acid-tolerence) and have shown via literature search
that the identified modules are phenotype-related.

Methods

Given a phenotype-expressing organism, the DENSE
algorithm (Figure 8) tackles the problem of identifying
genes that are functionally associated to a set of known
phenotype-related proteins by enumerating the “dense
and enriched” subgraphs in genome-scale networks of
functionally associated or interacting proteins. A “dense”
subgraph is defined as one in which every vertex is adja-
cent to at least some y percentage of the other vertices
in the subgraph for some value y above 50%, which cor-
responds to a set of genes with many strong pairwise
protein functional associations. The researchers’ prior
knowledge is incorporated by introducing the concept
of an “enriched” dense subgraph in which at least 4 per-
centage of the vertices are contained in the knowledge
prior query set. Genes contained in such dense and
enriched subgraphs, or u-enriched, y-dense quasi-cli-
ques, have strong functional relationships with the pre-
viously identified genes, and so are likely to perform a
related task. Previous approaches to finding such clus-
ters have included fuzzy logic-based approaches [27]
(also, see [28]), probabilistic approaches [29,30], stochas-
tic approaches [31], and consensus clustering [32]. The
discovery of dense non-clique subgraphs has recently
been explored by a number of other researchers [33-38],
and a number of different formulations for what it
means for a subgraph to be “dense” have emerged.

Luo et al [39] discuss 3 types of dense subgraphs
other than cliques: k-plexes, k-cores, and n-cliques. The
k-plexes [40] are subgraphs where each vertex is con-
nected to all but k others. More specifically, Luo et al
[39] use a k-plex definition where k = n/2. A definition
similar to k-plex has been used by Carter and Johnson
[35]. Meanwhile, k-cores [41] are subgraphs where each
vertex is connected to at least k others, and n-cliques
[42] are subgraphs with diameter at most n. In this
paper we use a more restrictive definition of the n-
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4079 8132 16285

clique, i.e, 2-clique with some additional constraints.
Abello et al [33] use a definition where at least y (Z)

edges exist in the subgraph, and Bu et al [34] use a defi-
nition of a dense subgraph based on the eigenvalue
decomposition of the adjacency matrix of the graph.
Gao and Wong [36] use a definition based on “clique
percolation,” meaning that any dense subgraph must
satisfy the property that one could reach all of the ver-
tices by taking a clique of size 4 in the subgraph and
changing one vertex at a time to form another clique of
size 4 until every vertex has been touched. Pei et al [37]
and Zeng et al [38] describe cross-graph quasi-cliques,
which use a similar notion of subgraph density as we
do, but their work describes techniques for finding sub-
graphs that meet this density criterion across several
graphs at once, whereas we are interested in quasi-cli-
ques that are “enriched” with respect to some knowl-
edge priors. In this paper, we attempt to outline
theoretical conditions on dense subgraphs of a network
that are enriched with respect to some target set of ver-
tices. An algorithm based on this theory would be able
to answer “fuzzy queries” on graph data, identifying

dense, possibly overlapping subgraphs in which the
“query set” of vertices is overrepresented. By finding
these dense, enriched “fuzzy clusters,” or enriched
quasi-cliques, we hope to achieve superior precision and
coverage over conventional hard clustering techniques,
which heuristically partition graphs into non-overlap-
ping subgraphs. Further, by limiting the focus to disco-
vering those “quasi-cliques” in which the query labels
are overrepresented, the search space for identifying
these quasi-cliques may be limited, which has the poten-
tial to improve execution time significantly over full
quasi-clique enumeration. In this work, we use the fol-
lowing definition for a “dense” subgraph:

Definition 1.1 Given a labeled graph G and a real
value y ??#8712; (0.5, 1], a subgraph S of G is a y-dense
quasi-clique if and only if every vertex of S is adjacent
to at least '(|S| - 1) of the other vertices of S. If A|S| - 1)
is not a natural number, every vertex would need to be
adjacent to 7?#8968;/(|S| -1)??#8969; of the other vertices
of S.

