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Abstract

networks considering resilience phenomenon.

metabolic networks.

Background: Improving the synthesis rate of desired metabolites in metabolic systems is one of the main tasks in
metabolic engineering. In the last decade, metabolic engineering approaches based on the mathematical
optimization have been used extensively for the analysis and manipulation of metabolic networks. Experimental
evidence shows that mutants reflect resilience phenomena against gene alterations. Although researchers have
published many studies on the design of metabolic systems based on kinetic models and optimization strategies,
almost no studies discuss the multi-objective optimization problem for enzyme manipulations in metabolic

Results: This study proposes a generalized fuzzy multi-objective optimization approach to formulate the enzyme
intervention problem for metabolic networks considering resilience phenomena and cell viability. This approach is
a general framework that can be applied to any metabolic networks to investigate the influence of resilience
phenomena on gene intervention strategies and maximum target synthesis rates. This study evaluates the
performance of the proposed approach by applying it to two metabolic systems: S. cerevisiae and E. coli. Results
show that the maximum synthesis rates of target products by genetic interventions are always over-estimated in
metabolic networks that do not consider the resilience effects.

Conclusions: Considering the resilience phenomena in metabolic networks can improve the predictions of gene
intervention and maximum synthesis rates in metabolic engineering. The proposed generalized fuzzy multi-
objective optimization approach has the potential to be a good and practical framework in the design of

Background

Improving the synthesis rate of desired metabolites in
metabolic systems is one of the main tasks in metabolic
engineering. Two recent advancements in this area are
promising to increase the performance of metabolic sys-
tems. The first factor is a significantly better under-
standing of the structure of metabolic networks and the
kinetics and thermodynamics of biochemical reactions
that take place in living cells. In many cases, this under-
standing is not merely qualitative but quantitative, and
can be expressed in terms of kinetics equations. The
second factor is the current advance in molecular
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biological techniques and the development of numerous
useful vectors. This has enabled microbiologists to
change the protein content in a given organism and
alter its enzymatic profile, enhancing the synthesis of
specific end-products or intermediates. The combination
of these two factors permits the modification of the
metabolic structure and the improvement of the synth-
esis rate of some desired metabolites in an organism.

In the last decade, many researchers have used model-
based optimization strategies to analyze and manipulate
metabolic networks [1-12]. The mathematical models
used in these model-based optimization problems can
be classified as stoichiometric and kinetic models. Stoi-
chiometric models can be obtained through the reaction
topology of a metabolic network. Though stoichiometric
models do not require kinetic data and are easy to
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construct, there is a shortage of handling regulatory
dynamics of metabolic networks in them. On the other
hand, kinetic models, e.g., generalized mass action
(GMA) and Michaelis-Menten formulations, require
more information to describe system characteristics.
However, kinetic models are in general expressed as
nonlinear models that are more complex than linear
models and require more computational time for analy-
sis and optimization. Logarithmic transformation can
convert a non-linear model represented by the S-system
formalism used widely in biochemical systems theory
(BST) to a linear model if we consider systems at steady
state only [7,12]. Indirect optimization methods (IOMs)
convert a nonlinear kinetic model into an S-system
model, and then solve the optimization problem at
steady state using a linear programming method
[10-13]. On the contrary, stochastic optimization meth-
ods and deterministic branch-and-reduce methods are
directly applied to nonlinear models to obtain a global
optimum [4,15]. Optimization problems for metabolic
network systems can be categorized as single-objective
and multi-objective formulations, depending on the
design purpose. Most studies on microbial metabolic
engineering focus on only a single objective to maximize
the synthesis rate of the desired metabolite [4,16]. In
contrast, a multi-objective optimization approach
attempts to find the solutions that are optimal for many
objectives simultaneously. The multi-objective indirect
optimization method (MOIOM) has been applied to
maximize ethanol productivity and to minimize inter-
mediate concentrations simultaneously [10].

Selecting a proper genetic manipulation strategy for
metabolic network optimization problem is a tedious
task. The regulatory structure of metabolic networks
can be determined by model-based optimization strate-
gies [4,16]. Researchers have used mixed-integer linear
programming to determine an optimal regulatory struc-
ture and the synthesis rate of metabolic systems
described by linear models [4,5]. However, the minimum
set of enzymes (or corresponding genes) in a metabolic
system that should be manipulated to obtain a viable
strain under the situation of producing the maximum
possible flux or yield of a desired final product remains
unclear. This study introduces a multi-objective optimi-
zation formulation to find an optimal regulatory struc-
ture to cope with these problems. Experimental results
show that a strain may reflect resilience phenomenon
after stressful environmental changes and genetic per-
turbations [17,18]. This resilience phenomenon means
that the mutant strain may respond with rapid and dra-
matic alterations to global genetic perturbations. How-
ever, after genetic perturbations, the mutant tries to
evolve to a new steady state that may be only slightly
different from its previous steady state. This new steady
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state indicates that the mutant strain tries to recover
from its “wild-type” characteristics and maintain relative
stability on metabolism. Accurately predicting the steady
state of a microbial strain after gene manipulations is
not a trivial job, since the adaption of metabolic systems
against gene alterations is complex. Segrét et al. intro-
duced the minimization of metabolic adjustment
(MOMA) method to calculate the minimum distance
solution relative to the original “wild-type” solution for
the mutant strain [17]. Shlomi et al. applied regulatory
on/off minimization (ROOM) to determine minimum
number of changes between the mutant strain and the
original strain [18]. However, both of these models are
based on the stoichiometric model derived from the flux
balance analysis (FBA). Almost no studies discuss the
resilience phenomena for metabolic systems described
by kinetic models.

This study introduces a generalized fuzzy multi-objec-
tive optimization problem (GFMOOP) to determine the
optimal enzymatic manipulations for metabolic network
systems considering resilience effects. This study first
formulates a multi-objective optimization problem that
simultaneously considers the resilience effects and mini-
mum set of manipulated enzymes by combining the
concepts of MOMA and ROOM into an optimization
framework. Since nonlinear kinetic models offer a more
detailed description of metabolic networks than stoi-
chiometric models and the gene manipulations, includ-
ing gene repressions and over-expressions, in metabolic
networks can directly correspond to the changes of
maximum flux parameters and reaction rates in the
kinetic models, this study uses a nonlinear kinetic
model in the optimization formulation. Integer variables
are also introduced to model gene over-expression and
repression. Thus, the optimization formulation must be
solved using mixed-integer nonlinear programming
(MINLP) methods. The metabolic networks for ethanol
production by Saccharomyces cerevisiae and amino acid
synthesis rates in Escherichia coli were employed to
evaluate the applicability of the GFMOOP. Suitable
membership functions are used to quantify the resilience
effects and cell viability constraints. Results show that
the maximum synthesis rates of target products by
genetic interventions are always over-estimated in meta-
bolic networks that do not consider the resilience
effects.

