
METHODOLOGY ARTICLE Open Access

Steady-state global optimization of metabolic
non-linear dynamic models through recasting
into power-law canonical models
Carlos Pozo1, Alberto Marín-Sanguino2, Rui Alves3, Gonzalo Guillén-Gosálbez1, Laureano Jiménez1 and
Albert Sorribas3*

Abstract

Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit
from the development of realistic mathematical models for the processes to be optimized. Such models can then
be analyzed and, with the development and application of appropriate optimization techniques, one could identify
the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As
appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their
global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA)
models based on the power-law formalism, offer a possible solution to this problem because they have a
mathematical structure that enables the development of specific algorithms for global optimization.

Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient
optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in
cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA
model, so that global optimization on the recast GMA model can be performed. With this technique, optimization
is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is
straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that
extend the power-law formalism to deal with saturation and cooperativity.

Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate
strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

1 Background
Identifying optimization strategies for increasing strain
productivity should be possible by applying optimization
methods to detailed kinetic models of the target meta-
bolism. Thus, a rational approach would pinpoint the
changes to be done - e.g. by modulating gene expression
- in order to achieve the desired biotechnological goals
[1-4]. To build such models we can either start from a
detailed description of the underlying processes (bot-
tom-up strategy) or we can fit kinetic models to experi-
mental data obtained in vivo (top-down strategy).

The bottom-up approach was the original strategy for
model building in the biological sciences. Bottom-up
kinetic models require information that is seldom avail-
able, despite the increasing amount of kinetic data con-
tained in a growing set of databases (for example see
[5,6] and the webpage http://kinetics.nist.gov/kinetics/
index.jsp). Even in the best case scenarios where kinetic
data are available, the data have often been obtained in
different labs and under in vitro conditions that are
hardly ever comparable or representative of the situation
in vivo. In addition, models built using this strategy
often fail to adequately reproduce the known behavior
of the target system [7-10]. With the accumulation of
time-series data, which were originally generated from
the accurate measurement of transient responses, top-
down modeling became viable as an alternative to the
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bottom-up strategy [11]. However, top-down modeling
also faces important difficulties. For example, regulatory
interactions between metabolites and enzymes are very
poorly characterized and most metabolic maps lack such
crucial information. Therefore, for a given network
structure (i.e. a stoichiometric description) obtained
from databases, a large number of alternative regulatory
patterns may exist that account for the observed experi-
mental data [12]. Model discrimination among the alter-
native regulatory patterns requires appropriate
experimental design. However, this is seldom considered
when performing the time series measurements. Last,
but not the least, parameter identifiability in highly non-
linear models can be problematic (for a review see [13]).
An additional issue that is common to models built

using both strategies is that such detailed kinetic models
include non-convexities that lead to the existence of
multiple local optima in which standard non-linear opti-
mization algorithms may get trapped during the search.
Several stochastic and deterministic global optimization
methods have been proposed to overcome this limita-
tion [14]. Deterministic methods, which are the only
ones that can rigorously guarantee global optimality,
rely on the use of convex envelopes or underestimators
to formulate lower-bounding convex problems that are
typically combined with spatial branch and bound stra-
tegies. Most of these methods are general purpose and
assume special structures in the continuous terms of the
mathematical model. Because of this, they can encoun-
ter numerical difficulties in specific metabolic engineer-
ing systems that require the optimization of kinetic
models with a large number of non-convexities of differ-
ent nature.
Given all these issues, it is hardly surprising that linear

stoichiometric models have emerged as the most popu-
lar tool to analyze genome-wide metabolic networks
using optimization techniques. Linear optimization pro-
blems can be solved using very fast and efficient algo-
rithms [15,16] that are implemented in almost every
kind of computer, ranging from laptops to cloud com-
puting centers. In addition, such models require a rela-
tively small amount of information.
The possibility of condensing information about a very

large network in a compact form enabled stoichiometric
models to provide interesting insights in many different
cases. However, the apparent simplicity in building and
analyzing stoichiometric models comes at the cost of
neglecting regulatory signals, metabolite levels and
dynamic constraints. Accounting for these features in a
dynamic way requires using more detailed, non-linear,
mathematical models [17,18].
These models go a step further than stoichiometric

models by incorporating regulatory influences through a
set of ordinary differential equations that can account

for the system’s dynamics. Building such models is often
impossible because the appropriate functional form that
needs to be used to describe the dynamical behavior of
specific processes is in general unknown. Modeling stra-
tegies based on systematic approximated kinetic repre-
sentations, such as power-laws [19-22], Saturating and
Cooperative [23], or convenience kinetics [24], side-step
this issue by providing uniform forms that are guaran-
teed to be accurate over a range of conditions and
reduce the amount of information required to build the
models. Because of the regularity in the form of the
mathematical function, models based on approximate
formalisms can be automatically built from the reaction
scheme of the target system. The model parameters can
subsequently be estimated from experimental data using
different procedures [13,25].
Although building and analyzing of comprehensive

