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Abstract

Background: microRNAs (miRNAs) are important cellular components. The understanding of their evolution is of
critical importance for the understanding of their function. Although some specific evolutionary rules of miRNAs
have been revealed, the rules of miRNA evolution in cellular networks remain largely unexplored. According to
knowledge from protein-coding genes, the investigations of gene evolution in the context of biological networks
often generate valuable observations that cannot be obtained by traditional approaches.

Results: Here, we conducted the first systems-level analysis of miRNA evolution in a human transcription factor
(TF)-miRNA regulatory network that describes the regulatory relations among TFs, miRNAs, and target genes. We
found that the architectural structure of the network provides constraints and functional innovations for miRNA
evolution and that miRNAs showed different and even opposite evolutionary patterns from TFs and other protein-
coding genes. For example, miRNAs preferentially coevolved with their activators but not with their inhibitors.
During transcription, rapidly evolving TFs frequently activated but rarely repressed miRNAs. In addition, conserved
miRNAs tended to regulate rapidly evolving targets, and upstream miRNAs evolved more rapidly than downstream
miRNAs.

Conclusions: In this study, we performed the first systems level analysis of miRNA evolution. The findings suggest
that miRNAs have a unique evolution process and thus may have unique functions and roles in various biological
processes and diseases. Additionally, the network presented here is the first TF-miRNA regulatory network, which
will be a valuable platform of systems biology.

Background
microRNAs (miRNAs) are a class of endogenous and
small non-coding regulatory RNAs, which regulate genes
at the post-transcriptional level [1]. In the past few years,
studies of miRNAs have ranged from their biological
functions to their evolution. Understanding the evolution
of miRNAs is very important to the study of their func-
tion, genomic organization, human disease, and medicine
[2,3]. Studies of miRNA evolution have focused on the
molecular level. For example, the majority of miRNAs
are conserved during evolution [1,4,5]. The structure of
miRNA precursor stem loops exhibits significantly
increased mutational robustness in comparison with ran-
dom RNA sequences with the same stem-loop structure
[6]. It was revealed that the genetic robustness observed

in miRNA sequences is the byproduct of selection for
environmental robustness [7]. Vazquez et al. found that
recently evolved miRNAs consistently give rise to long-
miRNAs, while ancient miRNAs give rise predominantly
to canonical miRNAs in Arabidopsis [8]. An Alu-
mediated rapid expansion of miRNA genes in primate-
specific miRNAs [9] and a rapid evolution of an X-linked
miRNA cluster in primates were observed [10]. Besides
the fact that miRNAs are evolutionary conserved, it was
observed that some miRNA genes are evolutionarily
young [11]. In addition, transposable elements (TE)-
derived human miRNAs are less conserved, on average,
than non-TE-derived miRNA s[12]. The sequence diver-
sification of duplicated miRNA genes to be accompanied
by a change in spatial and temporal expression patterns
[13]. Host-virus coevolution may affect miRNA regula-
tory function [14]. We previously found that miRNAs
tend to buffer gene expression variation between closely
related species [15] and human-specific miRNAs tend to
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evolve rapidly and found indications that some human
miRNAs seem to be under recent positive selection [3].
Lowly expressed human microRNA genes evolve rapidly
[16]. Recently, de Wit et al. revealed a novel mode of
miRNA evolution, hairpin shifting [17]. The above cited
studies have uncovered some important evolutionary
insights, but have, however, not considered the regulatory
context of miRNAs. That is, as the primary two classes of
gene regulators, miRNAs and transcription factors (TFs)
regulate each other and co-regulate other genes. There-
fore, considering the regulatory network of miRNAs in
such evolutionary studies is increasingly important for an
integrated understanding of the subject.
Cells typically change physiologically in response to

