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Abstract

Background: Metabolic interactions involve the exchange of metabolic products among microbial species. Most
microbes live in communities and usually rely on metabolic interactions to increase their supply for nutrients and
better exploit a given environment. Constraint-based models have successfully analyzed cellular metabolism and
described genotype-phenotype relations. However, there are only a few studies of genome-scale multi-species
interactions. Based on genome-scale approaches, we present a graph-theoretic approach together with a
metabolic model in order to explore the metabolic variability among bacterial strains and identify and describe
metabolically interacting strain communities in a batch culture consisting of two or more strains. We demonstrate
the applicability of our approach to the bacterium E. coli across different single-carbon-source conditions.

Results: A different diversity graph is constructed for each growth condition. The graph-theoretic properties of the
constructed graphs reflect the inherent high metabolic redundancy of the cell to single-gene knockouts, reveal
mutant-hubs of unique metabolic capabilities regarding by-production, demonstrate consistent metabolic
behaviors across conditions and show an evolutionary difficulty towards the establishment of polymorphism, while
suggesting that communities consisting of strains specifically adapted to a given condition are more likely to
evolve. We reveal several strain communities of improved growth relative to corresponding monocultures, even
though strain communities are not modeled to operate towards a collective goal, such as the community growth
and we identify the range of metabolites that are exchanged in these batch co-cultures.

Conclusions: This study provides a genome-scale description of the metabolic variability regarding by-production
among E. coli strains under different conditions and shows how metabolic differences can be used to identify

metabolically interacting strain communities. This work also extends the existing stoichiometric models in order to
describe batch co-cultures and provides the extent of metabolic interactions in a strain community revealing their

importance for growth.

Background

In metabolic interactions also known as cross-feeding,
microbial species exchange usable metabolic products aris-
ing from the metabolism of a primal nutritional resource.
These metabolic products can serve as alternative, second-
ary resources to microbial species for obtaining their
energy or composing the building blocks for biosynthesis.
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In nature, microbes live in communities and develop
cross-feeding interactions, which provide an overall
increase of nutrients and a more efficient exploitation of a
given environment [1,2]. In the laboratory, evolution
experiments in bacteria have repeatedly shown the emer-
gence of cross-feeding interactions in simple environments
[3-6]. Metabolic interactions can alter the biochemical
phenotypes of the participating species allowing novel,
unexpected phenotypes to emerge. Furthermore, the
emergence of metabolic diversity and the development of
metabolic interactions play an important role in the evolu-
tion of bacterial populations as they dynamically shape the
growth medium. Apart from its biological significance,
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understanding bacterial diversity is also of great impor-
tance in areas such as food preservation and bio-degrada-
tion of pollutants as well as in human health as the
extensive variability of pathogens within populations con-
tinues to threaten human life.

Several studies have worked on the characterization of
microbial interactions in either synthetic or natural com-
munities [2] and have explored the mechanisms that stabi-
lize the emerged polymorphism in microbial populations
even in simple environments. These mechanisms include
the role of product inhibition in substrate competition
[7,8], the spatial arrangement of interactions and dispersal
in the maintenance of diversity [9-12], the existence of
trade-offs between the uptake efficiencies of the primary
and secondary resources [13], evolutionary criteria that
allow the partial degradation of the substrate [14] and
metabolic and physiological trade-offs in the absence of
cross-feeding, spatial and temporal heterogeneity [15].
Game theoretical models such as the Prisoner’s dilemma
and the snowdrift game for pair-wise interactions and the
public good games for groups of interacting individuals
have been widely applied to explain stable polymorphisms,
cooperative behaviors and the specific conditions that
allow their establishment in natural systems [16-20]. A
minimal synthetic obligatory cooperative system has also
been engineered by Shou et al. [21] to study cooperation
as well as the conditions that allow viability between two
auxotrophic strains of yeast, each producing a substrate
essential for the other. In each case where metabolic inter-
actions are involved, the interacting species are modeled
with specific properties, which allow them to share specific
metabolites. Depending on the modeling approach, the fit-
ness costs and benefits of the interactions or the nutrient
fluxes are inferred from the characteristics of the indivi-
duals in order to model the interactive dynamics.

Based on existing genome-scale metabolic models, this
study aims to investigate the detailed metabolic interac-
tions, which can develop between bacterial strains as they
grow in simple, single-source, batch cultures. Genome-
scale metabolic models account for the inter-connectivity
of metabolic pathways that utilize the environmental
resources and produce energy and biomass precursors
required for cellular growth. These models describe gen-
otype-phenotype relations revealing the full extent of
metabolic capabilities of genotypes under various envir-
onmental conditions and have been broadly used [22-25]
with the aim of identifying essential genes or metabolites,
inferring the lifestyle of an organism, investigating the
evolution of the metabolic networks as well as comparing
and validating the metabolic networks and designing
organisms with a desirable metabolic phenotype.
Although a lot of research effort has been devoted to the
development of whole cell, in-silico genome-scale meta-
bolic models [22,26-28], there are only a few studies of
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genome-scale multi-species interactions. The work of
Stoylar et al. [29] is the first reported reconstruction of a
dual-species stoichiometric model, which was developed
in order to describe the metabolic interactions between
the microbes Desulfovibrio vulgaris and Methanococcus
maripaludis in methanogenic laboratory co-cultures.
These two microbes develop a specific hierarchical asso-
ciation with each other, known as syntrophy. Although
the model focuses on the central metabolism rather than
the full genome, it predicts several features of co-culture
growth, including the ratio of the two microbe popula-
tions in culture and the dominant electron carrier during
growth. An alternative stoichiometric network analysis
approach was developed by Taffs et al. [30] to describe a
natural thermophilic microbial community from Yellow-
stone national park. Their method was also compared
with previous studies and the trade-offs between the
available biological knowledge of the species in a com-
munity, the tractability of the models to incorporate this
knowledge and the accuracy of their predictions, were
addressed. Using a set of conditionally lethal auxotrophic
E. coli mutants, Wintermute and Silver [31] studied the
pair combinations, which produced improved growth
relative to their corresponding monocultures through
synergistic metabolic interactions. Their model was
based on the hypothesis that mutants tend to approxi-
mate the optimal wild-type flux distribution and an opti-
mal joint metabolic flux distribution was identified to
describe co-culture growth.