genome-wide detailed models is still not viable in most
cases (see however [26,27]), developing ways to extend
large scale optimization analysis to larger and more rea-
listic non-linear kinetic models is an important part of
the future of systems biology [18]. In fact, the optimiza-
tion of certain types of non-linear problems can already
be solved very efficiently and geometric programming
problems with up to 1,000 variables and 10,000 con-
straints can be solved in minutes on a personal
computer.
Efficient global optimization techniques are available

for power-law models [1,28-30], either in S-system form
or in Generalized Mass Action (GMA) form (for a
review see [31]). In the case of S-system models, a sim-
ple logarithmic transformation brings the model to a
linear form [1]. In the case of GMA models, the pro-
blem can be efficiently solved using branch-and-bound
[28,32] and outer-approximation techniques [29,30].
The usefulness of the global optimization techniques

developed for GMA models has been shown in the ana-
lysis of the adaptive response of yeast to heat shock
[29,33]. In essence, starting with a GMA model and
considering a set of constraints on flux and metabolite
values, we can obtain: (i) The pattern of enzyme activ-
ities that maximizes a given objective, (ii) The region of
feasible changes in enzyme activities so that the model
fulfills a set of constraints on fluxes, metabolites, maxi-
mum allowable change in activity, etc., and (iii) A heat
map of how the objective function changes within the
feasible region. These results share some similarities
with those produced with stoichiometric models, but
incorporate many additional features.
Based on ideas similar to those that led to the devel-

opment of the power-law formalism, Sorribas et al. [23]
proposed a new Saturable and Cooperative (SC) formal-
ism, that extends the power-law representation to
include cooperativity and saturation. Although models
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built using this new formalism loses some of the simpli-
city inherent to the analysis of S-systems and GMA
models, they tend to be accurate over a wider range of
conditions than both the S-System and GMA represen-
tations [23]. Thus, it is important to enlarge the scope
of global optimization methods developed for power-law
models in order to deal with the SC formalism and ana-
lyze under which situations the later models behave bet-
ter than the former.
Optimization of SC models faces a number of practi-

cal problems common to kinetic non-linear models
[34,35]. To sidestep these problems, and in order to be
able to use global optimization methods developed for
power-law models, we will use a technique called recast-
ing. Recasting permits the exact transformation of a
continuous non-linear model with an arbitrary form
into a canonical GMA model [36,37]. This transforma-
tion is typically performed by increasing the number of
variables of the original model. Through this technique,
arbitrary non-linear models can be represented using a
canonical form such as GMA or S-system that can be
used for simulation and optimization purposes, which
opens the door for effectively extending the optimization
and feasibility analysis originally devised for GMA mod-
els to other detailed kinetic models.
In this paper, and as a first step to define a framework

for optimization of non-linear models with arbitrary
form and extend FBA and related approaches to detailed
kinetic models, we shall show the practical utility of
recasting SC models into GMA models for optimization
purposes. This technique is similar to the symbolic
reformulation algorithm proposed by Smith and Pante-
lides [38]. Our method, however, focuses on obtaining a
power-law representation that greatly facilitates global
optimization, instead of continuing with the recasting
until converting the model to a standard form contain-
ing linear constraints and a set of nonlinearities corre-
sponding to bilinear product, linear fractional, simple
exponentiation and univariate function terms. After
recasting the model to the canonical form, we can apply
any of the optimization strategies we have presented for
GMA models [29,32] to obtain the global optimum of
the original SC problem.

2 Results
2.1 Global optimization of non-linear models through
recasting
For a proof of concept of the difficulties of global opti-
mizing non-linear models and of the use of recasting for
attaining practical solutions, we shall start by defining a
reference biochemical network that corresponds to the
reaction scheme in Figure 1. This hypothetical system
has a source metabolite X5 and four internal metabo-
lites. The network includes six reactions and a branch

point. X3 acts as a feed-back inhibitor of the synthesis of
X2, while X1 is an activator of the synthesis of X4.
The generic model for this system is:

Ẋ1 = v1 − v2

Ẋ2 = v2 − v3 − v5

Ẋ3 = v3 − v4

Ẋ4 = v5 − v6

(1)

Each of the velocities is a non-linear function of the
involved metabolites. The SC representation, provides a
systematic way for defining a functional model of this
pathway. As a demonstrative example, let us suppose
that the numerical model is:
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) (
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) (
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) − 8k6X1
4
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(2)

In these equations, kr, r = 1,.., 6 is an auxiliary variable
used to model changes in the enzyme activity. At the
basal level, kr = 1 for all the reactions. During the opti-
mization tasks, it is possible to limit the maximum
change in gene expression by imposing a maximum
allowable change in kr.
We shall now address the following questions:
(i) To what extent can general purpose global optimi-

zation methods be applied to SC models?, (ii) Given
that a SC model can be recast as a GMA (rGMA), is

Figure 1 Branched network with feedback and feedforward
regulation. X5 is a fixed external variable that can be varied at will.
A GMA reference model is set-up by selecting appropriate
parameters (see text).
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this useful for optimization of the original SC model?,
(iii) Are the results obtained with the rGMA equivalent
to the results of the original SC model?, and (iv) What
are the practical advantages of optimizing a rGMA
model?.