signals received from their changing internal and exter-
nal environments [18]. To do this they must activate or
repress the production of various gene products and
tune these products to the proper level for different
situations. Hence, the deregulation of genes may result
in phenotypic variations that can contribute to diseases.
For example, removing just one molecule of the tran-
scription factor protein, c-myb, from the cellular milieu
can result in developmental defects in the B cell lineage
[19]. The current research perspective is that the level
of gene expression is primarily regulated by TFs at the
transcriptional level and by miRNAs at the post-tran-
scriptional level. Moreover, TFs and miRNAs can also
regulate each other, and therefore they, together with
their target genes, form a complex TF-miRNA regula-
tory network. Recent research has investigated the regu-
latory rules between miRNAs and genes, and found, for
example, that miRNAs preferentially regulate genes that
have a high transcriptional regulation complexity [20]
and that preferentially target downstream genes in cellu-
lar signaling flows [21]. These results support the con-
cept that miRNA, TFs and their target genes form a
complex network that enables the cell to conduct a
wide range of biological functions. In light of this, study-
ing miRNA evolution within the framework of cellular
networks is essential.
At the molecular level, the topology of cellular net-

works places constraints on protein evolution and intro-
duces functional innovations that open the door for
protein evolution. The evolution of the protein-coding
genes has been extensively studied in gene transcription
[18,22,23], protein interaction [24], cell signaling [25],
and metabolic [26] networks. These studies have led to
several major conclusions: (1) Hub proteins, that is, pro-
teins that have many interacting links, tend to be more
conserved [18,24,25]. (2) Proteins in the network periph-
ery tend to evolve more rapidly whereas those in the
network center are more conserved [25]. (3) Network
proteins appear to have coevolved with their neighbors
in a signaling network [25]; whereas transcription

factors tended to evolve independently of their targets
in prokaryotic transcriptional regulatory networks [23];
and so on. However, whether and how the architectural
structure of cellular networks places constraints on and
provides functional innovations for miRNA evolution is
unknown. Did TFs coevolve with their target miRNAs
and their target protein-coding genes? How does the
evolution of miRNA-target pairs occur? Are the evolu-
tionary rates of upstream regulators and downstream
regulators different? Each of these questions is of critical
importance not only for understanding evolution itself
but also for related areas, such as the prediction of
miRNA and TF targets.
To address these questions, we compared the evolution

of miRNA and protein-coding genes in a manually curated
TF-miRNA regulatory network. We used experimentally
determined regulatory relations among TFs, miRNAs, and
their targets to construct a human TF-miRNA regulatory
network, which contains 2,273 nodes, of which 425 and
150 are TF and miRNA nodes, respectively. The network
contains 4298 regulatory relations, including 2655 TF-
gene regulatory relations, 210 TF-miRNA regulatory rela-
tions, and 1433 miRNA-target regulatory relations. We
then performed a systems-level analysis to compare the
evolutionary patterns of miRNAs and protein-coding
genes in the network.

Results and Discussion
miRNAs preferentially coevolve with their activators but
not with their inhibitors
In the cellular signaling network two genes which interact
tend to coevolve during evolution, in order to adapt to
each other [25]. That is, for two genes that interact, if one
evolves fast, the other will also evolve fast, and vice versa.
The reason might be that if changes occur in one gene, a
high probability of their interaction remaining unchanged
exists only if the other gene has a corresponding change.
Furthermore, different signal types (i.e., activation, inhibi-
tion, and physical interaction) in the human cellular sig-
naling network contribute differently to the coevolution of
two interacting genes [25]. In light of this, we explored the
coevolutionary rules of miRNAs and TFs in the human
TF-miRNA regulatory network. We obtained evolutionary
rate data of TFs from H-InvDB database and calculated
the evolutionary rates of miRNAs based on the pairwise
alignment data for humans (hg18) and Rhesus monkeys
(rheMac2) from UCSC [27] using Liang et al.’s method
[16]. We found evidence of coevolution between TFs and
miRNAs (R = 0.19, P = 0.004, Spearman’s correlation;
Figure 1A). Furthermore, surprisingly, we found that this
coevolution between TFs and miRNAs only exists in TF-
miRNA pairs that are connected by transcriptional activa-
tion signals (R = 0.18, P = 0.026) but not in pairs that are
connected by transcriptional repression signals (R = -0.08,
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P = 0.609). We further classified the TF-miRNA pairs con-
nected by transcriptional activation signals into two equal
groups based on the evolutionary rate of their TFs: a low
evolutionary rate group and a high evolutionary rate
group. We found that the evolutionary rate of miRNAs in
the low evolutionary rate group is lower than that of miR-
NAs in the high evolutionary rate group (median miRNA
evolutionary rate: 0.031 vs. 0.061, P = 0.05, Wilcoxon test,
Figure 2A). However, we did not find a significant result
for the TF-miRNA pairs that are connected by transcrip-
tional repression signals (median miRNA evolutionary
rate: 0.042 vs. 0.037, P = 0.5, Wilcoxon test, Figure 2B).
This finding indicates that transcriptional activation sig-
nals and repression signals contribute differently to the
coevolution of TFs and miRNAs. TFs which are activators
of miRNAs would trigger miRNA expression and then the
TFs and the activated miRNAs could work together to

