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Abstract

Background: Recent development of high-resolution single nucleotide polymorphism (SNP) arrays allows detailed
assessment of genome-wide human genome variations. There is increasing recognition of the importance of SNPs
for medicine and developmental biology. However, SNP data set typically has a large number of SNPs (e.g., 400
thousand SNPs in genome-wide Parkinson disease data set) and a few hundred of samples. Conventional
classification methods may not be effective when applied to such genome-wide SNP data.

Results: In this paper, we use shrunken dissimilarity measure to analyze and select relevant SNPs for classification
problems. Examples of HapMap data and Parkinson disease (PD) data are given to demonstrate the effectiveness of
the proposed method, and illustrate it has a potential to become a useful analysis tool for SNP data sets. We use
Parkinson disease data as an example, and perform a whole genome analysis. For the 367440 SNPs with less than
1% missing percentage from all 22 chromosomes, we can select 357 SNPs from this data set. For the unique genes
that those SNPs are located in, a gene-gene similarity value is computed using GOSemSim and gene pairs that has
a similarity value being greater than a threshold are selected to construct several groups of genes. For the SNPs
that involved in these groups of genes, a statistical software PLINK is employed to compute the pair-wise SNP-SNP
interactions, and SNPs with significance of P < 0.01 are chosen to identify SNPs networks based on their P values.
Here SNPs networks are constructed based on Gene Ontology knowledge, and therefore each SNP network plays a
role in the biological process. An analysis shows that such networks have relationships directly or indirectly to
Parkinson disease.

Conclusions: Experimental results show that our approach is suitable to handle genetic variations, and provide
useful knowledge in a genome-wide SNP study.

Background
Single Nucleotide Polymorphism (SNP) is a DNA
sequence variation occurring when a single nucleotide -
A, C, G, or T - differs at the same position between
individuals [1]. SNPs are believed to result in differences
between individuals, such as susceptibility to diseases
[2]. They are abundant in human genome [3,4], which
are considered as invaluable markers and potential
powerful tools for both of genetic researches and appli-
cations in practice [5-8], for instance, disease gene

discovery [9], drug development [10], and clinical treat-
ment [11]. It is believed that more and more genetic
researches and practical applications combined with
machine learning or statistical methods will be investi-
gated based on SNP data sets as SNPs will provide more
useful information which is not shown by other
methods.
In a SNP data set, the association between a disease

and a set of relevant SNPs are investigated. Patients and
normals are often categorized in groups according to
their SNP genotypes (categorical values). Thousands of
SNPs in different regions of chromosomes are used to
describe characteristics of patient/normal samples.
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There are two key properties of data sets for such
classification task: high-dimensional and categorical.
When many SNPs are used to detect the association

between a disease and multiple marker genotypes, it is
common to find only several numbers of SNPs having
genotype patterns that are highly specific to each group
of individuals. The SNPs are called the relevant SNPs, as
opposed to the irrelevant SNPs that do not help much in
identifying the group (i.e., individuals of the same type).
Due to the large number of SNPs being irrelevant to each
group, two individuals in the same group could have low
similarity when measured by a simple similarity function
that consider the genotypes of all SNPs. The groups may
thus be undetectable by classification algorithms.
Many researchers gave efforts to find such a cohort of

SNPs that having genotype patterns and highly specific
to each group of individuals. Dai et al. [12] proposed a
SNP-Haplotype Adaptive Regression (SHARE) algorithm
that seeks the most informative set of SNPs for genetic
association in a targeted candidate region by growing
and shrinking haplotypes with one more or less SNP in
a stepwise fashion, and comparing prediction errors of
different models via cross-validation. Xu et al. [13]
developed a set of web-based SNP selection tools which
can select SNPs based on Genome-wide Association
Studies (GWAS) results, linkage disequilibrium (LD),
and predicted functional characteristics of both coding
and non-coding SNPs. An example using prostate can-
cer was demonstrated that it can select a small panel of
SNPs that include many of the recently validated pros-
tate cancer SNPs. Latourelle et al. [14] sought to identify
onset age genetic modifiers using genome-wide associa-
tion study in familial Parkinson disease (PD). Meta ana-
lysis across three studies detected consistent association
(P < 10−5) of five SNPs suggesting an influence of genes
involved in endocytosis and lysosomal sorting in PD
pathogenesis. Gao et al. [15] conducted a genome-wide
parametric and nonparametric linkage analysis and
found two loci for PD, indicating that additional PD sus-
ceptibility genes might be identified through targeted
candidate gene studies in these loci regions. Srinivasan
et al. [16] considered pathway association of SNP varia-
tion, which may have inconsistencies with traditionally
individual SNP associations, providing a combination of
the pathway and SNP analysis in the future.
The classification problem is defined for such a sce-