2.2 Optimization goals
In order to address the questions posed at the end of
the previous section we shall define the following opti-
mizations tasks (note that changes in enzyme activities
and metabolite concentrations are constrained between
0.2 ≤ kr ≤ 5.0 and 0.1 ≤ Xi ≤ 10.0 respectively in all the
instances unless otherwise specified):

• O1: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5?
• O2: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5

considering a maximum allowable variation of 10%
in the steady-state values of the intermediaries?
• O3: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5

considering changes in the output flux from X4 of
less than 10% with respect to its reference value?
• O4: What is the best set of changes, assuming that
we can only manipulate three enzymes, that maxi-
mizes the objective function in the new steady-state
for a fixed value of X5 considering a maximum varia-
tion of 10% in the steady-state values of the
intermediaries?

Two different objective functions (OF), steady-state
concentration of X3 and flux v4, have been considered
for each optimization case, except for O3. This latter
case has been optimized in terms only of the first objec-
tive (i.e., steady-state concentration of X3), because lim-
its on v4 are already included in the formulation of the
optimization problem.

2.3 Global optimization of SC models using BARON
We first address the optimization of the aforementioned
model in their original SC form using state of the art
global optimization techniques. The model was coded in
the algebraic modeling system GAMS 23.0.2 and solved
with the commercial global optimization package
BARON v.8.1.5. on an Intel 1.2 GHz machine. An
optimality gap (i.e., tolerance) of 0.2% was set in all the
instances. As can be seen in Table 1, BARON produce
results with an optimality gap (OG) below the specified
tolerance.

Table 1 only shows one solution for each particular
instance. However, BARON identified in each case a set
of equivalent optima (i.e, solutions with the same objec-
tive function value) involving different changes in
enzyme activities, which indicates that the optimization
problem is somehow degenerated. This redundancy is a
consequence of the system’s structure and has practical
implications. As an example, we have calculated some of
these equivalent points for case O1-v4 using the NumSol
option of BARON (see Figure 2). In particular, a well
defined triangular region containing the changes in k2
and k5, and k1 and k2 that lead to the same objective
function value is identified. Within these regions, one
can decide which combination of changes should be
selected based on additional cost arguments, as they all
show the same performance in terms of the predefined
objective function. This region could be further reduced
by imposing additional constraints to the optimization.

2.4 Recasting SC models into GMA models
Any SC model can be recast into a GMA canonical
model by introducing the auxiliary variables

zrj = Krj + X
nrj
j . Substitution and differentiation generates

the following recast GMA (rGMA) model:

Ẋi =
p∑

r=1
μirVr

n+m∏
j=1

X
nrj
j z−1

rj i = 1, .., n (3a)

żrj = nrjX
nrj−1
j Ẋj r = 1, .., p

j = 1, ...,n +m
(3b)

with appropriate initial conditions Xj(0) = Xj0 and

zrj(0) = Krj + X
nrj
j0 .

For simulation purposes, model (3) is equivalent to the
original SC model. As discussed in [36], a model recast
into a GMA model has the same steady-state that the
original non-linear model. The steady-state equations of
the rGMA model can be expressed as:

Table 1 Results for the maximization of X3 and v4 and
optimization goals O1-O4 using BARON v.8.1.5. for a
tolerance of 0.2%

O k1 k2 k3 k4 k5 k6 X3 OG (%) CPU (s)

1 0.26 5.00 4.97 0.20 0.20 0.54 8.30 0.20 136.17

2 0.20 0.24 0.22 0.20 0.21 0.20 1.10 0.00 0.06

3 0.60 5.00 5.00 0.53 0.20 0.27 5.39 0.20 96.39

4 0.99 1.15 1.00 0.96 1.00 1.00 1.10 0.00 1.42

O k1 k2 k3 k4 k5 k6 v4 OG (%) CPU (s)

1 4.61 5.00 5.00 5.00 0.72 1.20 37.40 0.20 157.83

2 3.22 3.73 5.00 4.99 0.21 0.22 31.33 0.00 1.67

3 0.88 0.94 0.88 0.96 0.23 3.00 6.60 0.00 10.53

4 1.16 1.00 1.34 1.34 1.00 1.00 7.61 0.00 3.61
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p∑
r=1

μirVr

n+m∏
j=1

X
nrj
j z−1

rj = 0 i = 1, .., n (4a)

nrjX
nrj−1
j Ẋj = 0 r = 1, .., p

j = 1, ...,n +m
(4b)

2.5 Steady-state optimization of SC models through
recasting
The steady-state solutions of Eqn. (4b) satisfy also Eqn.
(4a). Thus, for optimization purposes, the steady-state
constraints of interest are:

p∑
r=1

μirVr

n+m∏
j=1

X
nrj
j z−1

rj = 0 i = 1, .., n (5a)

Krj + X
nrj
j0

= zrj0 r = 1, .., p
j = 1, ...,n +m

(5b)

According to these results, the optimization problem
can be stated as:

min − OF OF = {Xi or vr}
s.t.∑p

r=1 μirkrvr
∏n+m

J=1 X
nrj
j z−1

rj = 0 i = 1, ..,n
j = 1, ..., n +m

Krj + X
nrj
j0 = zrj0 r = 1, .., p

j = 1, ..., n +m
XiL ≤ Xi ≤ XiU i = 1, ...,n
krL ≤ kr ≤ krU r = 1, ..., p
..... additional constraints ........