In this study, single, metabolic gene knockouts define
the pool of bacterial strains among which potential cross-
feeding interactions are examined. Based on the hypoth-
esis that metabolic products are exchanged in a bacterial
population, we previously developed a graph-theoretic
approach (diversity graph) in order to map pair-wise
genetic to metabolic alterations with respect to by-produc-
tion and identify communities of metabolically different
mutants in a given environment [32]. Different environ-
mental conditions result in different diversity graphs and
define different strain communities. In extension to our
previous study several graph-theoretic measures are
applied in order to reveal biologically meaningful proper-
ties, characterize the diversity graphs and allow the direct
comparison of the overall metabolic variability under dif-
ferent growth conditions. The method can constrain the
community size by determining the upper bound of the
metabolic diversity in a given environment. This work also
focuses on revealing the relation between metabolic differ-
ence and its evolutionary trait. Building upon the existing
dynamic FBA model, which describes batch and fed-batch
monocultures [33], we have also developed a metabolic
model capable of describing the co-growth of different
cell-competitors in a batch culture [32]. The proposed
multi-competitor metabolic model assumes that cells and
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nutrients are distributed homogeneously throughout the
growth medium and that each cell optimizes its growth
depending on the availability of the substrates over time.
Strain communities with more than two strains are stu-
died in this work. The growth of strain communities are
simulated with the aim to identify communities of
improved growth relative to corresponding monocultures
in the same batch scenario and predict the range of meta-
bolites that are exchanged. The dependence of a strain
community growth on its constituent parts is also
addressed. Although strain communities are not modeled
to operate towards a collective goal [29-31], such as the
growth of the group, growth beneficial communities are
observed as the result of metabolic interactions. We
demonstrate the applicability of our approaches to the
bacterium E. coli across different single-carbon-source
conditions.

Methods

Modelling bacterial batch monocultures using
stoichiometric models

Utilizing a genome-scale metabolic network reconstruction
of an organism, constraint-based metabolic approaches
model the relation between the genomic information and
metabolic activity at flux level and reveal properties that
cannot be predicted by descriptions of individual compo-
nents [22,25]. The core assumption of constraint-based
models is that the system, constrained by its stoichiometry,
S, reaches a steady state (intracellular flux balancing) that
satisfies the physiochemical constraints under a given
environmental condition (Equation 2). Flux Balance Analy-
sis (FBA) further assumes that a cell follows an optimiza-
tion strategy in order to accomplish cellular tasks. The
most commonly applied objective is the maximization of
growth rate reflected in biomass production (Equation 1),
which has proved to successfully describe unicellular
organisms [34]. Thermodynamic constraints that deter-
mine the reversibility of the metabolic reactions and enzy-
matic capacity constraints have been also included to place
limits on the range of possible fluxes (Equation 3).

maximize u (1)
subject to  Sv =0 2)
Viin < V < Vmax 3)

Varma and Palsson [33] extend the original FBA
method in order to describe batch cultures during the
exponential and early stationary stage and predict the
transient changes in external substrate concentrations.
The batch culture consists of identical cells, which fol-
low the same metabolic and regulatory program. Both
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the primal nutritional resources and the secreted meta-
bolites are considered as substrates that can be used by
cells. The model also assumes that cells and nutrients
are distributed homogeneously throughout the growth
medium.

The initial concentrations of the substrates (exC,) are
given as well as the initial biomass concentration (by) of
the bacterial population. The whole time regime is divided
into time intervals ¢ ¢ where intracellular steady-state is
assumed. At each time interval the flux distribution, v,
which optimizes the growth rate y is calculated by solving
the optimization problem described in Equations 1, 2, 3
and 6. The biomass and substrate concentrations are
updated at each time interval as shown in Equations 4 and
5, respectively. The flux ,,ix of an exchange reaction j is
positive if the substrate corresponding to reaction j is pro-
duced and negative when it is consumed. Equation 6 cor-
responds to the uptake bounds of the exchange fluxes,
which are determined by the availability of substrates at
each time point.

bt] = b[t — St]e" ™ (4)

exC[t + 8t] = exC[t] — vy bE] (1 — e (5)
. exC

Uemin = _b .St (©)

In this work, the batch monoculture simulations of
the single-gene knockout E. coli strains are performed
using the in silico metabolic network of E. coli (iJR904)
by Reed et al. [35], which includes 904 genes and 931
biochemical reactions. Of the 68 single-carbon source
conditions described in the work of Covert et al. [36],
58 carbon sources are examined in this work since 10 of
the 68 conditions did not allow the growth of any
mutant or wild-type. The initial biomass concentration
is set to 0.003 gDW/It. The initial concentration of the
carbon source is set to 10 mmol/lt. Oxygen, ammonia
and other important inorganic metabolites are assumed
to be in excess in the growth medium. The initial
bounds of the uptake rates are also set in accordance to
the work of Covert et al. [36]. The time resolution (Jt)
is 0.1 h. Maximization of the growth rate is used as the
objective function of the optimization problem. A sec-
ond optimization problem is also applied to minimize
the enzymatic cost expressed by the absolute flux values
under the constraint that the cell continuously operates
at the maximum growth rate [37]. The glpk solver [38]
is used for solving the linear programming problems.
Simulations are performed using the COBRA toolbox
[39].
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Modelling bacterial batch co-cultures using stoichiometric
models

Building upon the existing dynamic FBA model, which
describes batch (and fed-batch) monocultures [33], we
have developed a metabolic model capable of describing
the co-growth of different cell-competitors in a shared
batch culture [32]. As in monocultures, the proposed
model assumes that cells and nutrients are distributed
homogeneously throughout the growth medium and that
the primal nutritional resources as well as the secreted
metabolites can be used by the cells, which allow the
development of cross-feeding interactions within the het-
erogeneous population. Contrary to previous stoichio-
metric models [29-31], the different cells are not modeled
to operate towards a collective goal, such as the maximiza-
tion of the community growth. Instead, each different cell
is assumed to maximize its individual growth.