nario, see for instance [17]. Each group is a set of indivi-
duals with an associated set of relevant SNPs such that
in the group formed by the relevant SNPs, the indivi-
duals are similar to each other but dissimilar to indivi-
duals outside the group. In this paper, we test the
HapMap data which is downloaded from HapMap web-
page [18] and Parkinson disease genome-wide SNPs
genotyping data obtained from the Coriell Institute for

Medical Research. A new computational method called
the nearest shrunken centroid was performed to select
SNPs from these two data sets. In the literature, Schwen-
der [19] has developed SAM for analysis of SNP data.
The method is to study contingency table for testing if
the distribution of the genotypes of SNPs differs between
different groups. The Pearson c2 statistic is used to han-
dle rejection hypothesis. Shrunken c2 statistics are
further constructed to analyze relevant SNPs. In [20],
Park et al. have considered using a classical nearest
shrunken centroid method [21,22] to select SNPs. Their
idea is to represent genotypes by numerical numbers
directly and then perform the nearest shrunken centroid
on the numerical data set of genotypes. The classical
nearest shrunken centroid method is used to handle
numerical microarray data sets. The main aim of this
paper is to apply a new nearest shrunken centroid
method to handle SNPs data in a categorical manner,
and detect association between a disease and multiple
marker genotypes based on a set of relevant SNPs
selected. In addition, we conduct a comparison between
our method and Park’s [20] method based on one of the
chromosomes. Genes that those selected SNPs located in
are constructed several groups of genes using GOSem-
Sim [23] with a similarity value being greater than a
threshold. SNPs involved in these networks were further
checked pair-wise SNP-SNP interactions using PLINK
[24] with statistical significance of P < 0.01, which can be
considered as an extension of existing Gene Ontology
[25] knowledge.

Methods
Data source
HapMap data
The HapMap SNPs data [18] are downloaded from the
HapMap webpage. According to the LD map of chro-
mosome 22, see [26], 200 SNPs from chromosome 22 of
4 populations: Utah residents with ancestry from north-
ern and western Europe (CEU), Han Chinese in Beijing,
China, (CHB), Japanese in Tokyo, Japan (JPT) and Yor-
uba in Ibadan, Nigeria (YRI) are picked out randomly
from a region from 3.44e7−3.5e7 kb [27], which shows a
great difference of SNP positions on the LD map over 4
populations. Here the LD map shows the intensity of
linkage disequilibrium of SNPs. In the map, the “flat”
curve means that the SNPs are in strong linkage dise-
quilibrium, i.e., the recombination rarely occur between
them, while the “steep” curve means the recombination
occurs frequently in this part of chromosome. Samples
are collected from the CEU (30 trios), CHB (45 unre-
lated individuals), JPT (45 unrelated individuals), YRI
(30 both-parent-and-adult-child trios). There are 90
samples for CEU and YRI populations respectively, and
45 samples for each of CHB and JPT populations.
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Missing data are considered as a category in the
calculation.
Parkinson disease data
The Parkinson disease SNPs data is based on a
genome-wide genotyping of 270 individuals with idio-
pathic Parkinson Disease cases (case) and 271 neurolo-
gically normal controls (control) downloaded from the
Coriell Institute for Medical Research (http://www.
ncbi.nlm.nih.gov/sites/entrez?Db=gap). The genotyping
was performed using the Illumina Infinium I and Infi-
nium II assays. The Illumina Infinium I assay asseses
109,365 unique gene-centric SNPs while the Infinium
II assay assesses 317,511 haplotype taggings SNPs
based upon Phase I of the International HapMap Pro-
ject. The Illumina Infinium I and II assays share
18,073 SNPs in common. Therefore, the combination
of the two assays represents 408,803 unique SNPs. In
the following experiment, SNPs with a > 1% missing
percentage in all samples are not considered. After
missing values are filtered out, the number of SNPs
was decreased to 367440.