(6)

In our reference model, we shall consider the follow-
ing constraints:

min − OF OF = {X3, v4}
s.t.∑p

r=1 μirkrvr
∏n+m

J=1 X
nrj
j z−1

rj = 0 i = 1, ..,n
Krj + X

nrj
j0

= zrj0 r = 1, .., p
j = 1, ..., n +m

Specific constraints for each optimization task
(O1, O3 only)
0.1 ≤ Xi ≤ 10 i = 1, ...,n

(O1, O2, O3 only)
0.2 ≤ kr ≤ 5 r = 1, ..., p

(O2, O4 only)
0.9XBAS

i ≤ Xi ≤ 1.1XBAS
i i = 1, ...,n

(O3 only) and (OF : X3 only)
0.9vBAS4 ≤ v4 ≤ 1.1vBAS4

(O4 only)
kr = kr1 + kr2 + kr3 r = 1, ..., p
kLBr yr1 ≤ kr1 ≤ (1 − δ)yr1 r = 1, ..., p
(1 − δ)yr2 ≤ kr2 ≤ (1 + δ)yr2 r = 1, ..., p
(1 + δ)yr3 ≤ kr3 ≤ kUBr yr3 r = 1, ..., p
yr1 + yr2 + yr3 = 1 r = 1, ..., p∑p

r=1 yr1 +
∑p

r=1 yr3 ≤ ME = 3

(7)

Once the problem has been recast into a rGMA, its
mathematical structure can be exploited in order to
improve the efficiency of the solution procedure, as
demonstrated by the authors in previous works. This
problem has a GMA form except for the auxiliary con-
straint 5b, which is required to recast the SC into the
rGMA. This constraint can be easily handled by means
of relaxation techniques and exponential transforma-
tions similar to those used by the authors in their global
optimization algorithms for pure GMA models [32,33].
In particular, two algorithms were developed for the glo-
bal optimization of GMA models: a customized outer-
approximation (OA, [30]) and a tailored spatial branch-

Figure 2 Equivalent optimal solutions for the case S1-O1-v4. Blue points indicates results on the original SC model obtained with BARON.
Red points identify solutions obtained for the corresponding rGMA and OA method (see text for details).
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and-bound (sBB, [32]). The authors showed that the
numerical performance of these methods depends on
the specific problem being solved, and that none of
them is clearly better than the other one. Here, we use
the OA algorithm to solve 6, as this method proved to
be faster than sBB for problems of smaller size ([32]).
Again, the main body of the algorithm was coded in
GAMS 23.0.2, using CPLEX 11.2.1 as MILP solver for
the master subproblems and CONOPT 3.14 s as NLP
solver for the slave subproblems of the algorithm. For a
fair comparison, we also set a tolerance of 0.2%, the
same as when using BARON.
As can be seen in Table 2, the optimization of the

rGMA formulation using our customized OA yields
similar results to those obtained when BARON is
applied to the original SC model. In some cases, signifi-
cant reductions in computational time are attained with
our OA algorithm. While BARON took a total time of
407.68 CPU seconds for solving the 8 instances, the cus-
tomized OA algorithm solved the same problems in 8.5
CPU seconds.
Note that the objective function values obtained with

the SC and rGMA models only differ within the toler-
ance imposed. In some cases, discrepancies regarding
the enzymatic profiles calculated are observed mainly
due to the system’s structure, that is, to the fact that the
problem contains multiple solutions attaining the same
performance in terms of objective function value but
involving different enzymatic configurations, as dis-
cussed in section 2.3.
To further investigate this issue, we apply the multi-

solution capability of BARON to the rGMA model (Fig-
ure 2). Again, different equivalent optima are obtained,
but this time the dispersion of the equivalent solutions
generated for a given case tend to concentrate either in
the center or in the extremes of the region containing
the solutions with the same objective function value cal-
culated with the SC model.

The region illustrated in Figure 2 should not be mis-
understood as a feasibility region. In fact, solutions do
exist outside this region, but they lead to worse objec-
tive function values. To further clarify this issue, we
consider a grid of values for k2 and k5 in the region
defined by constraints 4 ≤ k2 ≤ 5 and 0.2 ≤ k5 ≤ 0.8,
and solve the optimization problem within each cell
applying BARON to the SC model, and our OA to the
rGMA model. Recall that these linear constraints
define a region that contains that in Figure 2. The
results obtained in this optimization are illustrated in
Tables 3 and 4, and are exactly equal for both meth-
ods. However, the CPU time is much lower when
using our OA algorithm applied to rGMA (11,811
CPU seconds for generating all the points with
BARON applied to the SC model vs 17 CPU seconds
with the customized OA applied to the rGMA model;
as shown in Tables 5 and 6).