The initial biomass concentration (b)) of each stain-
competitor as well as the initial concentrations of the
substrates (exCp) in the growth medium are given. At
each time interval the flux distribution (v;), which opti-
mizes the growth rate y; is calculated for each strain i
independently solving the optimization problem
described by the Equations 1, 2, 3 and 9. Equations 7 and
8 show how the biomass concentration of each strain (b;)
and the substrate concentrations (exC ) of the medium
are updated at each time interval. The current availability
of the substrates and the bacterial population determine
the uptake bounds of the exchange fluxes as shown in
Equation 9. The simulation terminates when none of the
strain-competitors can grow further in the shaped med-
ium, which usually corresponds to the phase of nutrient
depletion. If the population consists of identical cells, the
multi-competitor metabolic model is reduced to the
existing dynamic FBA model [33]. It should be noted that
competitors in our model can also represent different
species, assuming the corresponding genome-scale meta-
bolic networks are available.

bi[t] = bi[t — 5t]e™" )
exC[t + 8t] = exC[t] — vaax bit] (1— ") (8)
ex exC .

Uminz_st.zbi, Vi (9)

In this work, communities consisting of two or more E.
coli strains are simulated under different carbon condi-
tions in batch co-cultures, utilizing the aforementioned
metabolic model. To allow comparison between mono-
cultures and co-cultures, the growth settings of these
simulations are the same with those described for mono-
cultures and the initial biomass concentration of 0.003
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gDW/It is equally distributed to the different strain popu-
lations, unless stated otherwise. The heterogeneous
population is mainly studied with respect to its growth
benefit and the involved cross-feeding interactions. The
metabolic interactions between strains can be identified
through the flux time profiles of the exchange reactions
when co-growing on a given environment, whereas the
concentration of the nutrients indicates the exploitation
(if any) of the common growth medium. The single-car-
bon-source conditions that are examined in this study for
the identification of efficient strain communities include
glycolate, acetate, glycine, glucose, pyruvate and melibiose.

Diversity graph construction

Metabolic interactions that involve the exchange of inter-
mediate metabolic products are assumed to occur only if
the metabolic capabilities of the members of the bacterial
population differ with respect to by-production. Based on
this assumption, a graph representation is constructed in
order to reflect the metabolic variability with respect to
by-production within a pool of genetically different cells
[32].

Specifically, single-gene knockouts are applied on the E.
coli metabolic network [35] to generate the pool of
mutants. The growth of each E. coli strain in a single-car-
bon-resource batch culture is simulated using the dynamic
FBA method described previously for monocultures. The
nodes of the metabolic diversity graph correspond to
viable strains in a given growth condition. For each viable
strain i, we construct a feature vector, which consists of
the maximum concentration values (maXCf) of each
secreted metabolite (s ) that is produced during its growth
on a specific single-carbon environment. This vector is
used as a metabolic blueprint for the potential interactions
of the strain. As shown in Equation 10, for each pair of
strains the relative difference of their feature vectors is cal-
culated and the maximal difference over all byproducts is
used as a weight for the interaction between them.
According to the above definition, the edge weights in
diversity graphs take values between 0 and 1, where
weights equal to 0 imply that the two strains are identical
regarding by-production and weights equal to 1 imply that
(at least) one of the two strains provides a novel byproduct
to the other strain. As the metabolic products of a strain
depend on the growth environment, a different diversity
graph is constructed for each single-carbon environment.

|maxC§ - maXC]sl
w;i = max;
’ max(maxcfr maxC]S)

where m,xC} = max (C;(t))

(10)

The by-production efficiency is defined as the ratio of
by-production intake rate to primal carbon resource
uptake rate. As shown in Additional file 1: Supplement
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DG, the edge weights in diversity graphs also represent
the maximal relative difference of by-production effi-
ciency between strain pairs. This indicates that the
diversity graph is independent of the initial concentra-
tion of the primal source, which allows a unique graph
representation of the metabolic differences of the
mutants for a given growth condition. Furthermore, it
implies that the diversity graph can also be estimated by
the original, single time-step FBA model, which acceler-
ates the reconstruction of the diversity graphs.

Diversity graph analysis

Several graph-theoretic measures are applied in the diver-
sity graphs to allow the direct comparison of the overall
metabolic variability of E. coli strains under different car-
bon-source conditions and reveal biologically relevant
properties such as the association between metabolic dif-
ference and its evolutionary trait. In this study, the graph-
theoretic analysis is performed on the (original) weighted
representations of the diversity graphs.

The definitions of the graph-theoretic measures used
in this study, which include strength centrality, assorta-
tivity and clustering coefficient are given in Additional
file 2: Supplement SA.