Shrunken methodology
The nearest shrinkage centroid is developed to handle
numerical microarray data sets. The main difference
between gene expression and SNP data is that the
expression values are continuous and SNPs are categori-
cal [28].
In this paper, we make use of the shrinkage idea and

apply the algorithm for categorical SNP data by using a
genotype distribution measuring for categorical objects
and modes instead of means for groups. These exten-
sions will remove the numeric-only limitation of the
nearest shrunken method and enable the classification
process to be used to efficiently deal with genome-wide
categorical SNP data sets.

Let xĳ be the categorical value for SNP i = 1, 2, …, p
and samples j = 1, 2, …, n. There are K classes and let
Ck be indices of the nk samples in class k. The centroid
of the i th SNP in class k is defined as:

x i kik = ( )mod ,e thSNP in class (1)

where mode is the category that with the highest
appearance frequency.
The overall centroid for SNP i is:

x ii = ( )mod .e thSNP in all classes (2)
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Ck denote the indices of the nk samples in class k, s0 is
a positive constant included to prevent the possibility
that a SNP with small deviation could produce a large
dĳ. In (3),we need to consider the distance from a class
centroid to the overall centroid for the i th SNP. In our
proposal, genotype distributions are used for measuring
categorical SNPs data.
In the next step, the soft thresholding ′dik can be

defined similarly by:

′ = ( ) −( )+
d d dik ik iksign Δ . (6)

In (3),we can see that if the difference between a class
centroid and the overall centroid is small, it demon-
strates that the difference is insignificant or is just some
noise in the classification process. Let t be a test sample,
the class label of t is determined by:
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where πk is the prior probability of class k. It is the
proportion of class k in the population. If it is unknown,

it can be set to
1
K

.

Cross validation
A 10-fold cross validation is adopted in our classifica-
tion procedure to evaluate the performance of the pro-
posed nearest shrunken centroid method. In each trial,
all the samples are randomly divided into 10 equal parti-
tions. For each of the 10 partition groups, we select one
of them as testing set and the remaining nine of them
are considered as training sets. Ten trials are considered
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and the results are collected and based on this 10-fold
cross validation procedure.

SNP network construction
All the SNPs that selected by the shrunken metholodgy
belong to 122 unique genes. We compute all the pair-
wise functional similarities of these gene products using
GOSemSim, a package of Bioconductor [29], which is
an open source and open development software project
for the analysis and comprehension of genomic data
running in the platform of R. GOSemSim estimates the
similarity scores of gene pairs according to their GO
terms: molecular function (MF), biological process (BP)
and cellular component (CC) [25]. In this paper, we
only consider two of these terms: MF and BP and adopt
Rel’s method [30] to compute the similarity values,
which is based on the information content of the GO
terms and define information content as the frequency
of each term occurs in the GO corpus. Afterwards, gene
pairs that have a similarity value being greater than a
threshold, were selected to construct several groups of
genes using Cytoscape [31].
For the SNPs that involved in these groups of genes, we

did a statistical analysis between these SNPs and all the
other SNPs selected by our method using PLINK [24],
which is a free, open-source whole genome association
analysis toolset, designed to perform a range of basic,
large-scale analysis in a computationally efficient manner.
PLINK provides a logistic regression test for interaction
that assumes an allelic model for both the main effects
and the interactions. All pairwise combinations of SNPs
can be tested. Odds ratio for interaction, c2 statistic and
asymptotic P-value will be provided in the output file. By
constructing SNPs networks with SNP pairs that have
P < 0.01 significance, we can figure out some potential
SNP-SNP interactions that are still unknown.