Results and discussion

Each following example solves two optimization pro-
blems and compares their results. The first problem is a
primal optimization problem for determining the opti-
mal enzyme manipulations, corresponding gene over-
expression or repression, in metabolic networks without
considering cell viability and metabolic adjustment. The
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second problem is the fuzzy optimization problem,
which is similar to the primal optimization problem, but
considers cell viability and metabolic adjustment.

Maximization of the ethanol production by S. cerevisiae

S. cerevisiae is still the most important microorganism
for ethanol production to date. Researchers have devel-
oped many strategies to enhance ethanol productivity
using yeast, and its metabolic network is well studied.
Figure 1 shows a scheme of the simple metabolic net-
work of S. cerevisiae for anaerobic ethanol production.
Curto et al. developed a GMA model for analyzing the
anaerobic ethanol fermentation of S. cerevisiae at steady
state [19]. This model consists of five nonlinear ordinal
differential equations and eight nonlinear rate equations.
Detailed information about this model can be found in
the Additional File 1.

This study uses the mixed-integer hybrid differential
evolution (MIHDE) method [20,21] and the commercial
software GAMS 23.6 with seven solvers to solve the etha-
nol fermentation optimization problem for finding the
optimal enzyme manipulations in S. cerevisiae. The feasi-
ble region for each metabolite and enzyme can be
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Figure 1 Simple metabolic network of S. cerevisiae for ethanol
production. The dashed line with an arrowhead and with a
terminal bar at one end mean inhibition and activation, respectively.
The optimal changed ratios of the metabolites and the optimal
improved activity ratios for modulated enzymes HXT and TDH and
modulated enzymes HXT and PFK are shown in red numbers and
blue numbers, respectively.
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estimated through biological understanding or global
optimization techniques [22,23]. This study sets the feasi-
ble region for each metabolite and enzyme to expand/
shrink 5-fold based on its basal value. The primal optimi-
zation problem for maximizing the ethanol productivity
in S. cerevisiae was first solved by MIHDE to obtain the
Pareto front, shown as the red curve in Figure 2. The lar-
ger the allowable number of the manipulated enzymes in
the metabolic network, the higher the improved ethanol
flux ratio, yPYK/uE’,’%’. The highest improvement (about
5.2) was achieved when the allowable number of the
manipulated enzymes was greater than six. Figure 2
shows all feasible solutions (red data points) for the pri-
mal optimization problem. Many improvements in the
ethanol flux ratio are close to the highest value; for exam-
ple, if at most two enzymes can be modulated, seven out
of 28 feasible solutions with the improved ethanol flux
ratio greater than 2.0 are obtained. The highest improved
ratio is 2.452 and the corresponding modulated enzymes
are HXT and PFK in this case.

This study also uses seven MINLP solvers in GAMS to
solve the primal optimization problem with various
allowable numbers of manipulated enzymes. Table 1 lists
the maximum ethanol flux ratio and modulated enzymes
using different allowable numbers of manipulated
enzymes. These Pareto optimal solutions are identical to
those obtained from the MIHDE method (Figure 2).
However, some solvers may converge to a premature
result, as shown in the parentheses of Table 1. The opti-
mal solution obtained from the GAMS solvers can be
improved by using the convergent solution obtained by
MIHDE as the initial point for the GAMS solvers. How-
ever, it is time-consuming for MIHDE to obtain a feasible
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Figure 2 The Pareto front and feasible solutions. The Pareto
front and feasible solutions for the primal optimization problem
(red data points) and the fuzzy optimization problem (green data
points) obtained by the MIHDE method.




Wu et al. BMIC Systems Biology 2011, 5:145
http://www.biomedcentral.com/1752-0509/5/145

solution. The computational time increases significantly
when we apply MIHDE to solve the primal optimization
problem for a complex system. This is because it is diffi-
cult to maintain a feasible solution in the stochastic evo-
lution procedure. The following computations apply
combined procedures based on the seven GAMS solvers
to determine an optimal solution. Two solvers were ran-
domly selected from the seven solvers for each combined
procedure. The convergent solution of the first solver
served as the initial point for the second solver in each
combined procedure. Seven different combined proce-
dures were performed to determine the optimal solution
for the primal optimization problem by comparing their
optimal objective values. The results obtained by these
combined procedures suggest that the enzymes to be
modulated for the primal optimization problem are
{HXT, PFK, PYK, TDH, GLK, ATPase, GOL, TPS} in
decreasing order of priority (Table 1).

Table 2 shows the results for the resilience problem,
namely the fuzzy optimization problem considering resi-
lience effects. The Pareto front of the resilience problem
is identical to the result obtained by MIHDE, as shown
in the green data curve of Figure 2. The maximum etha-
nol flux ratio for different allowable numbers of
manipulated enzymes fell to 60-70%. The best enzymes
appear to be glucose uptake (HXT) and glyceraldehyde-
3-phosphate dehydrogenase (TDH) if only two enzymes
can be modulated. The maximum ethanol flux of 1.71

Table 1 The optimal solution for maximizing ethanol
productivity by S. cerevisiae

& y;“,w(/vi’,“‘;‘l‘gl Modulated enzymes
value
12092 HXT
2 2452 HXT, PFK
2434 (SBB)" HXT, ATPase
3 3152 HXT, PFK, PYK
4 3592 HXT, PFK, PYK, TDH
3.326 (LINDOGlobal, HXT, PFK, PYK, ATPase
BARON)'
5 4428 HXT, PFK, PYK, TDH, GLK
6 5191 HXT, PFK, PYK, TDH, GLK, ATPase
4458 (DICOPT)" HXT, PFK, PYK, TDH, GLK, GOL
7 5231 HXT, PFK, PYK, TDH, GLK, ATPase,
GOL
3651 (DICOPT)! HXT, PFK, PYK, TDH, ATPase, GOL,
TPS
8 5231 HXT, PFK, PYK, TDH, GLK, ATPase,
GOL, TPS

The optimal enzymatic modulations for maximizing ethanol productivity by S.
cerevisiae obtained by solving the primal multi-objective optimization problem
using various GAMS solvers (AlphaECP, BARON, BONMIN, COUENNE, DICOPT,
LINDOGIobal, and SBB). nyiB and yeIlfB are set to 0.2. yxi and ylijB are set
to 5.0. The superscript * means optimal solution, T denotes that the solution

is a premature result, and ¢ is the number of allowed manipulated genes.
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Table 2 The optimal solution for maximizing ethanol
productivity by S. cerevisiae considering resilience effects

&-value v;‘;YK/vb"s"l Modulated enzymes

PYK

1 1482 HXT
2 1.710 HXT, TDH

1618" HXT, PFK

1519" HXT, ATPase
3 1991 HXT, TDH, ATPase

1877" HXT, TDH, PFK

1663" HXT, PFK, PYK
4 2.340 HXT, TDH, PFK, PYK
5 2741 HXT, TDH, PFK, PYK, GLK
6 3.080 HXT, TDH, PFK, PYK, GLK, ATPase
7 3.106 HXT, TDH, PFK, PYK, GLK, ATPase, GOL
8 3.105 HXT, TDH, PFK, PYK, GLK, ATPase, GOL, TPS