2.6 Difficult optimization tasks can be solved via
recasting
The reference model can be optimized either by general
purpose techniques or by rGMA specific methods such
as the customized OA. However, even with this simple

Table 2 Results for the maximization of X3 and v4 using
the rGMA model and optimization goals O1-O4 using the
customized OA for a tolerance of 0.2%

O k1 k2 k3 k4 k5 k6 X3 OG (%) CPU (s)

1 0.26 5.00 5.00 0.20 0.20 0.20 8.30 0.20 2.94

2 0.21 0.22 0.21 0.20 0.20 0.20 1.10 0.00 0.06

3 0.60 5.00 5.00 0.53 0.20 0.24 5.40 0.13 2.35

4 1.00 1.05 0.97 0.92 1.00 1.00 1.10 0.00 0.23

O k1 k2 k3 k4 k5 k6 v4 OG (%) CPU (s)

1 3.96 5.00 5.00 5.00 0.20 2.99 37.47 0.00 0.16

2 3.22 3.55 5.00 4.99 0.20 0.21 31.33 0.17 0.66

3 0.68 1.79 1.12 1.27 0.20 0.21 6.60 0.00 0.12

4 1.16 1.00 1.34 1.34 1.00 1.00 7.61 0.11 1.98

Table 3 Results (objective function) of the optimization
of case O1- v4 for specific regions of k2 and k5 obtained
with BARON for the SC model

k5/k2 1 2 3 4 5 6 7 8

8 36.50 36.71 36.90 37.08 37.24 37.37 37.47 37.47

7 36.62 36.83 37.02 37.19 37.34 37.46 37.47 37.47

6 36.75 36.95 37.14 37.31 37.44 37.47 37.47 37.47

5 36.88 37.08 37.26 37.41 37.47 37.47 37.47 37.47

4 37.02 37.21 37.38 37.47 37.47 37.47 37.47 37.47

3 37.15 37.34 37.47 37.47 37.47 37.47 37.47 37.47

2 37.29 37.46 37.47 37.47 37.47 37.47 37.47 37.47

1 37.43 37.47 37.47 37.47 37.47 37.47 37.47 37.47

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 4 Results (objective function) of the optimization
of case O1-v4 for specific regions of k2 and k5 obtained
with the customized OA for the rGMA model

k5–k2 1 2 3 4 5 6 7 8

8 36.50 36.71 36.90 37.08 37.24 37.37 37.47 37.47

7 36.62 36.83 37.02 37.19 37.34 37.46 37.47 37.47

6 36.75 36.95 37.14 37.31 37.44 37.47 37.47 37.47

5 36.88 37.08 37.26 37.41 37.47 37.47 37.47 37.47

4 37.02 37.21 37.38 37.47 37.47 37.47 37.47 37.47

3 37.15 37.34 37.47 37.47 37.47 37.47 37.47 37.47

2 37.29 37.46 37.47 37.47 37.47 37.47 37.47 37.47

1 37.43 37.47 37.47 37.47 37.47 37.47 37.47 37.47

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.
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example, we may encounter instances that are hard to
solve using standard techniques. Consider, for instance,
the same reaction scheme as before but this time with the
alternative parameters indicated in the following model:

dX1

dt
=
11.11k1X2.86

5

X2.86
5 + 0.81

− 12.35k2X1.54
1(

X1.54
1 + 0.61

)
X6.81
3

(
0.11 +

1

X6.81
3

)

dX2

dt
=

12.35k2X1.54
1(

X1.54
1 + 0.61

)
X6.81
3

(
0.11 +

1

X6.81
3

)

− 4.44k3X4.14
2

X4.14
2 + 0.11

− 7.41k5X0.51
1 X26.51

2(
X0.51
1 + 0.19

) (
X26.51
2 + 0.11

)
dX3

dt
=
4.44k3X4.14

2

X4.14
2 + 0.11

− 4.44k4X4.14
3

X4.14
3 + 0.11

dX4

dt
=

7.41k5X0.51
1 X26.51

2(
X0.51
1 + 0.19

) (
X26.51
2 + 0.11

)

− 6.67k6X1.57
4

X1.57
4 + 1.40

(8)

The optimization task of interest being:

• O5: Which is the optimal pattern of changes in
enzyme activities that maximize v6 in the new
steady-state for a fixed value of X5 and considering
the following constraints?

0.3 ≤ X1 ≤ 30
0.1 ≤ X2 ≤ 10
0.1 ≤ X3 ≤ 10
0.6 ≤ X4 ≤ 50
0.1 ≤ kr ≤ 20 r = 1, ..., p

(9)

When BARON is employed to solve this case using
the native SC form, it cannot reduce the optimality gap

below the specified tolerance after 1 hour of CPU time.
In contrast, when the model is recast into its rGMA
form and our OA method is applied, the global opti-
mum can be determined with an optimality gap of 2%
in 10.95 seconds (see Table 7). This illustrates both, the
utility of using the rGMA as a canonical form for deal-
ing with the optimization of SC models, and the compu-
tational efficiency of our global optimization methods
specifically designed to take advantage of the mathema-
tical structure of the GMA.