There are two advantages of using this definition.
First, it corresponds nicely with the typical use of the
term “density” in that it forces a certain fraction of the



Hendrix et al. BMC Systems Biology 2011, 5:172
http://www.biomedcentral.com/1752-0509/5/172

Page 9 of 13

1600%

1400%

1200%

1000%

800%

600%

cligue
E dense
B enriched

400%

Percentage speedup

200%

0%"‘7“:-\ T H

-200% -

127 255 510

1022 2039 4079 8132 16285

Graph vertices

Figure 7 Speedup results for using hierarchical bitmap index in y, y-quasi-clique enumeration algorithm. Speedup is reported in
percentage; i, a value of 100% indicates that using the hierarchical bitmap index was twice as fast as the implementation with the flat index,
and a value of -100% indicates that using the flat bitmap index was twice as fast as the implementation with the hierarchical index.

possible edges in the subgraph to exist. The second
advantage is that by framing the definition as a condi-
tion that each vertex must satisfy, we force the result-
ing subgraphs to be “uniformly” dense. As an
illustration, a graph consisting of an isolated vertex
and a subgraph in which every pair of vertices is con-
nected may contain a high overall percentage of the
possible edges, but it is unlikely anyone would consider
the isolated vertex to be related to the others in any
significant sense.

Definition 1.2 Given a labeled graph G, a “query” set
of vertices Q, a real value y ??#8712; (0.5, 1], and a real
value u ?#8712; (0, 1], a y-dense quasi-clique S is p-
enriched with respect to Q if and only if at least u|S)|
vertices of S are contained in Q.

Henceforth, p-enriched y-quasi-cliques will hereafter
be referred to as y, y-quasi-cliques, and the “query” set
of vertices will be denoted as Q.

Definition 1.3 Given a labeled graph G, a “query” set
of vertices Q, a real value y ??#8712; (0.5, 1], and a real
value yu 2?#8712; (0, 1], a y-dense quasi-clique S is also
maximal if no larger supergraph S’ of S is a y-dense
quasi clique that is y-enriched with respect to Q.

The algorithm to enumerate y, y-quasi-cliques is an
agglomerative bottom-up approach with a backtracking
paradigm. The basic premise of the algorithm is that we
will build the g4, y-quasi-cliques starting with a single
query vertex vy (vo ??#8712; Q) and backtracking as we
find maximal y, y-quasi-cliques or subgraphs that can-
not be contained in a y, y-quasi-clique. For this section,
we use the convention that S represents the current
subgraph under consideration, and C represents the set
of vertices that could extend S to produce a y, y-quasi-
clique. The number of vertices in S adjacent to a vertex
v is denoted as s,(v) and in C is denoted as c,(v). N¥(S)
denotes all vertices at distance k (k edges) or less from
all vertices of S. To improve the efficiency of the algo-
rithm we use some theoretical results and properties
(the detailed proofs are available in Supplement 1). The
properties are targeted at three points to improve effi-
ciency (1) reducing the size of C, i.e., the search space
of candidates be added, (2) deciding on when to stop
expanding a subgraph S further, and (3) deciding on
when to discard a subgraph S if it can never be a y, y-
quasi-clique. The first property is based on a result pre-
sented by Pei et al [37], it states that for S to be a y, ¥~
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quasi-clique, every pair of vertices has to be at a maxi-
mum distance of 2 edges from each other. Using this
property, the size of the candidate set C for any sub-
graph S can at the maximum only have |[N*(S)|/|S|
entries. The second property based on results drawn
from Zeng et al [38] states that if for any given vertex v
2?#8712; V (S), the number of vertices in C and S that
are adjacent to v together do not satisfy the y constraint,
then no supergraph of S will ever satisfy the ¥ con-
straint, i.e., s,(v) + c,(v) > U|S| - 1 + c,(v)) needs to be
satisfied to warrant expanding S further; otherwise, we
output S as the maximal g, y-quasi-clique. The third