The optimal enzymatic modulation for maximizing ethanol productivity by S.

cerevisiae considering cell viability and metabolic adjustment for

(63 £y01 = [1.6,2.0]. nyB and yeLB are set to 0.2. nyB and yeuB are set to

5.0. The superscript * means optirﬁal solution, T indicates that the optimal
result is obtained by solving fuzzy optimization problem using the fixed
enzymatic modulations, and ¢ is the number of allowed manipulated genes.

was obtained by modulating HXT and TDH. These
modulated enzymes obtained from the resilience pro-
blem differ from those obtained from the primal optimi-
zation problem (HXT and PFK). We also solve the
resilience problem using the fixed enzyme modulations
on HXT and PFK, which is a nonlinear programming
(NLP) problem, for comparison. The optimal ethanol
flux ratio of the NLP problem was 1.618, which is smal-
ler than that obtained by modulated on HXT and TDH
(Table 2). The ethanol synthesis flux, vpyx, was activated
by the concentrations of metabolites, [f6p] and [pep],
and inhibited by [atp] so that the improved ratio of vpyx
to its basal value can be expressed as

UpyK ) ( IfGP] )0.05 5 ( [pep] )0.533)(
U?)?(SI?I [f6p ] basal [pep] basal

(i)

The exponents in equation (1) indicate that the etha-
nol synthesis flux, vpyx, increases when the concentra-
tions of metabolites [f6p] or [pep] increase and the
concentration of metabolite [atp] decreases. Figure 1
shows the optimal flux ratios for the modulated
enzymes HXT and TDH (red numbers) and modulated
enzymes HXT and PFK (blue numbers), respectively.
Figure 1 also shows the changed concentration ratios
of the metabolites for the corresponding modulated
enzymes. For the allowable modulated enzyme set
{HXT, TDH]}, the optimal concentration ratios of [f6p]
and [atp] are smaller than those obtained by modulat-
ing enzymes HXT and PFK. This indicates that lower
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[atp] and higher [pep] increase the ethanol flux rate
vpyr- This result makes sense from a biological view-
point, since a lower [atp] level slows down cell growth
and allows yeast to carry out the anaerobic fermenta-
tion required to produce ethanol. Although the expo-
nent of [f6p] is positive, the small value causes an
insignificant effect on the improved ethanol flux ratio.
As a result, the maximum value of vpyx obtained by
modulating enzymes HXT and TDH exceeds that by
modulating enzymes HXT and PFK. Following the
similar procedures, the best selected enzymes to be
modulated for the resilience problem when at most
three enzymes can be modulated are HXT, TDH, and
ATPase. These results differ from those obtained from
the primal optimization problem, as Tables 1 and 2
indicate. The ATPase enzyme does not appear in the
suggested modulated enzyme set obtained from the
resilience problem when four and five manipulated
enzymes are allowed. As a result, we cannot prioritize
the selection of enzymatic modulations in the optimi-
zation problems when at most three enzymes can be
modulated. However, both primal optimization and
resilience problems have the identical selected enzymes
when the allowable number of manipulated enzymes is
greater than three.

Each rate equation contains some metabolite concen-
tration information so that the kinetic model is able to
account for important regulatory features. Such regula-
tions depend on the model validity because model para-
meter values are estimated from a normal condition. As
a result, the kinetic model can cope with dynamics of
metabolic networks under a small perturbation on
enzyme level. However, an optimal enzyme manipula-
tion problem may yield an over-estimation productivity
if a large-scale change for each enzyme level is allowed.
For instance, this study sets the perturbation region for
each enzyme to expand/shrink 5-fold based on its basal
value. Such a large-scale perturbation may reach beyond
the regulation capability of kinetic models. The resili-
ence phenomena can be applied to compensate such a
gap. We also solve the primal and resilience optimiza-
tion problems using two another smaller perturbation
regions for each enzyme, i.e., the lower and upper fac-
tors [yefB, ye?B] are set to [0.4, 2.5] and [0.8, 1.25], to
illustrate the effect of resilience phenomena on optimal
productivity under different perturbation regions. Fig-
ure 3 shows the percentage of over-estimation produc-
tivity for different number of allowable modulated
enzymes and different perturbation region. For each
number of allowable modulated enzymes, larger pertur-
bation region results in higher over-estimation produc-
tivity. This result indicates that the resilience
phenomena can be applied to compensate the regulation
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Figure 3 Percentage of over-estimation productivity for
different perturbation region. The percentage of over-estimation
productivity for different scale perturbation. The perturbation region
for each enzyme is selected as R-fold below and above its basal

value, ie, [yefB, ye?B] = [1/R, R]

capability of kinetic models. It is worthy to verify this
result experimentally by microbiologists.

Multi-objective maximization of amino acid synthesis
rates in Escherichia coli
This example considers the determination of the opti-
mal enzyme manipulation in the central carbon meta-
bolic network of E. coli. The kinetic model for the
network is complex and highly nonlinear. Chassagnole
et al. developed a nonlinear dynamic model for part of
central carbon metabolism of E. coli [24]. Their model
has the ability to describe the experimentally observed
dynamic behavior of metabolites in metabolic networks
and is also capable of describing the intracellular meta-
bolite oscillations observed in experiments [25]. This
model links the kinetics of sugar transporter PTS (phos-
phor-transferase system) with glycolysis and pentose-
phosphate pathways, and is used to support the explora-
tion of the central carbon metabolism of E. coli. Figure
4 presents a schematic diagram of central carbon meta-
bolism of E. coli. It depicts 30 enzymatic reactions, 18
metabolites or precursors, and seven co-metabolites
(amp, adp, atp, nadp, nadph, nad, and nadh). These co-
metabolite concentrations are assumed to be constant in
the mathematical model. The reaction rates can be
accessed from the model database of JWS Online Cellu-
lar Systems Modeling (http://jjj.biochem.sun.ac.za/). The
detail information of the kinetic model for the central
carbon metabolism in E. coli can be found in the Addi-
tional File 2.

Many researchers have applied optimization methods
to enhance synthesis capabilities of microbial strains
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Figure 4 Central carbon metabolic network of Escherichia coli. The light blue boxes are metabolites and the yellow boxes are amino acid
synthesis subsystems. Red circles with a number inside are used for connection.