3 Discussion
While experimental tools to manipulate gene expression
are already available, there is no established set of guide-
lines on how these tools can be used to achieve a cer-
tain goal. So far, two main difficulties have prevented
model driven optimization from becoming a standard in
providing such guidelines: (i) the lack of information to
build detailed kinetic models and (ii) the computational
difficulties that arise upon the optimization of such
models. The latter can be exemplified by the application
of mixed integer non-linear optimization techniques
(MINLP) in the context of kinetic models presented in
[34,35]. In such cases, the optimization task showed to
be computationally very demanding and global optimal-
ity could not be guaranteed in many cases. We propose
that using models with a standardized structure may
offer a solution to both problems. On one hand, approx-
imate kinetics, such as the SC formalism, can provide
very accurate approximations and retain key features of
the system like saturation and cooperativity. On the
other hand, these formalisms can be automatically recast

Table 5 Results (CPU time in seconds) of the optimization
of case O1- v4 for specific regions of k2 and k5 obtained
with BARON for the SC model

k5/k2 1 2 3 4 5 6 7 8

8 212.53 308.53 185.64 201.80 222.30 201.53 139.16 178.31

7 194.81 161.16 215.80 196.81 344.73 243.02 0.03 174.81

6 234.30 203.75 147.08 180.69 328.34 254.42 304.11 280.53

5 212.08 282.41 329.33 237.34 208.02 292.27 200.00 154.62

4 288.00 160.14 92.94 235.80 172.69 147.14 56.11 150.28

3 125.56 111.17 150.27 187.52 337.97 158.16 112.66 264.12

2 239.70 190.59 100.03 138.47 106.38 205.14 119.39 246.34

1 140.42 102.12 80.45 21.69 73.12 96.61 89.94 80.03

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 6 Results (CPU time in seconds) of the optimization
of case O1-v4 for specific regions of k2 and k5 obtained
with the customized OA for the rGMA model

k5/k2 1 2 3 4 5 6 7 8

8 0.13 0.27 0.23 0.18 0.17 0.19 0.28 0.28

7 0.26 0.28 0.28 0.26 0.28 0.23 0.32 0.25

6 0.32 0.30 0.28 0.28 0.27 0.23 0.19 0.25

5 0.31 0.21 0.25 0.25 0.26 0.28 0.27 0.29

4 0.25 0.27 0.32 0.30 0.25 0.27 0.26 0.28

3 0.20 0.22 0.28 0.28 0.29 0.30 0.19 0.53

2 0.28 0.25 0.19 0.19 0.22 0.17 0.30 0.25

1 0.23 0.24 0.26 0.27 0.23 0.21 0.24 0.31

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 7 Results of the optimization of model 8 with
BARON (SC model) and the customized OA (rGMA model)

Solver k1 k2 k3 k4 k5 k6 OF OG (%) CPU (s)

BARON (SC) 6.24 5.16 0.46 0.6 8.46 9.09 60.36 45.18 3600

OA (rGMA) 6.25 5.17 0.45 0.6 8.44 9.1 60.46 2.18 10.95
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into GMA form and using efficient global optimization
methods developed specifically for this canonical repre-
sentation. Although this technique will certainly have
limitations, our previous results indicate that it can be
applied to models of moderate complexity without
major problems [32]. Optimization of GMA models
comprising up to 60 reactions and 40 metabolites offer
no limitation to our technique. We have shown how
these methods can be easily used to optimize SC via
recasting into rGMA models while still being quite
efficient.
Our results can be of particular interest for dealing

with multicriteria optimization on realistic models. This
kind of problems are relevant when exploring the adap-
tive response to changing conditions, were conflictive
goals may be at play [39,40]. Particularly, we should
notice that several multi-objective optimization techni-
ques, such as the weighted sum or epsilon constraint
methods [41] are based on solving a set of auxiliary sin-
gle-objective problems. These approaches could directly
benefit from the numerical advances presented in this
work. This kind of problems are relevant when explor-
ing the adaptive response to changing conditions, were
conflictive goals may be on play [39,40]. The highly effi-
cient OA algorithm applied to rGMA models provide a
practical way for extending multicriteria optimization
methods, for instance as used in [39], to non-linear
kinetic models. It is in principle possible to make use of
methods such as ours to analyze the optimality of large
scale dynamic systems much in the same way that Flux
Balance Analysis can be applied to analyze the stoichio-
metry of an organism on a genomic scale. To make this
possible, however, extensive experimental and modeling
efforts would be required to characterize the most
important properties of the involved processes. In fact,
we anticipate that practical limitations to apply the tech-
niques presented here in solving larger problems will be
dominated by the lack of information about the compo-
nent processes and metabolites rather than by the tech-
nical capacity of the optimization technique presented
here. Although a complete kinetic characterization of
the processes in a complete metabolic network may yet
be far, information on kinetic orders and saturation
fractions is easier to obtain. In this context, the SC
formalism provides a sound approximation that results
in a mathematical representation useful for simulation
and optimization through recasting.

4 Conclusions
We expect that the possibility of building models using
non-linear approximate formalisms and of subsequently
optimizing these models will trigger interest in the
experimental characterization of the components of cel-
lular metabolism. After the genomic explosion, we need

to step back and begin to measure enzyme activities,
metabolite levels, and regulatory signals on a larger scale
than we used to do before, if we want to understand the
emergence of the dynamic properties of biological sys-
tems and to be able to develop successful biotechnologi-
cal applications.