Identification of strain communities

The composition of a metabolically interacting strain com-
munity can be assumed to consist of individuals with the
potential to differently shape the given environment and
provide each other with products of their metabolism. To
ensure compositions of strains with different metabolic
capabilities, each strain must be different from all the
other strains. Therefore, compositions of strains with dif-
ferent metabolic capabilities correspond to cliques (com-
plete sub-graphs in which all nodes are connected with
each other) in a diversity graph (Figure 1). Furthermore,
the maximum clique size that can be found in a given
diversity graph actually determines the upper bound of the
metabolic diversity that can emerge in a population in a
given growth condition under the specific genetic pertur-
bations. The cliques are identified using the binary repre-
sentation of the diversity graph, which is produced using a
threshold of 0.6. This threshold value indicates that con-
nected mutants are relatively highly different in terms of
their metabolic characteristics. In this work, cliques are
identified using efficient, exact methods that have been
proposed elsewhere [40].

Because of the genetic robustness and redundancy that
is inherent in metabolic networks under single gene
knockouts [41-46], there are only few strains with novel
metabolic capabilities. This metabolic redundancy is
reflected in the diversity graphs and allows significant
compression in the size of the graph. All strains with the
exact same metabolic capabilities regarding by-production

Page 5 of 15

.o
et te.,
.

CE N ™
..
. ®
. P
*tecc0ns®

Figure 1 Community in a simplified diversity graph. A simple
diversity graph consisting of the strain-nodes v, u, k and m. Edges
are assigned between metabolically different strains. As strains v and
k are metabolically similar, either v or k can form a community with
u, both are metabolically redundant. On the other hand, the strains
u, k and m are different from each other forming a community of
size 3. The identification of strain communities is reduced to
identification of cliques in a diversity graph.

under a given initial environmental condition can be
grouped together. More precisely, the structural compres-
sion maps all metabolically redundant nodes of the same
connectivity (structurally identical) onto a super node.
This compression can be used to accelerate the clique
identification problem and it also allows the graph to be
visualized by highlighting the nodes and interactions that
actually produce the metabolic diversity of the system.
Although cliques are found using the compressed graph,
they are then decompressed to be used in simulations.

Growth efficiency

In this work, growth efficiency concerns the ability of a
cell population to maximize its growth performance in a
batch culture given an initial limited amount of resources.
The growth performance of a cell population is measured
with respect to the maximum (endpoint) biomass concen-
tration. If the cellular population consists of different cells,
then the growth performance of the heterogeneous popu-
lation corresponds to the total biomass concentration of
the group, which is determined by the summation of the
biomass concentration of each of the members of the
group.

In cases of homogeneous, monoclonal cell popula-
tions, individual growth performances are compared
with each other under the same initial conditions to
determine the population with superior performance.
To quantitatively describe superior performance in het-
erogeneous populations, we define the absolute and the
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relative benefit. If the group performance of an hetero-
geneous cell population, g, is superior to the perfor-
mance of any (wild type or mutant) monoculture, m;,
then the heterogeneous community under study is bene-
ficial. We term this benefit ‘absolute’. However, the
condition of ‘any’ can be relaxed, so that the growth
performance of a heterogeneous community is com-
pared to the homogeneous performances of its corre-
sponding community members. In this case we call the
benefit ‘relative’. The relative benefit indicates whether
there is group benefit, that is, whether the group is more
efficient as a whole than the efficiency of any of its
members when functioning as individuals.

To measure benefit we use Equation 11. Absolute and
relative benefits differ with respect to whether the i ele-
ments correspond to all strains or only the members of
the specific group. If the co-culture does not show
improved growth relative to corresponding monocul-
tures then the benefit is negative.

(§ — max;(m;))

benefit =
max;(m;)

(11)

Results
For simplicity reasons, E. coli strains are henceforth
named after the name of the gene that has been deleted.

Centrality measures reflect the metabolic redundancy of
E. coli and reveal unique phenotypes for each growth
condition

Diversity graphs are constructed in order to represent
pair-wise differences in by-production between E. coli
strains (see Methods). Each single-carbon-source growth
condition corresponds to a different diversity graph. The
node centrality [47,48] is a local measure, which expresses
the importance of a node in a graph with respect to its
connections. In the diversity graphs, a highly central node
indicates a mutant of considerably different (unique)
metabolic capabilities regarding by-production than the
rest of the mutants. On the other hand, a non-central
node corresponds to a mutant which exhibits similar
(redundant) metabolic capabilities with most of the
mutants of the graph.

The strength distribution of each diversity graph (see
Additional file 2: Supplement SA) shows that the majority
of nodes (above 80%) are non-central and only a few
(below 10%) have strength centrality greater than 0.9,
whereas nodes with intermediate centrality values are less
than 10% of the graph. The network centrality measure
(see Additional file 2: Supplement SA) also indicates that
most diversity graphs are highly centralized. These obser-
vations imply high metabolic redundancy and the presence
of only a few mutants with unique metabolic capabilities.
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Furthermore, as shown in Additional file 2: Supplement
SA the high values of the network clustering coefficient,
which is defined in [49] to reflect the cliquishness of a
neighborhood in a graph as well as the dependence
between clustering coefficient and centrality, show that
central nodes are highly connected with each other form-
ing a highly clustered area in the graph and that the
redundant mutant group is part of this highly connected
area. As a result, central mutants and their connectivity
reflect the metabolic diversity regarding by-production of
E. coli strains and play an important role in the formation
of communities, which consist of metabolically different
strains.

The diversity graph of adenosine comprises an excep-
tion, as it exhibits a broader strength centrality distribu-
tion than the rest carbon-source graphs and the lowest
network strength-centrality of value close to 0.6, thus
implying a system of higher metabolic variability. The
diversity graphs of acetate and glycolate, on the other
hand, are star networks consisting of exactly one central
node, which indicates growth conditions with very high
metabolic redundancy. This finding is expected as these
two carbons are also by-products of other carbon-source
growth conditions. Specifically, acetate and glycolate are
the most frequently observed by-products across the car-
bon-conditions tested (see Additional file 2: Supplement
SA) and when glycolate is the main source, the central
mutant of the graph is the only mutant that produces acet-
ate and vice versa.