[16,26,27]. Most of the works on optimization of micro-
bial strains focused on single-objective optimization. For
example, Vital-Lopez et al. used a kinetic model of the
central carbon metabolism of E. coli to identify optimal
intervention strategies under the maximization of serine
synthesis [16]. Lee et al. applied bi-objective optimiza-
tion methods to investigate the influences of gene inter-
ventions on the amino acid synthesis using E. coli [26].
Lee et al. were interested in maximizing DAHPS, PEPC,
and SERS enzymatic flux ratios that correspond to the
enhancement of synthesis of aromatic amino acids, ser-
ine, and oxaloacetate, respectively. Their study solves
two bi-objective optimization problems for maximizing
DAHPS and PEPC flux ratios and maximizing DAHPS
and SERS flux ratios, respectively, to determine the opti-
mal gene manipulation strategies. However, this current
study determines the optimal enzyme manipulation stra-
tegies to maximize the flux ratios of DAHPS, PEPC, and
SERS simultaneously through genetic manipulations.

The procedures described in the previous example
were again used to obtain the optimal Pareto solutions
for the primal optimization problem with various allow-
able numbers of the manipulated enzymes (Table 3).
The resilience problem was then solved using the lower
and upper restriction factors of 1.6 and 2.0, respectively,
for both fuzzy cell viability constraints. Table 4 shows
the optimal enzymatic manipulations with various allow-
able numbers of the manipulated enzymes for the resili-
ence problem. The optimal modulated enzymes for both
optimization problems are the same as those in Tables 3
and 4. However, each maximum flux ratio for the resili-
ence problem is smaller than that obtained from the
corresponding primal optimization problem.

The optimal enzyme PK is selected from the 30-
enzyme network if only one enzyme can be manipu-
lated. The improved flux ratios of PEPC, SERS, and
DAHPS for the primal optimal problem are nearly iden-
tical to those obtained from the resilience problem. This
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Table 3 The optimal solution for multi-synthesis maximization by E. coli

&-value Zﬁ% ﬁﬁ "Vg"“{’” Modulated enzymes Optimal objective value (17;"))
1 1.271 1.081 1.560 PK 0.970
1.342 1.068 1.780 G6PDH 0975
2 1.248 1.518 1.652 G6PDH, SERS 0.846
1211 1409 1456 PK, SERS 0.878"
1778 1.106 2185 PK, G6PDH 0.969
3 1578 1.860 2027 G6PDH, PK, SERS 0.782
1.388 1.730 1.872 G6PDH, SERS, RPPK 0814"
4 1.801 1973 2225 G6PDH, PK, SERS, RPPK 0.778
1492 1.934 2175 G6PDH, PK, SERS, DAHPS 0.787"
5 1597 2258 2467 G6PDH, PK, SERS, RPPK, DAHPS 0.763
1.958 2134 2322 G6PDH, PK, SERS, RPPK, SYN1 0.786

The optimal enzymatic modulation to maximize aromatic amino acid, serine, and oxaloacetate synthesis rates simultaneously by E. coli without considering cell
viability constraints. Yy, and Y, aresetto 0.2.),- and Y, aresetto 50. The superscript * means optimal solution, T denotes that the solution is not a
1 1 1

Pareto solution, and ¢ is the number of allowed maﬁipulated genes.

indicates that the resilience phenomenon has little effect
on the cell response when only one enzyme alteration is
allowed. In contrast, the optimal selected enzymes are
G6PDH and SERS if two enzyme manipulations are
allowed. Both flux ratios of SERS and DAHPS are
enhanced even though the PEPC flux ratio is smaller
than that obtained by modulating PK only. As a result,
the pair of the selected enzymes (G6PDH and SERS) is
a Pareto optimal solution. To confirm this result, solve
the primal optimization problem and resilience problem
using the fixed modulation pairs of (PK, SERS) and (PK,
G6PDH). The three maximum flux ratios obtained by
modulating PK and SERS are less than those obtained
by manipulating G6PDH and SERS. This indicates that
the modulation pair of (PK, SERS) is dominated by
(G6PDH, SERS). The maximum flux ratios of PEPC and
DAHPS increase and the maximum flux ratio of SERS
decreases in comparison with those obtained by using
the modulation pair (G6PDH, SERS). Thus, the result

for the modulation pair (PK, G6PDH) is also a Pareto
solution. However, the optimal objective value for (PK,
G6PDH) exceeds that of manipulating G6PDH and
SERS, so we obtain a single Pareto solution. The Pareto
solution for manipulating G6PDH is similar to those
show in Tables 3 and 4.

Similar procedures were also used to obtain the opti-
mal modulations for the primal optimization problem
using different allowable numbers of manipulated
enzymes ranging from three to five, respectively. Tables
3 and 4 show the convergent solutions obtained by
seven solvers in GAMS. For the case of the allowable
numbers of three and four, we obtained two convergent
solutions, but a Pareto optimal solution only. Tables 3
and 4 also show that the optimal solution for # allow-
able modulated enzymes includes the suggested enzyme
set for n - 1 allowable modulated enzymes. This trend is
same as that obtained by Voit and Signore resulting
from the effect of experimental imprecision [28]. Finally,

Table 4 The optimal solution for multi-synthesis maximization by E.coli considering resilience effects

g-value :Ez:z ::,EE "V,,ﬁ“j” Modulated enzymes Optimal objective value (77,)
1 1.262 1.079 1.545 PK 0971
1.342 1.068 1.780 G6PDH 0975
2 1214 1447 1.586 G6PDH, SERS 0.867
1.186 1.365 1407 PK, SERS 0891"
1763 1.105 2174 PK, G6PDH 0.968
3 1443 1.740 1.884 G6PDH, PK, SERS 0811
1314 1591 1.764 G6PDH, SERS, RPPK 0.849"
4 1.582 1.829 2.044 G6PDH, PK, SERS, RPPK 0.810
1412 1.782 1.985 G6PDH, PK, SERS, DAHPS 08217
5 1479 2.010 2177 G6PDH, PK, SERS, RPPK, DAHPS 0.809
1.704 1.980 2143 G6PDH, PK, SERS, RPPK, SYN1 0.815

The optimal enzymatic modulation to maximize aromatic amino acid, serine, and oxaloacetate synthesis rates simultaneously by E. coli considering fuzzy cell
viability constraints and fuzzy metabolic adjustment for . and are set to 0.2. and are set to 5.0. The superscript * means optimal solution, t denotes that the
solution is not a Pareto solution, and ¢ is the number of allowed manipulated genes.
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we could qualitatively speculate that the suggested
enzymes to be modulated for both primal and resilience
optimization problems are {G6PDH, PK, SERS, RPPK,
DAHPS, SYNI1} in decreasing order of priority.