regulate common pathways. We confirmed this by analyz-
ing the signaling pathways that regulated by these TFs and
miRNAs. We first obtained 183 human signaling pathways
that we previously used in our various studies [21,28,29].
We classified the TF-miRNA pairs into two groups
according the signal type: activating group and repressing
group. As expected, the TF-miRNA pairs in the activating
group have greater probability to regulate common signal-
ing pathways than the TF-miRNA pairs in the repressing
group (P = 1.28 × 10-9, Fisher’s exact test; Odds Ratio
(OR) = 1.94). For example, 21% (349/1676) of the TF-
miRNA pairs in the activating group regulate the common
signaling pathways; whereas only 12% (121/1014) of the
TF-miRNA pairs in the repressing group regulate the
common signaling pathways (Figure 3). On the other
hand, if a miRNA is repressed by a TF, this miRNA would
not function along with that TF. Therefore, it is reasonable
to think that miRNAs would coevolve with their activators
to adapt and response to stimuli. Furthermore, these
results indicate that the specific genes involved in gene
regulations at the transcriptional level and post-transcrip-
tional level are closely synchronized, specifically they colla-
borate to have coevolved and have adapted together.
We next investigated whether the signal type in the

network contributes differently to the coevolution of TFs
and protein-coding genes. Because the types of signal
data of regulatory relationship between TFs and protein-
coding genes are not available, we used the correlation
coefficients of expression profiles of TFs and their target
genes as an estimate of the signal type. A positive correla-
tion may suggest an activating regulation; whereas a
negative correlation may suggest a repressing regulation.
As a result, the evolutionary rates of TF-gene pairs that
have positive correlated expression profiles show positive
correlation (R = 0.09, P = 0.017, Spearman’s correlation),
suggesting that TF-activating-gene pairs tend to show

Figure 1 Coevolutionary analysis of TF-activating-miRNA pairs.
Each dot in the scatter plot represents one TF-activating-miRNA
pair. The X axis and Y axis represent the evolutionary rate of TFs
and miRNAs, respectively.

Figure 2 Coevolutionary patterns of TFs and miRNAs. (A) For TF-miRNA regulatory pairs connected by transcriptional activation signals, TFs
with a low evolutionary rate preferentially regulate miRNAs with a low evolutionary rate, and vice versa. (B) For TF-miRNA regulatory pairs
connected by transcriptional repression signals, no difference was found between the evolutionary rates of miRNAs regulated by TFs with a low
evolutionary rate and those with a high evolutionary rate.
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coevolution. As a comparison, TF-gene pairs that have
negative correlated expression profiles do not show
correlated evolutionary rates (R = -0.06, P = 0.249, Spear-
man’s correlation).

Rapidly evolving TFs frequently activate but rarely
repress miRNAs
We next asked whether there is a signal preference
when TFs regulate miRNAs. We first classified TF-
miRNA regulatory signals into two groups according to
the evolutionary rates of their TFs and counted the
numbers of activation signals and repression signals in
these two groups. We found that 85.4% (76/89) of the
signals in the high evolutionary rate group are activation
signals, whereas this percentage decreases to 71.9%
(82/114) in the low evolutionary rate group (P = 0.016,
Fisher’s exact test), suggesting that the signals are signif-
icantly unevenly distributed in these two groups. These
findings indicate that rapidly evolving TFs are preferen-
tially involved with transcriptional activation signals in
TF-miRNA regulations.
We wondered whether a similar trend exists for the

transcription regulation of protein-coding genes. Shinar
et al. reported that protein-coding genes that are fre-
quently needed in the natural environment tend to be
activated but rarely needed genes tend to be repressed
[30]. In addition, broadly expressed protein-coding
genes are more conserved than those with a narrow
expression profile [31]. Taken together, these findings
indicate that conserved protein-coding genes tend to be
activated by TFs and rapidly evolving protein-coding
genes tend to be repressed. Because the signal type data
of the protein-coding genes is not available, we were

unable to test this trend in the human TF-miRNA
regulatory network. When we used the estimated
TF-gene regulatory signal type data from expression
profile to perform this analysis, we did not obtained sig-
nificant result (data not shown). However, it will be
interesting to confirm this hypothesis when regulatory
signal type data of human TF-gene regulations becomes
available in the future.