5 Methods
5.1 Modelling strategies
The process of model building and optimization can be
used to understand how a system should be changed in
order to achieve specific biotechnological goals or how
the same system has evolved in order to more efficiently
execute a given biological function. Different trade-offs
are considered during the modeling process. On the one
hand, one wants to use models that are as simple as
possible to guarantee numerical tractability. Unfortu-
nately simplifications may lead to models whose accu-
racy is only ensured for a limited range of physiological
conditions. On the other hand, models that are very
detailed and accurate over a wide range of physiological
conditions are typically more difficult to analyze and
optimize. Needless to say, the type of modeling strategy
and the model one chooses to implement have a large
impact on the results of the analysis. The most widely
used strategies in the context of optimization are: (1)
Stoichiometric models, (2) Kinetic models, and (3)
Approximated models.
The three strategies have as a starting point a set of

ordinary differential equations, in which the dependent
variables or nodes are the chemical species whose dyna-
mical behavior one is interested in studying. For a sys-
tem with n dependent variables, p processes and m
independent variables, the node equations are written as
follows:

Ẋi =
p∑

r=1

μirvr i = 1, .., n (10)

μir stands for the stoichiometry of each metabolite Xi

in each reaction r with respect to metabolite i and can
be derived from the reaction scheme.
At this stage, the various strategies begin to differ in the

way that they implement and analyze the equations. Typi-
cally, Flux balance analysis (FBA) and related techniques
consider only the steady state behavior of the system, and
treat vr as a variable whose value can be changed in order
to optimize specific steady state constraints. To accom-
plish this, FBA-like methods attempt to find solutions for
the following system of linear equations:

0 =
p∑

r=1

μirvr i = 1, .., n (11)
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This system of equations is solved under different
assumptions. A typical problem is that of understanding
the effect of knocking out different genes from the sys-
tem. This analysis can be performed by setting vr = 0
for the process(es) that depend on the product of the
genes that are knocked out. Once these constraints are
set, linear optimization techniques can be used to iden-
tify the region of the variable space that satisfies the
steady state and optimizes at the same time a set of spe-
cific measurable aspects of the systems [42-44]. It must
be noted that FBA analysis of Eqn. (11) does not
account for the regulatory effects that can result from
gene knockout and it cannot be used to predict changes
in metabolic concentrations and temporal responses.
Thus, optimization constraints are limited to steady-
state fluxes [15].
To overcome these limitations, we must use more

complex kinetic models where the effect of changing the
values of the variables on the fluxes is taken into
account. This requires defining a functional form for
each vr in Eqn. (10). Often, this functional form is
drawn from a number of classical enzyme kinetic rate-
laws. As a result, we use an approximate expression for
the kinetic behavior of each elementary process whose
form depends on the underlying mechanism of the pro-
cess. The reason for this is that the classical rate laws
are rational functions of the variables and they are built
upon different types of simplifying assumptions on the
detailed mechanism of the reactions. Such assumptions
range from considering that the elementary chemical
steps of the catalytic process occur at very different
timescales to assuming that the concentration of the
catalyst and of the reactants differ in orders of magni-
tude. Thus, rate laws such as the popular Michaelis-
Menten are approximations to the actual mechanism in
specific conditions. However, more often than not, one
does not have enough information to judge if such con-
ditions meet those one is trying to model. Thus, using
rational enzyme kinetics in models lacks a sound theore-
tical ground. In fact, within the complex architecture of
the intracellular milieu, many of the assumptions that
justify these classical rate-laws may not hold [45-47].
Even in the best case scenario where a detailed kinetic
model using classical enzyme kinetics can be derived
and numerically identified, it may be hard to globally
optimize that model using general purpose algorithms.
As we will show here, available optimization techniques
may fail to solve fairly trivial optimization tasks even in
simple models. These numerical difficulties can be over-
come by defining reformulated models based on canoni-
cal representations that are easier to handle using
customized global optimization algorithms devised for
specific canonical functional forms.

As an alternative, theoretically well supported canoni-
cal representations can be derived using approximation
theory. One type of such representations are power-law
models. In a power-law model, each vr in Eqn. (10) is
approximated as [19,21]:

vr(X1, ..,Xn, ...Xn+m)

≈ γr

n+m∏
j=1

X
fjr
j r = 1, .., p

(12)

This approximation is derived at a given operating
point (X10 ,X20 , ..,X(n+m)0 ) as a first-order Taylor series
representation of the target function in log-log space.
This approximation can generate models with different
representations. The two that are most commonly used
are the S-system representation and the GMA represen-
tation. The S-system representation is obtained by
lumping the various processes that contribute to the
synthesis of a given metabolite into a global process of
synthesis V+

i and those that contribute to the utilization
of a given metabolite into a global degradation process

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

μ+
irvr −

p∑
r=1

μ−
ir vr

= V+
i − V−

i i = 1, .., n

:

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

μ+
irvr −

p∑
r=1

μ−
ir vr

= V+
i − V−

i i = 1, .., n

(13)

Then, the aggregated processes are represented by
power-law functions:

Ẋi = αi

n+m∏
j=1

X
gij
j −

βi

n+m∏
j=1

X
hij
j i = 1, ..,n

(14)