Genome-scale deletion phenotype data for the bacter-
ium E. coli have shown that the metabolic network is
inherently robust to genetic perturbation and environmen-
tal changes with respect to cell viability and maintaining
vigorous growth [50]. In addition to these observations,
the centralized topology of diversity graphs further implies
that the cellular response to single-gene knockouts rarely
affects by-production.

The binary graph representations of two examples (pyr-
uvate and glucose) after structural compression that maps
all metabolically redundant nodes of same connectivity
onto a super node (see Methods) are shown in Figure 2.
This mapping highlights the metabolically unique (highly
central) strains and their connections. The metabolic reac-
tions as well as the metabolic subsystem in which the
deleted genes participate can be found in Table 1 for most
of these highly central strains.

The upper bound of metabolic diversity

Polymorphic communities consisting of strains with differ-
ent metabolic capabilities correspond to cliques in the
diversity graph (see Methods). The maximum clique size
of a diversity graph reflects the actual number of the dif-
ferent metabolic patterns regarding by-production and
determines the upper bound of the metabolic diversity
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Figure 2 Examples of Diversity Graphs. The binary representation of two diversity graphs is visualized after structural compression, which maps
all metabolically redundant nodes of same connectivity onto a super-node.
s. The highly central nodes are depicted with red color and the names of the corresponding deleted genes are shown. All highly central nodes are
connected with the super node. (Left) The diversity graph of pyruvate. 7 highly connected nodes are identified. 373 nodes comprise the super-
node. (Right) The diversity graph of D glucose. The graph consists of 13 highly connected nodes and the super-node includes 373 nodes.
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that emerge in a given growth condition under single-gene
knockouts. As shown in Figure 3, the maximum clique
size varies between 2 and 21. The minimum value is
observed in the diversity graphs of acetate and glycolate,
due to their star topology and the maximum value corre-
sponds to the carbon condition L- asparagine.

Since the metabolic variability is defined with respect to
by-production, the total number of the metabolites that
are by-produced bounds the maximum metabolic variabil-
ity that can emerge in a given growth condition. Theoreti-
cally, if N is the number of by-products and if we consider
a metabolite as only produced or non-produced by a

Table 1 Metabolic and Conservation (ERI) Information of the deleted genes in consistently appearing E. coli

strain-hubs

Gene Metabolic reactions Metabolic sub-systems ERI
b2276 ‘NADH dehydrogenase ubiquinone 8 35 protons’ 'Oxidative Phosphorylation’ 0.59
'NADH dehydrogenase menaquinone 8 2 protons'
'NADH dehydrogenase demethylmenaquinone 8 28 protons'
b3731 'ATP synthase four protons for one ATP 'Oxidative Phosphorylation’ 0.78
b2779 ‘enolase’ 'Glycolysis-Gluconeogenesis’ 097
b3236 ‘'malate dehydrogenase’ 'Citric Acid Cycle’ 0.81
b0116 "2 Oxogluterate dehydrogenase’ 'Citric Acid Cycle’ 0.84
‘Glycine Cleavage System’ 'Folate Metabolism’
‘pyruvate dehydrogenase’ 'Glycolysis-Gluconeogenesis’
b2926 ‘phosphoglycerate kinase’ 'Glycolysis-Gluconeogenesis’ 0.97
b0721 ‘succinate dehydrogenase’ 'Citric Acid Cycle’ 0.28
'Oxidative Phosphorylation’
b0114 ‘pyruvate dehydrogenase’ 'Glycolysis-Gluconeogenesis' 0.38
b3956 ‘phosphoenolpyruvate carboxylase’ 'Anaplerotic reactions’ 034
b2551 ‘D alanine transaminase’ 'Cofactor and Prosthetic Group Biosynthesis' 097
‘alanine transaminase’ 'Cofactor and Prosthetic Group Biosynthesis'
‘glycine hydroxymethyltransferase’ 'Glycine and Serine Metabolism’
Threonine Aldolase’ Threonine and Lysine Metabolism’
b3919 ‘triose phosphate isomerase’ 'Glycolysis-Gluconeogenesis’ 094
b0529 ‘'methenyltetrahydrofolate cyclohydrolase’ 'Folate Metabolism’ 1.00

‘methylenetetrahydrofolate dehydrogenase NADP’

'Folate Metabolism’
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Figure 3 Maximum strain-community size. The maximum
community size varies between 2 and 21 depending on the
carbon-growth condition where the minimum value is observed in
the diversity graphs of acetate and glycolate and the maximum
value corresponds to L- asparagine. The carbon conditions in which
the 12 largest community sizes correspond are shown.

strain, ignoring its concentration, then the total number of
different subsets is 2"V, However, as shown in Additional
file 2: Supplement SA the number of different subsets,
which define the maximum clique size in a given growth
condition is considerably less than 2V, This is due to the
fact that the metabolic pathways are coupled so that acti-
vating a pathway that leads to the production of a metabo-
lite affects the production of other metabolites as well.
Cliques are found using the binary representation of the
diversity graphs, which is produced using a threshold of
0.6 in the corresponding weighted graph (see Methods).
However, as shown by the edge weight distributions (Addi-
tional file 2: Supplement SA), the resulting graphs are very
robust with respect to the choice of the threshold value.