Results and discussion
HapMap SNP data set
In the first test, we take any two out of four populations
in HapMap data set to set up two-class classification pro-
blems. Cross-validation is used to employ independent
data sets. The results are shown in Figures 1, 2, 3, 4, 5, 6.
As shown in these figures, we can see that all have a high
accuracy of more than 90 percent, except the CHB-JPT
classification problem, only about 50 percent, when the
threshold Δ is less than 2. Then accuracy decreases as
the amount of shrinkage increases since less SNPs are
used in the prediction. The reason for the poor accuracy
of CHB-JPT classification is that these two populations
are quite similar on their SNPs, see Figure 7.
In the second test, we consider a four-class classifica-

tion problem, i.e., to classify the four populations: CEU,
CHB, JPT and YRI. The setting is the same as that in

the first experiment. Figure 8 shows the cross-validation
classification accuracy using different values of Δ for
200 SNPs. The best accuracy is 77.78 percent when Δ =
1.5. When Δ < 1.5, there are a lot of SNPs to be used in
the classification, but some of them are likely redundant.
When Δ > 1.5, a lot of SNPs are not used, we may
throw away some useful SNPs in the classification pro-
cess. The confusion matrix in Table 1 shows that the
prediction for CEU and YRI is quite good, but bad for
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Figure 1 CEU-CHB classification. Two populations: CEU and CHB
out of the 4 populations in HapMap data set are picked out to set
up a two-class classification. The X axis is the amount of shrinkage Δ

and Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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Figure 2 CEU-JPT classification. Two populations: CEU and JPT
out of the 4 populations in HapMap data set are picked out to set
up a two-class classification. The X axis is the amount of shrinkage Δ

and Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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CHB and JPT. In these two cases, the accuracy is not
high. When we use all 51793 SNPs in chromosome 22
to perform the classification, the best accuracy is 94.44
percent (Δ = 0.5), see Figure 9.
By shrinkage (Δ is set to 1.5), the number of SNPs

used for classification is decreased from 200 to 143, 143,
142 and 142 for CEU, YRI, CHB, and JPT respectively.
In Figure 7, we show the SNPs used in prediction and
their value of ′dik . The values of ′dik in blue in the

figure mean that its corresponding SNP appears in all

four populations, while the values of ′dik in red repre-

sents its corresponding SNP shows in only one popula-
tion. Next we show the centroid genotype distribution

vector corresponding to the ′dik in red in Table 2.

As shown in Table 2, at 12th SNP, the genotype dis-
tribution vector of YRI is quite different from the
others, similarly, at 127th SNP, the genotype distribution
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Figure 3 YRI-CHB classification. Two populations: YRI and CHB
out of the 4 populations in HapMap data set are picked out to set
up a two-class classification. The X axis is the amount of shrinkage Δ

and Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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Figure 4 YRI-JPT classification. Two populations: YRI and JPT out
of the 4 populations in HapMap data set are picked out to set up a
two-class classification. The X axis is the amount of shrinkage Δ and
Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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Figure 5 CEU-YRI classification. Two populations: CEU and YRI out
of the 4 populations in HapMap data set are picked out to set up a
two-class classification. The X axis is the amount of shrinkage Δ and
Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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Figure 6 CHB-JPT classification. Two populations: CHB and JPT
out of the 4 populations in HapMap data set are picked out to set
up a two-class classification. The X axis is the amount of shrinkage Δ

and Y axis is the accuracy (accuracy refers to the correctly classified
samples in testing data sets in the 10-fold cross validation) obtained
by using our shrunken method.
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vector of CEU differs from those of the other three
populations. The reason is that the mode of YRI is “aA”,
while that of whole population is “AA”, and therefore
YRI population has more variation and has a large value
of ′dik .

Parkinson disease SNPs data
Next we consider to use Parkinson disease data set to
perform experiments to show the effectiveness of the
shrunken methodology and construct SNPs networks.
Table 3 shows the average classification accuracy results
(correctly classified samples in testing data sets in the
10-fold cross validation) of all 22 chromosomes of Par-
kinson disease data set by using the nearest shrunken
centroid program after 10-fold cross validation. We use

Figure 7 The values of soft threshold. The SNPs used in prediction and their values of ′dik (from top to bottom are: CEU, YRI, CHB, JPT, Δ =
1.5). The values of ′dik in blue in the figure mean that its corresponding SNP appears in all four populations, while the values of ′dik in red
represents its corresponding SNP shows in only one population.