In this metabolic system, we assume that concentra-
tions of the seven co-metabolites are constant in the
mathematical model. These adenine nucleotides stoi-
chiometrically join in all of the metabolic networks of a
living cell. In practical, they actively participate in the
dynamics of the network and cannot be ignored. The
value of the adenylate energy charges in E. coli cells and
the ratios of [nad]/[nadh] and [nad]/[nadh] in the
redox metabolic network are equal to the ratios of their
basal levels and can be considered as constants [29].
Their relationships are expressed as

[atp] + O-S[adp] _ [atp]basal + 0~5[adp]basal
[atp] + [adp] + [lep] [atp]basal + [adp]basal + [amp]hasal (2)

=C1,
[nadh] _ [nadh]basal =c (3)
[nadh] + [nad] ~ [nadh)yy + [nadlyy
[nadph] [nadph]basal Ces (@)

[nadph) + [nadp] ~ [nadph) e + [nadp] .

where ¢; are constants. This study also evaluated the
effects of the assumption of constant co-metabolite con-
centrations by applying equations (2)-(4) to the optimi-
zation problems. Similar procedures were also used to
obtain the optimal modulations for the primal and resi-
lience optimization problems. The computational results
can be found in Tables S1 and S2 of Additional File 3.
We could conclude that the improved flux ratios are a
little different from those obtained from the optimiza-
tion problems with constant co-metabolite concentra-
tions. The order of priority of the suggested modulated
enzymes is nearly identical to that obtained based on
the assumption of constant co-metabolite concentrations
except when the number of allowable modulated
enzymes is five.

Conclusions

The optimization of biological systems, which is a
branch of metabolic engineering, has generated a lot of
industrial and academic interest for a long time. The
ultimate goal of this optimization is to find the optimal
mutation strategy for improving productivity. Model-
based optimization strategies have been applied to ana-
lyze and design metabolic networks during the last dec-
ade. The accuracy of optimization results depends
heavily on the development of essential kinetic models
of metabolic networks. Kinetic models can quantitatively
capture the experimentally observed regulation data of
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metabolic systems and are often used to find the opti-
mal manipulation of external inputs. To address the
issues of optimizing the regulatory structure of meta-
bolic networks, it is necessary to consider qualitative
effects, e.g., the resilience phenomena and cell viability
constraints. Combining the qualitative and quantitative
descriptions for metabolic networks makes it possible to
design a viable strain and accurately predict the maxi-
mum possible flux rates of desired products.

This study introduces a generalized fuzzy multi-objec-
tive optimization approach to determine the optimal
enzymatic manipulations for metabolic network systems
to obtain the maximal flux ratios of desired metabolites
of interest. The goal of this optimization problem is to
find the maximal synthesis rates of desired metabolites
and the minimum set of manipulated enzymes simulta-
neously based on kinetic models. The kinetic model was
directly used for the optimization problem and MINLP
solvers were applied to determine which enzymes to
manipulate and how their corresponding activities chan-
ged. This study applies fuzzy equal and fuzzy inequality
operations to the optimization problem to deal with the
resilience phenomena and cell viability constraints. This
study tests the practical utility of the proposed approach
by applying it to two metabolic networks of S. cerevisiae
and E. coli. The resulting optimal enzymatic manipula-
tions for metabolic networks and the maximum flux
ratios for desired metabolites are more justifiable based
on biological knowledge. We could qualitatively specu-
late the priority of modulated enzymes obtained by
iteratively solving the optimization problems using var-
ious allowable numbers of manipulated enzymes. These
results can help microbiologists make a proper decision
when genetically modifying a microorganism.

Methods

Kinetic model

The dynamics of a metabolic network can be repre-
sented generically using a set of nonlinear ordinary dif-
ferential equations with the following structure:

(jl}t( =8Sv(x,e;0), (5)

where x € R” is a vector of concentrations of metabo-
lites or pools, e € R™ is a vector of enzyme levels corre-
sponding to the enzyme activities, § € R” is a vector of
parameters, v € R™ is a vector of reaction rates, and S
e R"™" is the stoichiometric matrix describing the
interconnecting fluxes. The stoichiometry of biochemical
reactions is constant. Kinetic aspects are used to capture
the dynamics of a system and may change rather quickly
as they are driven by the state of the system. The stoi-
chiometry of a biochemical pathway determines the
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wiring diagram of the network, describes which fluxes
enter or leave which pool, and ensures that mass is con-
served in the process. The reaction rate can be
expressed by the power-law functions or Michaelis-
Menten-based rate laws in the field of biological
systems.

Primal optimization problem

The model outlined above can be combined with math-
ematical programming to support microbiologists in the
biotechnological improvement of microorganisms in
industrial applications [9]. The optimization problem
can consider many objectives. For example, Sorribas et
al. discussed many criteria used in evolution problems
[23]. The current study uses multi-objective optimiza-
tion approaches to deal with the following issues; What
is the minimum set of enzymes in a given microorgan-
ism that should be modulated to maximize the synthesis
flux ratios of the desired end products, simultaneously?
How to make a proper decision when genetically modi-
fying a microorganism if we find that more than one
biological response should be optimized? The multi-
objective optimization problem is generally expressed as
follows:

i

Igf}’f 1}?asal’l € o, (6)
m

minZ i

min >y, @)
j=

where vib““" is the basal value of the i flux v; € v, o
e N is the set of indices of production rates to be max-
imized, r is the number of target fluxes to be maxi-
mized, and the binary variable y; € y indicates whether
the j/ enzyme should be modulated and is defined as

~_ | 1if enzyme j is modulated,
771 0 otherwise,

Equation (6) is a general formula for simultaneously
maximizing a set of metabolite synthesis rates. Several
researchers have introduced genetic manipulations to
redistribute various metabolic fluxes in a metabolic net-
work to enhance the desired synthesis rates [16,27].
Equation (7) obtains the minimum set of modulated
enzymes in the metabolic network.

This study includes the following additional con-
straints for each enzyme in the metabolic networks.

(viei® + (1= y)bi®) < ei < (vief"™ + (1 = y)bi"™),
i=1,...,m,

(8)
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m

Yoriz1, )

i=1

where el and e are the lower and upper bounds for
b'B and b9 are
the lower and upper perturbation bounds for each non-
significant enzyme. When the lower and upper factors
for significant and non-significant enzymes and their

each significant modulated enzyme, and

basal value ei.’“s“l are given by users, these bounds can be

evaluated as follows: e = ylBebasil oUB - UBghasal,
B = yLBebasal and bYB = y,UBell where the lower sig-

nificant and non-significant factors, yeLiB and )/liB, are less
than one, and the upper factors, )/eliJB and ybLi’B, are
greater than one. In addition, the lower non-significant

factor )/bLiB must be greater than yeLiB and the upper non-

significant factor )/b[iJB must be smaller than yeLi]B

. Con-
straint (8) provides the lower and upper bounds of each
enzyme. If enzyme i is not modulated, then its activity
can have a small variance around its basal value ef.’“s“l.
The lower and upper perturbation bounds, b and b5,
restrict the activity variance of i” un-modulated enzyme
due to other enzyme alterations. A similar non-signifi-
cant variance in enzyme activity discussed in the
assumption of ROOM [18]. Constraint (9) indicates that
at least one enzyme/gene should be manipulated. The
concentration for each metabolite is restricted by its
lower and upper bounds,

LB, basal

UB basal ;
Ya Xi KB i=1,.