Rapidly evolving and slowly evolving miRNAs tend to
regulate slowly evolving and rapidly evolving protein-
coding genes, respectively
For miRNA-gene regulatory pairs, we found that con-
served miRNAs seem to regulate rapidly evolving pro-
tein-coding genes, whereas rapidly evolving miRNAs
seem to regulate conserved protein-coding genes. We
classified miRNA-target pairs into two equal groups
according to the evolutionary rate of the miRNAs. We
found that targets in the low rate group had a higher
evolutionary rate than those in the high rate group
(median dN: 0.052 vs. 0.046, P = 0.02, Wilcoxon test).
To understand this phenomenon, we took into account
the expression of miRNAs and their target genes. More
conserved protein-coding genes tend to have a higher
expression level and a larger breadth of expression [31].
Recently Liang and Li reported a similar rule for miR-
NAs [16]. Because miRNAs negatively regulate their tar-
get genes, broadly expressed (conserved) genes cannot
be regulated by broadly expressed (conserved) miRNAs.
If broadly expressed genes (that is, genes that are
expressed in many tissues) are repressed by broadly
expressed miRNAs, the broadly expressed protein-cod-
ing genes could be repressed. Thus, these broadly
expressed genes could not continue to be broadly
expressed. Therefore, broadly expressed genes tend to
be regulated by tissue-specific miRNAs, which tend to
evolve more rapidly.
In contrast, the coevolution between TF-protein-coding

gene regulatory pairs is not significant (data not shown),
which is consistent with the result of Madan Babu et al.
[23].

Upstream miRNAs evolve more rapidly than downstream
miRNAs, whereas upstream TFs are more conserved than
downstream TFs
We previously reported that in the cellular signaling
flow the upstream nodes are less likely to be conserved
whereas downstream nodes are more likely to be con-
served [25]. In light of this, we investigated the evolu-
tionary patterns of TFs and miRNAs, the two classes of
gene regulators in the TF-miRNA regulatory network,
along the regulatory cascade. We found that the
upstream TFs were more conserved than the down-
stream TFs; whereas the upstream miRNAs evolved

Figure 3 Distribution of common signaling pathways and non-
common signaling pathways regulated by TF-miRNA pairs. TF-
activating-miRNAs pairs prefer to regulate common signaling
pathways compared with TF-repressing-miRNA pairs.
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more rapidly than the downstream miRNAs. Of the
4688 TF pairs, 60% have a lower evolutionary rate in
the upstream nodes; whereas only 42% (431/1045) of
the miRNA pairs have a lower rate in the upstream
nodes (Figure 4, P = 5.3×10-26, Fisher’s exact test).
This result indicates that the two classes of gene regu-

lators, TFs and miRNAs, show opposite patterns in evo-
lutionary rates in the upstream and downstream of the
regulatory cascade. The upstream TFs would seem to
play more critical roles in the gene regulatory network
than do downstream TFs because they not only regulate
genes but also regulate other regulators (TFs and miR-
NAs). They tend to be more essential and therefore are
more conserved than the downstream TFs because
essential genes tend to more conserved, as Pal indicated
[31].
On the other hand, miRNAs regulate genes by repres-

sing them. The repressing function may have a systems-
level function of buffering gene expression noise. For
example, we previously showed that miRNAs buffer
gene expression noise between species and thus buffer
the evolution of the species [15]. Wu and colleagues
confirmed this function [32]. In biological systems such
as cell signaling it is desirable to filtering out noisy sig-
nals in the upstream region where genes are responding
to a broad range of extracellular stimuli. An integrative
analysis of the regulation of a human signaling network
by miRNAs suggests that miRNAs could filter noisy sig-
nals in the upstream region of the signaling network
[21]. Furthermore, Legewie et al. suggested that negative
feedbacks may serve as major regulatory loops in the
upstream region of the signaling networks [33].