Table 1 Confusion matrix when Δ = 1.5

CEU YRI CHB JPT

CEU 43 0 1 1

YRI 0 45 0 0

CHB 0 0 30 15

JPT 0 0 23 22

Four populations: CEU, CHB, YRI and JPT in HapMap data set are picked out to
set up a four-class classification. Only 200 SNPs located in 3.44e7-3.5e7kb of
Chromosome 22 are used in this experiment. The confusion matrix is created
when the best accuracy obtained under Δ = 1.5.
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Figure 8 Classification accuracy for four classes problem using
200 SNPs in Chromosome 22. Four populations: CEU, CHB, YRI
and JPT in HapMap data set are picked out to set up a four-class
classification. The X axis is the amount of shrinkage Δ and Y axis is
the accuracy (accuracy refers to the correctly classified samples in
testing data sets in the 10-fold cross validation) obtained by using
our shrunken method. Only 200 SNPs located in 3.44e7-3.5e7kb of
chromosome 22 are used in this experiment.
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the most frequent genotypes in case and control groups
to be the modes for the program. The parameter Δ is
tuned in each chromosome to obtain the highest accu-
racy in the test. To demonstrate the effectiveness of the
proposed method, we also have a comparison with
Park’s [20] using the corresponding same data set. Here
we use the numerical values (0,1,2,3) to represent differ-
ent genotypes for Park’s method. According to Table 3,
the performance of our shrunken centroid method in
terms of accuracy and numbers of selected SNPs is bet-
ter than Park’s method.
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Figure 9 Classification accuracy for four classes problem using
all 51793 SNPs in Chromosome 22. Four populations: CEU, CHB,
YRI and JPT in HapMap data set are picked out to set up a four-
class classification. The X axis is the amount of shrinkage Δ and Y
axis is the accuracy (accuracy refer to the correctly classified samples
in testing data sets in the 10-fold cross validation) obtained by
using our shrunken method. All 51793 SNPs of chromosome 22 are
used in this experiment.

Table 2 Genotype distribution vector of 12th SNP (left)
and 127th SNP (right)

aa aA AA aa aA AA

CEU 0 0.0667 0.9333 CEU 0.1556 0.4 0.3778

YRI 0.0667 0.5111 0.4222 YRI 0.0222 0.1333 0.8444

CHB 0 0.0444 0.9556 CHB 0 0 1

JPT 0 0.0222 0.9778 JPT 0 0 1

Illustration of genotype distribution vector of 12th SNP (left) and 127th SNP
(right) in the four populations CEU, YRI, CHB and JPT in HapMap data set
where A and a represent the major and minor alleles. Each distribution of the
above three category (aa, aA, AA) is indicated by their distribution percentage
in all samples.