SX SV X N, (10)

where nyl_B and yx?B are the lower and upper bounded
factors for each metabolite, respectively, and x?‘”“l is the
basal value of the i™ metabolite x; € x.

An abnormally high protein or intermediate concen-
tration in a metabolic system renders a cell non-viable.
This is because the burden on cellular metabolism is
too high for the cell to survive or the cellular osmolarity
constraint is violated. Several researchers have intro-
duced a constraint on the total enzyme concentration to
overcome this issue and assure that it never reaches a
value that is considered unacceptable for the cell viabi-
lity [1,6,10,13]. Moreover, the cell viability and optimal
synthesis rates effectively limit the total intermediate
metabolite concentration. The total metabolite and
enzyme concentration constraints for cell viability are
expressed as follows:

n n
in < i E x?asall
i=1 i=1

(11)
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(12)

m m
o<y e

i=1 i=1

where (, and (, are the restriction factors for the con-
straints on total metabolite concentration and total
enzyme concentration, respectively.

The primal multi-objective optimization problem for-
mulated by equations (5) to (12) is a multi-objective
mixed-integer nonlinear programming problem. Many
methods are capable of solving multi-objective optimiza-
tion problems (MOQOPs) to obtain the Pareto front [30-32]
and generally fall into one of two categories: generating
methods and preference-based methods. Each method has
its advantages and disadvantages, as discussed in several
articles [30-32]. Generating methods can apply a scalariza-
tion approach to convert an MOOP into a single-objective
optimization problem (SOOP) with different factors to
find one Pareto optimal solution. A series of the SOOP
with various factors must be solved to find a Pareto front
of the MOOP. Evolutionary algorithms can be directly
applied to the MOOP to find the Pareto front, but they
are time-consuming. A decision maker (DM) then selects
a desired solution from the Pareto front. In contrast, the
preference-based methods require preferences in advance
from the DM and then find a satisfactory solution. How-
ever, preferences are generally difficult to specify with lim-
ited knowledge of the values of objective functions.
Therefore, an interactive algorithm must be carried out to
find a compromised solution.

The original e-constraint, one of the generating meth-
ods, retains only one of the objective functions as the cri-
terion and converts the others into inequality constraints.
This approach is suitable for the MOOP with objective
functions, which can easily assign the ¢-values. The
weighted infinite norm method is a reference-goal
method that can conveniently determine a trade-off solu-
tion if the lower and upper bounds of each objective
value are known in advance. This study combines the &-
constraint method and weighted infinite norm method to
solve the primal multi-objective optimization problem.
The objective function in equation (7) can be straightfor-
wardly converted into an e-constraint because the num-
ber of enzymes is an integer value. The primal multi-
objective optimization problem can be transformed into
a weighted infinite norm problem defined as follows:

. o (13)
min max )
exyeQ ieZo ,,lUB —_ UI_LB
subject to
m
Z)’j =g (14)

j=1
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where the user provides the allowable number ¢ of the
manipulated enzymes in advance, the lower bound v}® is
equal to its basal flux vi?m’, the upper bound v"8 can be
estimated by SOOP that maximizes v; only, and the fea-
sible set Q) consists of all feasible solutions that satisfy
the material balance equations in the steady state and
the constraints in equations (8)-(12).

Resilience phenomena

A strain may reflect resilience phenomena after genetic
interventions. This study introduces fuzzy equal and
fuzzy max operators to deal with the resilience phenom-
ena and the maximization of target fluxes, respectively.
The minimization of the number of enzymes to be
modulated is still defined on a crisp domain. The primal
multi-objective optimization problem is therefore
extended to be a generalized fuzzy multi-objective opti-
mization problem (GFMOOP) that can be expressed as
follows:

~ Vi _ — LB (UB| :
o o = R VST T € Yo (15)
equal (xj A x]bml> ,j € Xx, (16)
exy
equal (ek A e,ﬁ““") ke X, (17)
exy
m
min D 19
i

where Xy € N” is the set of metabolite indices and Xz
e N is the set of enzyme indices. Here, the symbols, K
and ~ denote a relaxed or fuzzy version of the ordinary

“_ “«_»

inequality “>” and equality “=”", respectively. The fuzzy
maximization, “max”, in equation (15) means that the
enzyme manipulation is completely acceptable if the i
flux ratio exceeds its upper bound fUB, which can be
estimated from the previous primal optimization pro-
blem. Conversely, the design is completely unacceptable
if the i”* flux ratio is less than the lower bound f'?. The
lower bound is generally equal to one, meaning that the
modified flux should exceed its basal value. Equations
(16) and (17) are “fuzzy equal (e/ciai)“ objective func-
tions that represent the fuzzy goals. For example, the
metabolite concentration x; and enzyme activity e
should be restored to a state that is as close to the wild-
type as possible. Equation (18) is the crisp objective
function as same as Equation (7).

The cell viability constraints in equations (11) and (12)
are crisp limits, indicating that all cells die when any of
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the inequality constraints is violated. These constraints
are not so strict in practical situations according to the
growth patterns and kinetics of cells in culture [33]. In
general, cells can survive when each total amount of
metabolites and enzymes is within a wide interval over
the critical value. This study applies the fuzzy inequality
constraint to handle this practical situation. In this case,
the restrictions for cell viability are softened as follows:

n n
in = [CXLB/ xUB] Zx?asall (19)
i=1 i=1

m m
Z ei ;j [CgLBr eUB] Z e?asal’ (20)
i=1 i=1

where the symbol “X” denotes a fuzzy version of the

. . _ LB UB
ordinary inequality “<”. Here, {,j, and &, are the lower

and upper restriction factors for the fuzzy constraints
on total metabolite/enzyme concentrations, respectively.

The interval bound [{LB {UB] indicates that the

x/e’ >xfe

microbes have some degree of satisfaction if each total
metabolite/enzyme concentration is within its boundary.
The lower bounds of the fuzzy inequality constraints
mean that the microbes are completely survival if both
total metabolite/enzyme concentration constraints in
equations (19) and (20) are less than their lower limits.
Conversely, the microbes completely die if one of the
total metabolite/enzyme concentration constraints
exceeds its upper limit. This situation indicates that the
solution is infeasible.

Goal-attainment problem

The objective functions of GFMOOP are defined on the
fuzzy and crisp domains. Almost no studies discuss how
to obtain an optimal Pareto solution of the GFMOOP.
This study converts the GFMOOP into a fuzzy multi-
objective optimization problem with &-constraints,
abbreviated as e-FMOOP, by transforming the crisp
objective function to an e-constraint. To solve the &-
FMOOQOP, each fuzzy objective functions for maximizing
synthesis rate can be quantified by eliciting the following
membership function:

0 fiLB >fir
di fiLB ffz ffiUBr
1fi>f"ieXo,

ni(fi) = (21)

where d; is a strictly monotonically increasing function
for evaluating the degree of satisfaction. The maximum
synthesis rate becomes somewhat acceptable if its objec-
tive value lies between the lower and upper bounds. The
membership function value is zero if the synthesis rate
is less than the desired lower bound. Conversely, the
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grade of membership function is one when the synthesis
rate exceeds its upper bound.