The evolutionary trait of metabolic diversity as reflected
in assortativity coefficient

Two strains are heavily connected in the diversity graph if
they are highly different with respect to their by-products.
The assortativity coefficient [51-53] is used in this work to
explore the relation between metabolic difference and its
evolutionary trait. Specifically, an index is assigned to each
strain in the diversity graph to reflect how conserved the
corresponding deleted E. coli gene is across different
organisms. In this study, we use the Evolutionary Reten-
tion Index (ERI) to express gene conservation as intro-
duced in the study of Gerdes et al. [50]. A graph is then
characterized as assortative (or disassortative) by ERI if
strains of similar (or dissimilar) conservation value in their
corresponding genes are preferably connected with each
other.
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As shown in Additional file 2: Supplement SA, the
diversity graphs of most carbon conditions tend to be
disassortative by ERI. This implies that deletions of non-
conserved genes tend to generate strains that are metabo-
lically similar with each other regarding their by-products
and only if one of the two strains is related with deletion
of a highly conserved gene, are more likely to be metabo-
lically different. This further indicates an evolutionary
difficulty towards the establishment of polymorphism.
Furthermore, considering that most edges in the diversity
graph are between metabolically redundant and metabo-
lically unique strains, this finding also implies that these
two classes of strains tend to correspond to deletions of
genes with different conservation values.

Consistent metabolic behaviors across growth conditions
It was previously shown that the diversity graphs are
highly centralized consisting of many nodes of low cen-
trality and a few nodes of high centrality. The frequency
of appearance of the central and the non-central nodes
across the carbon conditions is shown in the left panel of
Figure 4 (empty black circles and the empty green
squares respectively). Central nodes represent strains of
unique metabolic capabilities regarding by-production
and comprise the core of strain communities. A subset of
these structurally important mutants consistently appears
in most of the examined growth conditions, as shown in
the left panel of Figure 4 (filled colored circles). The reac-
tions and the metabolic subsystem, in which the deleted
genes of the most frequent central strains participate, are
presented in Table 1. On the other hand, non-central
nodes correspond to strains of common, redundant
metabolic capabilities regarding by-production. As shown
in Figure 4, environmental-specific redundant mutants
often have a central role in other growth conditions and
vice versa. Intuitively, one would expect that the fre-
quently-appearing unique phenotypes might reflect dele-
tions of essential and evolutionary conserved genes
across different organisms, whereas the opposite must be
true for frequently-appearing redundant phenotypes.
Next, we investigate this hypothesis.

We define the gene conservation density as follows. We
use a resolution step of 10 mutants and measure the per-
centage of mutants, in which the corresponding deleted
genes have a conservation value (ERI) above 0.7. As
shown in the right panel of Figure 4, the environment-
invariant hubs correspond to deletions of relatively more
evolutionary conserved genes than the environmental-
specific hubs. In particular, approximately 60% of the
consistently appearing central mutants are related to the
knockout of a highly conserved gene in contrast to the
environment-specific mutants of which approximately
30% correspond to highly conserved genes. The correla-
tion coefficient between the gene conservation density
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and the frequency of appearance of the corresponding
mutants is 0.6826 (p-value < 0.0025). On the other hand,
consistently redundant mutants are mostly derived from
deletions of non-highly conserved genes. Specifically, 50-
90% of the genes involved in the environment-specific
mutants are evolutionary conserved, whereas only 20-
30% of the genes are conserved in the environment-
invariant redundant mutants. The correlation coefficient
between the gene conservation density and the frequency
of appearance of the corresponding metabolically redun-
dant mutants is -0.8224 (p-value < 10*°).

To conclude, most environment-invariant central
mutants correspond to deletions of highly conserved
genes. This observation seems controversial to the evolu-
tion of polymorphism, which necessitates the presence of
unique phenotypes, because if a gene is evolutionary con-
served, the mutant derived from its deletion is expected to
be evolutionary unstable. However, it suggests that among
all potential communities only those consisting mainly of
mutants that are environment-specific are likely to evolve.

Beneficial interactions and growth-efficient strain
communities

Previous results based on an exhaustive, computational
evaluation of all pairs consisting of the wild-type and a
single-gene knockout mutant have revealed several pairs
of improved growth relative to the corresponding mono-
cultures [54]. An update of these results is shown in
Additional file 3: Supplement FA. In this work, the diver-
sity graph construction is used to identify compositions

of strains with different metabolic capabilities regarding
by-production. Using the developed multi-competitor
metabolic model (see Methods), the growth of these
strain communities is simulated under several single-car-
bon conditions, which include glycolate, acetate, glycine,
glucose, pyruvate and melibiose. As defined in the Meth-
ods section, the term relative benefit is used when the
growth performance of the group is compared with the
growth performance of the monocultures of each indivi-
dual member mutant, whereas the term absolute benefit
is used when the co-culture is compared with each
monoculture in the diversity graph.

The growth simulations reveal the existence of several
beneficial strain communities, which show improved
growth relative to their corresponding monocultures.
Beneficial metabolic interactions can be either bi-direc-
tional, where the exchange of essential nutrients takes
place in both directions, or they can be unidirectional
where only one benefits from the coexistence and the
other plays the role of a mere provider, an altruist. An
example of pure altruism is observed when the strains
b0721 and b2779 co-grow on limited glucose. Both these
mutants consistently appear as central nodes in the diver-
sity graphs (Table 1). When b0721 grows on glucose, it
produces the metabolites acetate, glycolate and formic
acid, which apart from glycolate it is incapable of con-
suming. The exchange flux rate time profiles show that
the mutant b2779 in co-culture exploits the available
metabolites (Figure 5B and Additional file 3: Supplement
FA). In particular, acetate and formic acid are consumed
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after glucose is exhausted, while glycolate is consumed in
parallel with the consumption of glucose. The involved
cross-feeding interactions are illustrated in Figure 5C.
The growth performance of the pair is examined under
different initial population ratios as well. As shown in
Figure 5A, maximum group performance of the co-cul-
ture is achieved with an initial population composition of
1:9 for b2779:b0721, where the relative benefit equals
to 23%.