Table 3 Comparisons between the proposed method and Park’s method

The Proposed Method Park’s Method

Chromosome Number of SNPs Accuracy Δ Number of SNPs Accuracy Δ Number of SNPs

1 29226 0.5926 0.893 21 0.5667 0.876 88

2 30298 0.6019 0.919 20 0.5722 0.965 87

3 25648 0.6056 0.880 26 0.5611 0.860 132

4 22315 0.6204 0.918 11 0.5945 1.024 42

5 22746 0.5796 0.926 22 0.5611 0.900 82

6 24334 0.6093 1.003 3 0.5204 0.944 49

7 19740 0.5797 0.901 7 0.5685 0.980 39

8 21384 0.5834 0.931 6 0.5741 0.979 35

9 18122 0.5426 0.932 7 0.5148 0.908 61

10 18525 0.6074 0.930 9 0.5593 0.999 47

11 18074 0.6352 0.964 7 0.5944 0.942 52

12 18186 0.6074 0.893 17 0.5667 0.975 31

13 13077 0.5870 0.906 9 0.5053 0.919 23

14 11728 0.5574 0.901 8 0.5259 0.962 26

15 10813 0.6037 0.905 8 0.5556 0.917 40

16 10892 0.5778 0.936 8 0.5611 0.946 37

17 10730 0.5815 0.919 4 0.5037 0.961 31

18 11677 0.5704 0.921 5 0.5071 0.956 27

19 7749 0.6037 0.887 7 0.5463 0.950 13

20 9647 0.6111 0.864 12 0.5907 0.951 33

21 6070 0.5833 0.875 8 0.4945 0.911 8

22 6459 0.6056 0.901 5 0.5444 0.924 23

Average 0.5930 0.914 10 0.5495 0.943 46

Illustration of the classification accuracies of all chromosomes of Parkinson disease genome-wide data set after a 10-fold cross validation and a detailed
comparison between our proposed method and Park’s method when filter out those SNPs whose missing percentage is >1%. The second column indicates the
number of SNPs in each chromosome after filtering. Accuracy is the average accuracy after a 10-fold cross validation, Δ value and No of SNPs are obtained when
the corresponding average accuracy is reached.
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We also choose Chromosome 14 as an example to
demonstrate the SNPs selected by the proposed method.
Figure 10 shows the accuracies obtained when we increase
Δ value from zero to three in one trial of the 10-fold cross
validation. We can see from the figure that our method
can get a reasonably good accuracy of 64.81% when Δ is
equal to 0.8. By shrinkage, the number of SNPs selected for
the classification is decreased from 11728 to 20. In Table 4,
we show the genotype distributions of these 20 SNPs in
the disease and control groups where A and a represent
the major and minor alleles. The column under “Missing”
refers to the missing percentages of genotypes in the
groups. According to the table, we find that the SNP geno-
type distributions in two groups are quite different.
We randomly select one trial of this 10-fold cross vali-

dation as an example to further analyze. In this trial, for
all the 367440 SNPs from 22 chromosomes of Parkinson
disease data set, there are totally 357 selected and 171 of
them are located in gene coding area. Next we make use
of the knowledge of these genes to construct SNPs

networks. For the 122 genes that those 171 SNPs
located in, we cluster the genes based on their similarity
values using GOSemSim. The closely related biological
process and molecular function roles of each gene were
checked with GOSemSim with a threshold. When a
similarity value between two genes is less than the
threshold, their relationship is not considered. Therefore
several groups of genes can be formed. As we are inter-
ested at gene-gene interactions, and we only consider
the groups where the number of genes in these groups
are more than one. In Table 5, we show the number of
groups of genes formed by using different threshold
values and the number of pairs of genes involved.
We see in Table 5 that the number of groups of genes

increases when the threshold value increases as more
groups are formed. However, when threshold value
further increases, the number of groups is reduced as
each group just contains one gene. According to Table
5, we select the threshold to be 0.25 for analysis as the
number of groups of genes is higher than those using
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Figure 10 Relationship between Δ and accuracy in Chromosome 14. Illustration of the accuracy obtained in Chromosome 14 of Parkinson
disease genome-wide data set when change Δ value from 0 to 3. For Chromosome 14, in each trial, all the 541 samples of both control and
case are randomly divided into 10 equal partitions. For each of the 10 partition groups, we select one of them as testing set and the remaining
nine of them are considered as training sets. 10 trials are considered and the results are collected based on this 10-fold cross validation
procedure. This figure was drawn based on one of these ten trails when the highest accuracy (accuracy refers to the percentage of correctly
classified samples over all test samples) is obtained. X axis refers to Δ value, it increases from 0 to 3. Y axis refers to the accuracy obtained in
Chromosome 14 when using our method, it fluctuates when different Δ values are applied and the highest accuracy is obtained when Δ is
equal to 0.8.
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Table 4 Genotype distributions of selected 20 SNPs in Chromosome 14.