Alternatively, the GMA form is obtained representing
each individual vr as a power-law:

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

⎛
⎝μirγr

n+m∏
j=1

X
frj
j

⎞
⎠ i = 1, .., n

(15)
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The parameters in these representations have a clear
physical interpretation. Kinetic orders, the exponents in
the power-laws, are local sensitivities of the fluxes,
either individual (frj for vr) or aggregated (gij for V

+
i and

hij for V
−
i ), with respect to Xj. Rate-constants (ai, bi and

gr) are parameters that are computed so that the flux in
the model at steady state is equal to the operating flux
at the operating point for the metabolites. Parameter
estimation techniques have been developed so that
power-law parameters can be calculated from experi-
mental measurements [13]. It should also be noted that
the use of estimation procedures (i.e., least-squares),
alternate regression or similar procedures to estimate
power-law parameters from dynamic curves lead to a
power-law representation that is no longer local accord-
ing to the classical definition [48-50]. Those models
may, by definition, slightly improve their accuracy over
strictly local models.
To complement the power-law approach, the Satur-

able and Cooperative (SC) formalism was introduced by
Sorribas et al. [23] as an extension of the ideas that led
to the power-law formalism. The SC representation of a
given velocity is:

vr(X1, ..,Xn, ...Xn+m) ≈
Vr

n+m∏
j=1

X
nrj
j

n+m∏
j=1

(
Krj + X

nrj
j

) (16)

This representation can be obtained from a power-law
model defined at a given operating point X0 = (X10,.., X

(n + m)0) through the following relationships:

nrj =
frj

1 − prj
r = 1, .., p

j = 1, ..,n +m
(17)

Krj =
1 − prj
prj

X
nrj
i0 r = 1, .., p

j = 1, .., n +m
(18)

Thus SC uses the same information as the power-law
except for the new parameters prj (saturation fractions),
which are defined as:

prj = vr0/Vrj r = 1, .., p
j = 1, ..,n +m

(19)

where vr0 = vr(X10,.., Xn0,... X(n + m)0) and Vrj is either
the limit velocity (saturation) when Xj ® ∞ if nrj > 0, or
the limit velocity when Xj ® 0 if nrj < 0.
Using SC models for global optimization can raise

some numerical issues. These difficulties can be avoided
to a large extent by recasting SC models into a

canonical GMA model, through the introduction of aux-
iliary variables, as will be shown in the next section.

5.2 Recasting non-linear models into power-law canonical
models by increasing the number of variables
Non-linear models can be exactly recast into GMA or S-
system models through the use of auxiliary variables
[36]. As a result, the final model is an exact representa-
tion of the original model, written in a canonical form.
In other words, the resulting GMA model is not an
approximation to the original model: it is an exact
replica of it. To avoid confusion, hereafter, we refer to a
GMA model that exactly recasts another as an rGMA
model.
As a very simple introductory example, consider a lin-

ear pathway with two internal metabolites X1 and X2

and a source metabolite X3 (Figure 3). In this pathway,
X2 is a competitive inhibitor of the synthesis of X1 from
the source metabolite. A generic model using Michaelis-
Menten kinetic functions, assuming a competitive inhi-
bition of the first reaction by X2, can be written as:

Ẋ1 =
V1X3

K1(1 + Ki/X2) + X3

− V2X1

K2 + X1

Ẋ2 =
V2X1

K2 + X1
− V3X2

2

K2
3 + X2

2

(20)

in which X3 is an externally fixed variable.
Recasting this model as a rGMA can be done as fol-

lows. First, let us define three new variables:

X4 = K1(1 + Ki/X2) + X3

X5 = K2 + X1

X6 = K2
3 + X2

2

(21)

We can now write the model in 20 as:

Ẋ1 = V1X3X
−1
4 − V2X1X

−1
5

Ẋ2 = V2X1X
−1
5 − V3X

2
2X

−1
6

(22)

with initial conditions X1(0) = X10 and X2(0) = X20.

Figure 3 A simple linear network.
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To complete the recasting we must now provide the
equations that follow the change in the new variables
over time. These are given by the following equations:

Ẋ4 = −K1KiẊ2

X2
2

= V3K1KiX
−1
6 − V2K1KiX1X

−1
5

X−2
2 Ẋ5 = Ẋ1

= V1X3X
−1
4 − V2X1X

−1
5

Ẋ6 = 2X2Ẋ2

= 2V2X1X2X
−1
5 − 2V3X

3
2X

−1
6

(23)

with initial conditions X4(0) = K1(1 + Ki/X20) + X30,
X5(0) = K2 + X10, and X6(0) = K2

3 + X2
20.

The resulting rGMA model (22-23) is an exact repre-
sentation of model in (20). Hence, for a set of appropri-
ate initial conditions, the simulation of the dynamic
response using either the model recast as a rGMA or
the original model will produce the same trajectory. In
principle, any non-linear model can be recast into a
rGMA following a similar procedure [36]. This can be
extremely useful, because it allows for the application of
tailored global optimization procedures originally
devised for GMA models [28-30,32,51,52] to generic
non-linear models.
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