Considering all of these aspects of miRNAs as native
regulators, it is reasonable that upstream miRNAs evolve
more rapidly than downstream miRNAs. Rapidly evol-
ving miRNAs in the upstream of a regulatory cascade
could allow adapt the cell to environmental changes and
tone down the signaling process, as suggested by experi-
mental studies in which signaling persisted if transcrip-
tional feedback by proteins was blocked by protein
biosynthesis inhibitors [34]. More importantly, rapidly
acting post-translational feedbacks may frequently be
important for initial signal processing and specificity
[29,35]. Therefore, rapidly evolving miRNAs in the
upstream of regulatory cascades allow the system to
adapt in ways that allow for filtering out noisy signals
and controlling the processing and specificity of the ori-
ginal signal.

Sensitivity analysis
A common limitation of biological network analysis is
that currently all reported biological networks are far
from completeness. Therefore, the observations espe-
cially the observations that are not very significant from
biological network analysis may be resulted from data
incompleteness. In this case, sensitivity analysis is often
used to solid the findings[25]. In this study, the con-
structed human TF-miRNA regulatory is also far from
completeness. To solid this study, we performed sensi-
tivity analysis for results that are not very significant.
For each analysis, we randomly removed 5% true links,
added 5% false links at the same time, and repeated the
analysis. As a result, the main results remain unchanged
(Table 1).

Discussion
In summary, we have uncovered that the architectural
structure of the TF-miRNA regulatory network provides
constraints and functional innovations for miRNA evo-
lution. Moreover, miRNAs have unique and even oppo-
site evolutionary rules comparing with TFs and other
protein-coding genes, suggesting that miRNAs may have
unique functions and roles in various biological pro-
cesses and diseases.
The most interesting discovery from this study is that

the evolutionary patterns of miRNAs are different from
those of the TFs and other protein-coding genes at the
network level. For example, in the regulatory cascades,
upstream miRNAs evolve more rapidly than down-
stream miRNAs, whereas upstream TFs are more con-
served than downstream TFs. Most of the miRNAs are
negative regulators. Taking both of these facts into con-
sideration, we concluded that rapidly-evolving miRNAs
in the upstream of the regulatory cascades allow the sys-
tem to adapt in ways that allow the cell to filter out
noisy signals and control the processing and specificity

Figure 4 Distribution of evolutionary rates of TFs and miRNAs
along the gene regulatory cascade. The Y axis represents the
percentage of upstream regulators (TF genes or miRNA genes) that
are more conserved than downstream regulators (red bar) and the
percentage of downstream regulators that are more conserved than
upstream regulators (green bar).
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of the original signal. This conclusion supports the con-
cept that miRNAs have buffers on their expression at
the systems-level [32]. Similarly, rapidly evolving and
slowly evolving miRNAs tend to regulate slowly evolving
and rapidly evolving protein-coding genes, respectively
In addition, rapidly evolving TFs tend to activate miR-
NAs but tend to repress protein-coding genes. On the
other hand, TFs and miRNAs have not evolved indepen-
dently. For example, miRNAs preferentially coevolve
with their activators (TFs), and rapidly evolving TFs pre-
ferentially activate miRNAs.
In addition, our findings will also be valuable for other

fields, such as miRNA target prediction. We revealed
that conserved miRNAs tend to avoid regulating con-
served targets. This observation is helpful in designing
better principles for the prediction of miRNA targets.
Finally, the TF-miRNA regulatory network we presented
in this study represents the first TF-miRNA regulatory
network and will be a valuable platform of systems
biology.

Conclusions
In this study, we performed an analysis of miRNA evolu-
tion in a human TF-miRNA regulatory network, which
integrated the experimentally supported regulatory rela-
tions of TF-miRNA, TF-target, and miRNA-target. This
network represents the first large-scale human TF-
miRNA regulatory network. As a result, some principles
and patterns of miRNA evolution in the human TF-
miRNA regulatory network have been uncovered. These
results are helpful for not only the understanding of
miRNA origin, evolution, and function but also the devel-
opment of novel methods for miRNA bioinformatics, for
example the prediction of miRNA targets.