property states that for any vertex v ??#8712; C, S ??
#8746; {v} or any supergraph of S ??#8746; {v} can satisfy
the y criterion if and only if s5,(v) + c,(v) =2 ¥ (|S| + ¢,
(v)). All vertices in C that do not satisfy this constraint
can be removed from the candidate list, thereby redu-
cing the search space further. The fourth property deals
with reducing the size of C based on the enrichment
constraint. The current subgraph S is y-enriched if |S ??
#8745; Q| = u|S|. The condition |S ??#8745; Q| + |C ??
#8745; Q| = u(|S| + |C ?2?#8745; Q|) must be met by
every S that can be further extended and still satisty the
u criterion. The maximum increase in enrichment
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occurs when subgraph S is extended by the addition of
all vertices from C ??#8745; Q. This maximum enrich-
ment has to be less than the sum of the number of ver-
tices common between Q and S, and Q and C, to
warrant any further expansion of S. If during the algo-
rithm execution we reach a point where the addition of
a vertex v to the current subgraph S’ results in a sub-
graph S that violates the above condition, v is removed
from the candidate list. Additional properties for
restricting the search space of potential g4, y-quasi-cli-
ques are available in Supplement 1. We loop through all
vertices in the query set Q and for each vertex v ??
#8712; Q we enumerate all the y, y-quasi maximal cli-
ques that contain v and avoid enumerating the same
subgraph twice by keeping track of the ones enumerated
earlier. All the above theoretical properties and results
are utilized to improve the efficiency of the backtracking
algorithm (The detailed pseudocode is available Addi-
tional File 3). In order to decide when a g, y-quasi-cli-
que is maximal, we propose to maintain a bitmap index
of the y, y-quasi-cliques that contains each vertex. As
the algorithm identifies yu, y-quasi-cliques, it assigns
numbers to them sequentially and adds these values to
indices for the vertices contained in the y, y-quasi-cli-
ques. Then, as we add and remove vertices from set C,
we check these bitmap indices to see if there is an
already-discovered y, y-quasi-clique that contains all
vertices of S ??#8746; C by performing a bitwise and of
the indices associated with the vertices of S ??#8746; C.
If there is an already-discovered y, y-quasi-clique that is
a superset of S ??#8746; C, we may safely backtrack, as
no further extensions of S will be maximal. One draw-
back of using a bitmap index, however, is that as more
U, Y-quasi-cliques are identified, the size of the index
will increase. In an effort to avoid checking the entire
index for each vertex (in the case where S ??#8746; C is
maximal), we propose using a hierarchical bitmap index,
in which each byte of the index is summarized by a sin-
gle bit in a higher level index. As we are checking for
the existence of a bit that is set in all of the indices
related to the vertices of S ??#8746; C, we do not need
to examine bytes that have no bits set. As such, we
summarize zero bytes in the “base level” index with a 0
and nonzero bytes with a 1. As the size of the index
grows, we can add more levels, summarizing each byte
in the “first level” index with a bit in the “second level”
index, each byte in the “second level” index with a bit in
the third, and so on. In this way, we can use higher
level indices to reduce the number of bytes we need to
check on the “base level” index.

Parameter Selection
DENSE requires the user input of two parametes: the
enrichment (x#) and the density (y). The earlier
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description of these parameters suggests that higher
values of y will produce more connected (clique-like)
subgraphs. Similarly, higher values of the enrichment (¢
> 0.5) will produce subgraphs that are primarily com-
posed of the “query” vertices, whereas a very low value
(u < 0.001) will result in enumeration of all the sub-
graphs that satisfy the y threshold and contain at least
one query vertex.

Parameter thresholds depend on the application. In
this paper, we are interested in identifying phenotype-
related protein functional modules, given a user-defined
initial set of phenotype-related proteins as a query. Set-
ting ¢ value to 0.001 will result in finding all the mod-
ules that could potentially be related to phenotype-
expression (e.g., via guilt-by-association). Since a func-
tional module is believed to form a group of highly con-
nected proteins in a protein functional association
network [43], the authors of [44,45] suggested that the
density of the subgraph that represents a functional
module should fall between 0.5 and 1, where the greater
the density is, the more likely the subgraph is a true
functional module. Based on these observations, setting
¥y = 1 will produce those subgraphs that are the most
probable functional modules. However, since organismal
networks are prone to missing information (edges), the
value of ¥ = 1 could be too stringent, and the algorithm
may miss some of the phenotype-related modules.
Hence, we chose a y value of 0.75 (midpoint of 0.5 and
1) to identify highly connected (but not fully connected)
subgraphs as most probable modules that are function-
ally associated with phenotype-related query proteins.

Additional material

Additional file 1: Dark Fermentation Phenotype Results. The file
contains the results of the dark fermentation, hydrogen production
experiment.

Additional file 2: Acid-tolerance Phenotype Results. The file contains
the results of the acid-tolerance experiment.

Additional file 3: Additional Method Details. This file contains the
proofs of the various properties and results used in the method section.
It also has the detailed pseudocode for the algorithm along with some
description on where in the pseudocode the theoretical results are used.
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