Another beneficial community is the co-culture of
b2276 and b3708 (or the wild-type) on limited glycolate.
This pair in particular performs better than any monocul-
ture in the diversity graph exhibiting absolute benefit
equal to 8% (Figure 5D). The mutant b2276 is the most
frequently appearing mutant-hub across all carbon-source
conditions (Table 1). When this mutant grows as mono-
culture on limited glycolate, it exhibits poor growth perfor-
mance (~20% reduction) compared to the growth
performance of the wild-type population. As illustrated in
Figure 5F, the metabolic interactions are bi-directional and
correspond to the exchange of acetate and formic acid.
These products are consumed simultaneously with the
metabolism of glycolate (Figure 5E and Additional file 3:
Supplement FA). An increase in the maximum growth
rate of both mutants is observed during the by-product
exploitation period (Additional file 3: Supplement FA).
The growth performance of the pair is also examined
under different initial population ratios. As shown in
Figure 5D, maximum group performance (of absolute ben-
efit equal to 14%) is observed with an initial population
composition of 1:9 for b3708:b2276, which occurs when
the two mutants exhibit equal final frequency in the popu-
lation (Additional file 3: Supplement FA).

Efficient strain communities are not limited to pairs.
An example is the triplet consisting of the strains
b2903, b3403 and b0721 when growing on limited pyru-
vate. The nutrients that are exchanged between them
include glycine, glycolate, acetate and formic acid. The
corresponding flux profiles of each strain in the commu-
nity are shown in Additional file 3: Supplement FA. The
specific community is 1.4% more efficient than the most
efficient monoculture, which is the strain b3403. The
by-products glycolate and glycine are consumed respec-
tively by the strains b0721 and b3403 during the meta-
bolism of pyruvate. This parallel consumption of the by-
products with the main resource increases the maxi-
mum growth rates of both mutants (Additional file 3:
Supplement FA). Acetate and formic acid, on the other
hand, are consumed after the depletion of pyruvate.
Furthermore, beneficial cross-feeding interactions can
occur either directly or indirectly. The indirect meta-
bolic interactions imply that a bacterial community can
be beneficial even if not all of its pair-wise relations
involve the exchange of nutrients, which demonstrates
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the importance of studying group-wise metabolic varia-
bility. An example is observed in the triplet b0721,
b4015 and b0728 when growing on limited pyruvate
(Additional file 3: Supplement FA). The mutants b0721
and b4015 do not interact. Furthermore, each of the
constituent pairs of the triplet is non beneficial (negative
relative benefit). However, the coexistence of all three
strains becomes beneficial with relative benefit equal
to 12.3%.

Simulations show that no strain community exhibits
improved growth unless metabolic interactions are
involved within the community. Thus, although meta-
bolic interactions are possible to take place without a
beneficial outcome, they are indispensable within strain
communities in order to perform efficiently under con-
ditions of resource competition.

Beneficial communities of relative benefit performing
better than their corresponding monocultures are found
in all conditions we have examined (see Additional file 3:
Supplement FA). However, strain communities of super-
ior growth performance exhibiting improved growth rela-
tive to any monoculture in the diversity graph (absolute
benefit) are less frequent. The existence of efficient strain
communities of improved growth relative to any tested
monoculture implies that in specific growth conditions,
the involved metabolic pathways are coupled in a way
that a single optimal mutant is incapable of fully utilizing
the environment. In that case, among all single-gene
knockout mutants simulated to grow as monocultures,
none is capable of combining maximum ability to meta-
bolize the main source with maximum ability to metabo-
lize essential products of the metabolism in the specific
conditions.

Metabolic opportunities and growth predictability

The growth performance of a strain community depends
on the growth properties and metabolic capabilities of
the strains (e.g. their growth rates and ability to metabo-
lize specific metabolites) as well as the interactions
between them. Metabolic interactions can alter the bio-
chemical phenotypes of the participating strains allowing
novel, unexpected phenotypes to emerge.

A strain community is considered unexploited regard-
ing by-production if cross-feeding interactions either do
not occur or do not fully exploit the metabolites pro-
duced in co-culture. An unexploited community gives
the opportunity to a new strain to utilize the available
metabolites. One such example was discussed previously
and concerns the community consisting of the strain
b0721, b4015 and b0728 when growing on limited pyru-
vate. Among these strains, b0721 and b4015 do not inter-
act, while the strain b0728 both exploits the metabolites
produced by these strains and provides by-products that
these two strains can metabolize.
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Interestingly, the growth performance of a strain commu-
nity of any size linearly depends on the mean of the growth
performances of its constituent strain pairs (Figure 6 and
Additional file 3: Supplement FA) as long as each of these
pairs interact. In other words, under these constraints, the
community can be considered to consist of non-interacting,
independent sub-communities, so that by knowing the
growth performances of these sub-communities we can
predict the growth of the whole community. However, as
more complex metabolic interactions are developed within
polymorphic populations, new phenotypes that were not
expected before are likely to emerge. As the composition of
the communities becomes more complex, consisting of
more specialized mutants and allowing more obligatory
relations to be developed between them, predictability of
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the growth performance of the communities from their
simplest constituents vanishes [55].

Discussion and Conclusions

Most microbes live in communities and usually rely on
metabolic interactions to increase their supply for nutri-
ents and better exploit a given environment [2,56]. Several
interesting examples presented in [55] show synergistic
interspecies interactions developed in oral microbial com-
munities. In addition, long-term evolutionary experiments
on initially monoclonal bacterial populations have shown
that the bacterial population rapidly evolves to poly-
morphic populations even in simple, homogeneous,
single-limited resource laboratory environments. The
evolved strains are considerably different from each other
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Figure 6 Strain communities depend on their constituent parts. The simulated growth performance of all the strain triplets (simulation) that
are identified in the diversity graph of glucose with respect to the mean of the performances of the strain pairs (prediction) is shown. The
correlation coefficient equals to 0.8486 (p-value = 0). The points that lie above the line where predicted growth equals simulated growth (shown
in red) correspond to unexploited strain pairs and are highlighted with different colors. These strain pairs, in particular, are edges between highly
central nodes.
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with respect to their metabolic capabilities and it is shown
that metabolic interactions between them take place [3].
The emergence of metabolic diversity and the develop-
ment of metabolic interactions play an important role in
the evolution of bacterial populations as they dynamically
shape the growth medium.