Methods
Construction and analysis of the human TF-miRNA
regulatory network
We constructed a human TF-miRNA regulatory network
based on experimentally supported regulatory relations
between TFs and genes, between TFs and miRNAs, and
between miRNAs and targets. We obtained the experi-
mentally supported human TF-gene regulatory relations

from TransFac (TRANSFAC Professional version, Janu-
ary 2009, http://www.gene-regulation.com) and the
experimentally supported human miRNA-target regula-
tory relations from TarBase [36]. In order to obtain
experimentally supported TF-miRNA regulatory rela-
tions, we manually curated ~5000 papers published
before April 2009 and obtained experimentally supported
TF-miRNA regulatory relations http://cmbi.bjmu.edu.cn/
transmir[37]. We next constructed a human TF-miRNA
regulatory network using the above three types of regula-
tory relations among TFs, miRNAs, and target genes
(Additional file 1). Of the TF-miRNA links, activating
links is greatly more than, repressing links. This result
indicates that, for the transcription of miRNAs, activation
interactions are more common than repression interac-
tions, a finding which is consistent with the observation
for the transcription of protein-coding genes [38]. Nor-
mally miRNAs act as negative gene regulators and all of
the miRNA-target links identified in this study are indeed
negative. The network nodes have a skewed degree distri-
bution. Specifically, most of the TFs regulate just a few
miRNAs, but some TFs regulate many miRNAs. For
example, the TF that regulats the largest number of miR-
NAs in this network, MYC, regulates 26 miRNAs.
We implemented a Java program to identify the com-

ponents of this network (Additional file 2). The resulting
network contains 29 network components, of which the
largest network component contains 97% of the network
nodes. This finding suggests that TFs, miRNAs, and tar-
get genes intereact in a single, closely interconnected
TF-miRNA-target regulatory network. We identified
upstream and downstream TFs/miRNAs using shortest
paths, which is obtained by Dijkstra’s algorithm.

Evolutionary rate data of human genes and miRNAs
In this study, we used dN as a measure of the evolution-
ary rate of protein-coding genes [39] and used the
miRNA sequence divergence as the measure of the evo-
lutionary rate of miRNAs [16]. We downloaded the
human-mouse protein dN data (Additional file 3) from
the H-InvDB database http://jbirc.jbic.or.jp/hinv/dataset/
download.cgi. In order to calculate the evolutionary
rates for human miRNAs, we first downloaded the

Table 1 Results of sensitivity analysis

Analysis Results

Coevolution of TF-miRNA R = 0.19, P = 0.003, Spearman’s correlation

Coevolution of TF-activating-miRNA R = 0.20, P = 0.01, Spearman’s correlation

Coevolution of TF-repressing-miRNA R = -0.04, P = 0.77, Spearman’s correlation

Coevolution of TF-activating-gene R = 0.08, P = 0.05, Spearman’s correlation

Coevolution of TF-repressing-gene R = -0.06, P = 0.27, Spearman’s correlation

Evolutionary rates of targets regulated by rapidly evolving and slowly evolving miRNAs,
respectively

Median dN 0.047 vs. 0.051, P = 0.05, Wilcoxon
test
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pairwise alignment data for humans (hg18) and Rhesus
monkeys (rheMac2) from UCSC [27]. We next obtained
the genome coordinates data for known human miRNAs
from miRBase. We then calculated the sequence diver-
gence for human miRNAs (Additional file 4) using the
method presented by Liang et al [16].

Statistical computing
We performed a Spearman’s correlation test, Wilcoxon
test, and Fisher’s exact test using R, a statistical comput-
ing language http://www.r-project.org/.

Additional material

Additional file 1: The human TF-miRNA regulatory network This file
contains the data of the human TF-miRNA regulatory network.
Three types of regulatory relationships are presented. They are the TF-
gene regulatory links, the TF-miRNA regulatory links, and the miRNA-
target regulatory links. The three types of regulatory links of the human
TF-miRNA regulatory network are listed as follows.

Additional file 2: Source code for the identification of network
components. This file contains the java source codes for network
components identification.

Additional file 3: Evolutionary rates of protein-coding genes. This file
contains the evolutionary rates of protein-coding genes.

Additional file 4: Evolutionary rates of miRNA genes. This file
contains the evolutionary rates of miRNA genes.
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