Control Group Disease Group

SNPs AA Aa aa Missing AA Aa aa Missing

rs12434822 0.4391 0.4096 0.1513 0.0000 0.3000 0.5111 0.1889 0.0000

rs1952415 0.5055 0.4354 0.0591 0.0000 0.6185 0.2852 0.0963 0.0000

rs12050360 0.5424 0.3985 0.0591 0.0000 0.6519 0.2889 0.0592 0.0000

rs2248160 0.8155 0.1734 0.0111 0.0000 0.9000 0.1000 0.0000 0.0000

rs7146149 0.4760 0.4354 0.0812 0.0074 0.6174 0.3185 0.0704 0.0037

rs6573113 0.7232 0.2399 0.0369 0.0000 0.6037 0.3556 0.0370 0.0037

rs7560 0.6421 0.2878 0.0664 0.0037 0.5037 0.4000 0.0963 0.0000

rs1950902 0.6199 0.3506 0.0295 0.0000 0.7074 0.2519 0.0407 0.0000

rs11626809 0.8044 0.1882 0.0074 0.0000 0.7000 0.2889 0.0111 0.0000

rs1950764 0.7454 0.2398 0.0148 0.0000 0.6370 0.3445 0.0185 0.0000

rs11620883 0.8155 0.1808 0.0037 0.0000 0.9333 0.0630 0.0037 0.0000

rs3742837 0.6679 0.3026 0.0295 0.0000 0.5370 0.4222 0.0408 0.0000

rs8006322 0.3653 0.5388 0.0959 0.0000 0.4481 0.3889 0.1630 0.0000

rs12589063 0.3911 0.4428 0.1661 0.0000 0.2445 0.5370 0.2037 0.0148

rs7146193 0.3948 0.4465 0.1587 0.0000 0.2445 0.5481 0.2074 0.0000

rs8016079 0.7048 0.2731 0.0221 0.0000 0.8408 0.1481 0.0111 0.0000

rs12589195 0.6199 0.3284 0.0517 0.0000 0.5148 0.4482 0.0370 0.0000

rs7157079 0.8413 0.1550 0.0037 0.0000 0.9407 0.0593 0.0000 0.0000

rs11847484 0.7085 0.2767 0.0148 0.0000 0.8222 0.1704 0.0074 0.0000

rs1152781 0.5978 0.3136 0.0886 0.0000 0.4630 0.4555 0.0815 0.0000

Illustration of genotype distributions of selected 20 SNPs in Chromosome 14 of Parkinson disease genome-wide data set when filter out those SNPs whose
missing percentage is >1%. The first column is the ID number of SNP. In Control/Disease group, major/major allele is represented by AA, major/minor is
represented by Aa and minor/minor allele is represented by aa. Missing values under < 1% are also considered. Each distribution of the above four category is
indicated by their distribution percentage in all samples.

Table 5 Groups of genes formed for different threshold values.

GOSemSim thresholds Number of Pairs of Genes Number of Group of Genes Number of SNPs Networks

0.18 499 1 10

0.19 448 3 9

0.20 137 9 6

0.21 114 9 6

0.22 111 10 6

0.23 106 10 6

0.24 100 10 6

0.25 78 12 6

0.26 70 10 5

0.27 46 10 2

0.28 27 10 2

0.29 26 9 2

0.30 22 8 2

0.31 22 8 2

0.32 22 8 2

0.33 22 8 2

0.34 17 8 2

0.35 13 7 1

Illustration of number of gene groups and number of gene pairs involved when using different GOSemSim thresholds. The first column is the GOSemSim
thresholds from 0.18-0.35. The second column indicates the number of gene pairs involved in the gene network, i.e. the number of gene pairs whose similarity
value is bigger than the GOSemSim threshold. The third column is the number of gene groups in the gene network when adopt a particular threshold. The last
column indicates the number of SNPs networks constructing from the corresponding gene network under a P <0.01 significance.
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the other threshold values. Figure 11 demonstrates the
group of genes constructed by our method when thresh-
old is equal to 0.25. Gene pairs that are grouped in the
same group suggest a strong potential for interaction
effects in biological process. We can see from this figure
that there are 12 groups, including 68 genes.

For each group of genes constructed, we check all the
pairwise SNP-SNP interactions using PLINK between
SNPs involved in the group of genes and all the other
SNPs selected by the shrunken method. Based on the
P-value of PLINK epistasis test, we construct SNPs net-
works. Because there are more groups of genes when

Figure 11 Gene network when GOSemSim threshold=0.25. Gene network constructed using Cytoscape. Gene pairs are computed the
similarity values using GOSemSim and gene pairs that have a > 0.25 threshold are grouped together. Every node in the figure is labeled as its
gene symbol and the edge between two genes indicates whether this pair of genes has a > 0.25 threshold or not. There are 12 clusters in the
gene network when threshold=0.25.