The membership function for each fuzzy equal objec-
tive function in equation (16) is defined as follows:

0 ijB > xj,
d]/ ijB < xj < x]basal[
1 xj = x]lgusall
1 Lbasal UB
A <X <X
di x; TIBx]‘_ X
0 Xj > X; j € 2x,

nj(xj) = (22)

where ijB and ijB are the lower and upper bounds for
the concentration of the j# metabolite, and the user-
provided functions d]{ and d;’ are strictly monotonically
increasing and decreasing functions, respectively.

The membership function value is zero if the metabo-
lite concentration exceeds the bounded interval. When
the metabolite concentration lies within the bounds, the
metabolite concentration should be as close as possible
to its basal value. The membership function for the
fuzzy equal objective function for each enzyme in equa-
tion (17) can be defined as equation (22). The fuzzy
inequality constraint in equation (19) can be quantified
by eliciting the following membership function:

()

where d} is a strictly monotonically decreasing func-
tion for evaluating the degree of satisfaction. The value
of the membership function is one if the total amount
of the metabolite concentrations is less than the desired
lower bound. Conversely, the grade of membership
function is zero when the total amount of the metabo-
lite concentrations exceeds its upper bound. The cell
viability becomes somewhat acceptable if the total
amount lies between the bounded interval.

Sakawa proposed five types of membership functions
to evaluate membership grades: linear, exponential,
hyperbolic, inverse, and piecewise linear functions [31].
For concise illustration, this study uses linear member-
ship functions to formulate each fuzzy objective func-
tion, fuzzy equal objective, and fuzzy inequality
constraint (see Figure 5). Each membership level is
between zero and one. The zero level indicates that the
user is completely unsatisfied with the corresponding
goal. In contrast, the grade is one if the value for each
goal is 100% satisfactory. Figure 5 illustrates the rela-
tionships for all membership functions. The fuzzy opti-
mization finds a compromised solution from these

n n
LB basal
1 gy ™ >21:x,-,
i=1 iz

n n n
dk é-xLB Zx?asal < in < {xUB Zx?asal, (23)
i=1 i=1

i=1

n n
0 Z X > {xUB Z x?“s”l,
i=1 i=1
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Membership grade

LB basal
Function value

uB

Figure 5 Membership functions for fuzzy objective function,
fuzzy equal objective, and fuzzy inequality constraint.
Membership functions for fuzzy maximization objective function
(blue line), fuzzy equality function (red line), and fuzzy inequality
function (green line).

goals. The membership grade is zero for every fuzzy
objective and every fuzzy equal objective and one for
every fuzzy inequality constraint when the values of
fuzzy objective functions, fuzzy equal objectives, and
fuzzy inequality constraints are less than their lower
bounds. The intersection for these membership func-
tions is zero. Conversely, if the values of fuzzy objective
functions, fuzzy equal objectives, and fuzzy inequality
constraints are greater than the upper bounds, the inter-
section for these membership functions is still zero. The
aim of fuzzy optimization is to find a maximum inter-
section for all membership functions between the
desired boundaries.

Having elicited the membership functions for fuzzy
objective functions, fuzzy equal objectives, and fuzzy
inequality constraints, the &-FMOQOP can be expressed
as the goal attainment problem:

min np = min
exy exy

max{is — m(f)] + 8 Y, i — ni(fJpp)
ieX

where 7; is the ideal preferred goal, £ = Xp U Zx U Zf,
and 1p denotes an aggregation function defined on the
crisp domain Q, which consists of the feasible solutions
satisfied equation (5), the crisp bounds in equations (8)-
(9), and the &-constraint in equation (14). Sakawa intro-
duced several aggregation functions in which the value
of the aggregation function can be interpreted as an
overall degree of satisfaction with user’s fuzzy goals [31].
This study uses the first term of the aggregation func-
tion in the brace of equation (24) to identify the optimal
trade-off solution that is nearest to the ideal preferred
goal, 7;, which indicates 100% satisfaction. The second
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term avoids testing the uniqueness for optimality of the
solution and the constant ¢ is a small positive value
within 107 - 10°. The fuzzy goal attainment approach
can directly find a satisfactory solution in the Pareto set
without yielding the Pareto frontier of the problem.

Additional material

Additional file 1: Mathematical model of anaerobic fermentation in
S. cerevisiae. This file includes the set of differential equations and rate
equations for anaerobic fermentation in S. cerevisiae, all of the relevant
definitions of state and independent variables, and the nominal values of
parameters appearing in the differential equations.

Additional file 2: Mathematical model of central carbon metabolism
in Escherichia coli. This file includes the set of differential equations and
rate equations for central carbon metabolism in E. coli and all of the
nominal values of parameters appearing in the differential equations.

Additional file 3: Results of multi-synthesis maximization by
Escherichia coli considering energy and redox conservation for co-
metabolites. This file includes the results of multi-synthesis maximization
by Escherichia coli under the conservation of co-metabolites. The
suggested modulated enzymes and the optimal synthesis rates
considering resilience phenomena or not are shown for comparison.

Acknowledgements

The financial support from the National Science Council, Taiwan, ROC (Grant
NSC100-2221-E-194-028-MY3 and NSC100-2627-B-194-001), is highly
appreciated.

Author details

'Department of Computer Science and Information Engineering, National
Chung Cheng University, Chiayi 62102, Taiwan. “Department of Chemical
Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.

Authors’ contributions

WHW implemented the optimization methods, performed the
computational experiments, and contributed to the analysis of the
experimental data. FSW conceived of the study, participated in its design
and coordination, and analyzed the results. WHW and FSW wrote the
manuscript. MSC assisted in developing the optimization methods and
finalizing the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 15 May 2011 Accepted: 19 September 2011
Published: 19 September 2011

References

1. Alvarez-Vasquez F, Gonzalez-Alcén C, Torres NV: Metabolism of citric acid
production by Aspergillus niger: Model definition, steady-state analysis
and constrained optimization of citric acid production rate. Biotechnology
and Bioengineering 2000, 70:82-108.

2. Bailey JE: Toward a science of metabolic engineering. Science 1991,
252(5013):1668-1675.

3. Chen L, Wang RS, Zhang XS: Biomolecular Networks: Methods and
Applications in Systems Biology John Wiley & Sons; 2009.

4. Hatzimanikatis V, Floudas CA, Bailey JE: Analysis and design of metabolic
reaction networks via mixed-integer linear optimization. AIChE Journal
1996, 42(5):1277-1292.