Using a graph representation, this work has first
explored the metabolic variability regarding by-production
among single-gene knockout E. coli strains in various sin-
gle-carbon source conditions. The diversity graph maps in
a pair-wise manner the genetic to metabolic variability
with respect to by-production and allows the identification
of strain communities (corresponding to cliques) with the
potential to exchange products of their metabolism in a
given growth condition. A different diversity graph has
been constructed for each single-carbon environment. The
properties of the diversity graphs reflect the inherent high
metabolic redundancy of the cell to single-gene knockouts,
reveal mutants of unique metabolic capabilities regarding
by-production and show an evolutionary difficulty towards
the establishment of polymorphism. Furthermore, findings
of this work suggest that polymorphic communities con-
sisting of strains specifically adapted to a given condition
are more likely to evolve.

In addition to the diversity graph and its structural ana-
lysis, a developed genome-scale metabolic model has been
used to describe the co-growth of different cells in a batch
culture. The proposed multi-competitor metabolic model
was based on the existing dynamic FBA model [33], which
successfully describes monoclonal bacterial population in
a batch culture. Contrary to previous multi-cellular stoi-
chiometric models [29-31], the different cells have not
been modeled to operate towards a collective goal, such as
the optimum growth of the group. However, the proposed
model assumes that the different cells grow in a spatially
homogeneous environment sharing nutrients and maxi-
mizing their growth rates in accordance to their metabolic
capabilities. Under these assumptions, the model has been
utilized in order to test the hypothesis of whether strain
communities can be more efficient than their correspond-
ing monocultures and predict the range of metabolites
that are exchanged. The growth simulations revealed
many strain communities that were beneficial, namely per-
formed better as a whole than their individual parts. More-
over, the existence of efficient strain communities
performing better than any examined monoculture were
also identified in some growth conditions. This finding
implies that in some growth conditions, the involved
metabolic pathways are coupled in a way that a single
optimal mutant is incapable to fully utilize the environ-
ment. In addition, it was observed that metabolic interac-
tions took place without necessarily leading to a beneficial
outcome. However, they were indispensable within strain
communities in order to perform beneficially under
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conditions of resource competition. In other words, the
metabolic interactions are the necessary (but not suffi-
cient) condition in order for a group to perform benefi-
cially. Since the initial population frequency of the
competitors as well as the amount of the main source that
is initially provided for growth play an important role in
the growth performance of the communities as they deter-
mine the partitioning of the resources, it is expected that
the beneficial communities are not limited to our observa-
tions even within the given search space.

The construction of diversity graphs as well as the eva-
luation of the E. coli strain communities were built upon
the genome-scale metabolic network reconstruction of
E. coli [35] as well as the constraints and assumptions of
the existing dynamic FBA model [33]. The predictive
accuracy of the proposed methodology depends on the
accuracy of the genome-scale metabolic reconstructions
and their reliable prediction of the transport fluxes under
genetic perturbations and growth conditions [57-60]. In
this study, all simulations were performed on a single-lim-
ited carbon resource. However, during growth several
metabolites can be produced, which serve as secondary
resources for growth. Thus, the initially simple environ-
ment becomes a mixed-substrate growth medium where
metabolic interactions can take place. In batch cultures
containing a mixture of carbon sources, microbial cells
utilize the substrates either sequentially, a phenomenon
known as diauxic growth, or simultaneously depending on
the medium [61,62]. The metabolic model of Varma and
Palsson [33] for monocultures accurately predicts the reu-
tilization of acetate in glucose batch cultures. In our simu-
lations, both sequential and simultaneous substrate
consumption examples are predicted, the accuracy of
which remains to be experimentally validated. Efforts to
model mixed-substrate growth based on the FBA frame-
work have been proposed such as the work of Beg et al.
[63], which proposes an improved FBA model that incor-
porates a solvent capacity constraint for the enzymes
inside the cytoplasm. Alternatively, the incorporation of
regulatory constraints on the FBA model has been also
suggested [36,64,65] to improve the accuracy of substrate
uptakes in a complex medium.

Other sources of genetic to metabolic diversity such as
multiple gene deletions or differential expression of cer-
tain genes can also contribute as nodes to the graph
reconstruction and as potential strain-competitors in
communities, beyond the single-gene knockout strains.
Metabolic interactions across different species can also
be analyzed under the framework proposed here, as
more genome-scale metabolic network reconstructions
are available. The results presented in our work are not
primarily focused on evolutionary stable communities
that may arise from cross-feeding. The method aims to
identify and describe metabolic interactions between



Tzamali et al. BMC Systems Biology 2011, 5:167
http://www.biomedcentral.com/1752-0509/5/167

strains that co-exist in a batch culture. Further analysis
regarding the evolutionary stability of the strain commu-
nities and their survival from ‘cheats’, who only gain the
benefit from others [11,13,19,66-69], is particularly
interesting.

Additional material

Additional file 1: Supplement Diversity Graph construction.
Supplemental material showing analytically whether the construction of
the diversity graph depends on the initial amount of the main source in
a batch culture.

Additional file 2: Supplement Structural Analysis. Supplemental
material providing further information regarding the definition and
application of graph-theoretic measures on the diversity graphs.

Additional file 3: Supplement Functional Analysis. Supplemental

material including additional information on the simulations of strain
communities in batch cultures under several growth conditions.
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