Figure 12 SNPs network when GOSemSim threshold=0.22. SNPs network constructed using Cytoscape. For each group of the gene network
where gene pairs have > 0.22 similarity value, all the pairwise SNP-SNP interactions are checked using PLINK between SNPs involved in the
groups of genes and all the other SNPs selected by the shrunken method. SNPs network is constructed based on the P value of PLINK epistasis
test. Each node in the figure is labeled as its SNP ID and the edge between two SNPs indicates whether this pair of SNPs are interacted under a
P < 0.01 significance. There are 6 SNPs networks in this figure.
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the threshold value in GOSemSim is in between 0.22-
0.28, we are interested in their corresponding SNPs net-
works. In particular, we show in Figures 12, 13, 14 that
SNPs networks when the threshold values are 0.22, 0.26
and 0.27 respectively. We find that there are two SNPs
networks as shown in Figure 14 appearing frequently

among the networks constructed when the threshold
value in GOSemSim is in between 0.22-0.28. Table. 6
shows all SNP pairs of these interesting SNPs networks
that have P < 0.01 significance interactions in Figure 14.
We find some interesting relationships from these two

SNPs networks. For example, for SNPs rs11626809 and

Figure 13 SNPs network when GOSemSim threshold=0.26. SNPs network constructed using Cytoscape. For each group of the gene network
where gene pairs have › 0.26 similarity value, all the pairwise SNP-SNP interactions are checked using PLINK between SNPs involved in the
groups of genes and all the other SNPs selected by the shrunken method. SNPs network is constructed based on the P value of PLINK epistasis
test. Each node in the figure is labeled as its SNP ID and the edge between two SNPs indicates whether this pair of SNPs are interacted under a
P < 0.01 significance. There are 5 SNPs networks in this figure.

Figure 14 SNPs network when GOSemSim threshold=0.27. SNPs network constructed using Cytoscape. For each group of the gene network
where gene pairs have > 0.27 similarity value, all the pairwise SNP-SNP interactions are checked using PLINK between SNPs involved in the
groups of genes and all the other SNPs selected by the shrunken method. SNPs network is constructed based on the P value of PLINK epistasis
test. Each node in the figure is labeled as its SNP ID and the edge between two SNPs indicates whether this pair of SNPs are interacted under a
P < 0.01 significance. There are 2 SNPs networks in this figure.
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rs2836392, which are highly interacted, their corre-
sponding genes are RAD51L1 and ERG respectively, but
located in different clusters in gene network, which
means that maybe we can merge these two clusters in
gene network together. Another example, rs4968656 is
interacted with rs4658673, which is located in intergenic
area and do not have a record in Gene Ontology until
now, maybe we can make use of rs4968656’s gene infor-
mation, KCNH6, to further analyze the inner functions
of rs4658673 and extend GO afterward.
Indeed some of the SNPs selected by the shrunken

method are directly or indirectly related to PD. For
example, ERG and anatomical abnormalities are
reported to cause retinopathy in dementia with Lewy
bodies [32], which share similar symptoms with PD and
are thought to be related to PD, or that they sometimes
happen together. KCNH6, located in Chromosome 17,
are reported to have diverse functions include regulating
neurotransmitter release, heart rate, insulin secretion,
neuronal excitability, epithelial electrolyte transport,
smooth muscle contraction, and cell volume. These
characteristics are also the symptoms of PD.

Conclusions
In this paper, we review the method of nearest shrunken
centroid for gene expression data, and extend it to
tackle SNP data classification. The main contribution of
this paper is to develop a shrunken dissimilarity mea-
sure to handle SNP data classification problems. The
method can be implemented on a PC very efficiently.
The relevant SNPs are selected for HapMap data and
Parkinson disease data. Experimental results are also
reported to show the effectiveness of the method. In
particular, we find some SNPs that contain in some
genes which is relevant to Parkinson disease. Based on
the SNPs network, we can have some unknown relation-
ships between their corresponding genes, which can be
considered as an extension of existing GO knowledge.

In the future, detailed biological analysis of SNPs of
other genome-wide SNP data sets will be studied. The
genomic variation of data sets can take account of func-
tional as well as linkage disequilibrium information.
More importance is attached to some SNPs than others,
based on their positions within the coding or regulatory
regions or splice sites.
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