5. Hatzimanikatis V, Floudas CA, Bailey JE: Optimization of regulatory
architectures in metabolic reaction networks. Biotechnology and
Bioengineering 1996, 52(4):485-500.


http://www.biomedcentral.com/content/supplementary/1752-0509-5-145-S1.PDF
http://www.biomedcentral.com/content/supplementary/1752-0509-5-145-S2.PDF
http://www.biomedcentral.com/content/supplementary/1752-0509-5-145-S3.PDF
http://www.ncbi.nlm.nih.gov/pubmed/10940866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10940866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10940866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2047876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629921?dopt=Abstract

Wu et al. BMIC Systems Biology 2011, 5:145
http://www.biomedcentral.com/1752-0509/5/145

20.

22.

23.

24.

25.

26.

27.

Marin-Sanguino A, Torres NV: Optimization of tryptophan production in
bacteria. Design of a strategy for genetic manipulation of the
tryptophan operon for tryptophan flux maximization. Biotechnology
Progress 2000, 16(2):133-145.

Regan L, Bogle I, Dunnill P: Simulation and optimization of metabolic
pathways. Computers & Chemical Engineering 1993, 17(5-6):627-637.
Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles
and Methodologies New York: Academic Press; 1998.

Torres NV, Voit EO: Pathway Analysis and Optimization in Metabolic
Engineering Cambridge: Cambridge University Press; 2002.

Vera J, De Atauri P, Cascante M, Torres NV: Multicriteria optimization of
biochemical systems by linear programming: Application to production
of ethanol by Saccharomyces cerevisiae. Biotechnology and Bioengineering
2003, 83(3):335-343.

Vera J, Curto R, Cascante M, Torres NV: Detection of potential enzyme
targets by metabolic modelling and optimization: Application to a
simple enzymopathy. Bioinformatics 2007, 23(17):2281-2289.

Voit EO: Optimization in integrated biochemical systems. Biotechnology
and Bioengineering 1992, 40(5):572-582.

Vera J, Gonzélez-Alcon C, Marin-Sanguino A, Torres N: Optimization of
biochemical systems through mathematical programming: Methods and
applications. Computers & Operations Research 2010, 37(8):1427-1438.
Polisetty PK, Gatzke EP, Voit EO: Yield optimization of regulated metabolic
systems using deterministic branch-and-reduce methods. Biotechnology
and Bioengineering 2008, 99(5):1154-1169.

Rodriguez-Acosta F, Regalado CM, Torres NV: Non-linear optimization of
biotechnological processes by stochastic algorithms: Application to the
maximization of the production rate of ethanol, glycerol and
carbohydrates by Saccharomyces cerevisiae. Journal of Biotechnology 1999,
68:15-28.

Vital-Lopez FG, Armaou A, Nikolaev EV, Maranas CD: A computational
procedure for optimal engineering interventions using knetic models of
metabolism. Biotechnology Progress 2006, 22(6):1507-1517.

Segré D, Vitkup D, Church GM: Analysis of optimality in natural and
perturbed metabolic networks. Proceedings of the National Academy of
Sciences 2002, 99(23):15112-15117.

Shlomi T, Berkman O, Ruppin E: Regulatory on/off minimization of
metabolic flux changes after genetic perturbations. Proceedings of the
National Academy of Sciences of the United States of America 2005,
102(21):7695-7700.

Curto R, Sorribas A, Cascante M: Comparative characterization of the
fermentation pathway of Sac-charomyces cerevisiae using biochemical
systems theory and metabolic control analysis: Model definition and
nomenclature. Mathematical Biosciences 1995, 130:25-50.

Liao CT, Tzeng WJ, Wang FS: Mixed-integer hybrid differential evolution
for synthesis of chemical processes. Journal of the Chinese Institute of
Chemical Engineers 2001, 32(6):491-502.

Lin Y, Hwang K, Wang F: An evolutionary lagrange method for mixed-
integer constrained optimization problems. Engineering Optimization 2003,
35(3):267-284.

Guillén-Gosdlbez G, Sorribas A: Identifying quantitative operation
principles in metabolic pathways: a systematic method for searching
feasible enzyme activity patterns leading to cellular adaptive responses.
BMC Bioinformatics 2009, 10:386.

Sorribas A, Pozo C, Vilaprinyo E, Guillén-Gosélbez G, Jiménez L, Alves R:
Optimization and evolution in metabolic pathways: Global optimization
techniques in generalized mass action models. Journal of Biotechnology
2010, 149(3):141-153.

Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M: Dynamic
modeling of the central carbon metabolism of Escherichia coli.
Biotechnology and Bioengineering 2002, 79:53-73.

Schaefer U, Boos W, Takors R, Weuster-Botz D: Automated Sampling
Device for Monitoring Intracellular Metabolite Dynamics. Analytical
Biochemistry 1999, 270:88-96.

Lee FC, Rangaiah GP, Lee DY: Multi-Objective Optimization: Techniques and
Applications in Chemical Engineering, World Scientific, Volume 1 2009 chap.
Optimization of a multi-product microbial cell factory for multiple objectives-a
paradigm for metabolic pathway recipe .

Lee FC, Pandu Rangaiah G, Lee DY: Modeling and optimization of a multi-
product biosynthesis factory for multiple objectives. Metabolic Engineering
2010, 12(3):251-267.

28.

29.

30.

31

32.

33.

Page 13 of 13

Voit EO, Del Signore M: Assessment of effects of experimental
imprecision on optimized biochemical systems. Biotechnology and
Bioengineering 2001, 74(5):443-448.

Chapman AG, Fall L, Atkinson DE: Adenylate energy charge in Escherichia
coli during growth and starvation. J Bacteriol 1971, 108(3):1072-1086.
Rangaiah GP: In Multi-objective Optimization: Techniques and Applications in
Chemical Engineering. Volume 1. World Scientific; 2009.

Sakawa M: Fuzzy Sets and Interactive Multiobjective Optimization New York:
Plenum Press; 1993.

Sawaragi Y, Nakayama H, Tanino T: Theory of Multiobjective Optimization
Orlando: Academic Press; 1985.

Shuler ML, Kargi F: Bioprocess Engineering. second edition. Prentice Hall Ltd,
New York; 2002.

doi:10.1186/1752-0509-5-145

Cite this article as: Wu et al. Multi-objective optimization of enzyme
manipulations in metabolic networks considering resilience effects. BMC
Systems Biology 2011 5:145.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/10753437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10753437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10753437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21941386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21941386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18601153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21941386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21941386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21941386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18064703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18064703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10036767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10036767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10036767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10036767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17137295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17137295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17137295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7579901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7579901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7579901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7579901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20152867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20152867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17590932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17590932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10328769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10328769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20051269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11427946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11427946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4333317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4333317?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Maximization of the ethanol production by S. cerevisiae
	Multi-objective maximization of amino acid synthesis rates in Escherichia coli

	Conclusions
	Methods
	Kinetic model
	Primal optimization problem
	Resilience phenomena
	Goal-attainment problem

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

