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Abstract
Background: Gene expression signatures are typically identified by correlating gene expression patterns to a disease 
phenotype of interest. However, individual gene-based signatures usually suffer from low reproducibility and 
interpretability.

Results: We have developed a novel algorithm Iterative Clique Enumeration (ICE) for identifying relatively independent 
maximal cliques as co-expression modules and a module-based approach to the analysis of gene expression data. 
Applying this approach on a public breast cancer dataset identified 19 modules whose expression levels were 
significantly correlated with tumor grade. The correlations were reproducible for 17 modules in an independent breast 
cancer dataset, and the reproducibility was considerably higher than that based on individual genes or modules 
identified by other algorithms. Sixteen out of the 17 modules showed significant enrichment in certain Gene Ontology 
(GO) categories. Specifically, modules related to cell proliferation and immune response were up-regulated in high-
grade tumors while those related to cell adhesion was down-regulated. Further analyses showed that transcription 
factors NYFB, E2F1/E2F3, NRF1, and ELK1 were responsible for the up-regulation of the cell proliferation modules. IRF 
family and ETS family proteins were responsible for the up-regulation of the immune response modules. Moreover, 
inhibition of the PPARA signaling pathway may also play an important role in tumor progression. The module without 
GO enrichment was found to be associated with a potential genomic gain in 8q21-23 in high-grade tumors. The 17-
module signature of breast tumor progression clustered patients into subgroups with significantly different relapse-
free survival times. Namely, patients with lower cell proliferation and higher cell adhesion levels had significantly lower 
risk of recurrence, both for all patients (p = 0.004) and for those with grade 2 tumors (p = 0.017).

Conclusions: The ICE algorithm is effective in identifying relatively independent co-expression modules from gene co-
expression networks and the module-based approach illustrated in this study provides a robust, interpretable, and 
mechanistic characterization of transcriptional changes.

Background
Large-scale gene expression profiling with microarray
platforms is becoming a popular approach to the identifi-
cation of molecular biomarkers for disease diagnosis,
prognosis, and response to treatment. Gene expression
signatures are usually identified by correlating gene
expression patterns to a disease phenotype of interest.

Since the pioneering work on breast cancer [1,2], gene
expression signatures have been reported for different
diseases. Some of the signatures have been approved by
the US Food and Drug Administration for diagnostic
assay.

Despite these exciting progresses, individual gene-
based signatures suffer from some well-known problems.
First, given the large number of genes on the array, high
correlation among the genes, small number of samples in
a data set, and large variance across patient samples, it is
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common to see little overlap among gene signatures iden-
tified by different research groups for a common clinical
outcome [3]. Secondly, because gene-based signatures
often fail to put individual genes in a functional context,
understanding the biology highlighted by a signature
remains a significant challenge[4]. Moreover, because
important regulators such as transcription factors are not
necessarily regulated at the transcriptional level, gene-
based signatures can seldom identify regulatory mecha-
nisms underlying the disease phenotype of interest. As a
result, module-based approaches aimed at a more robust
and interpretable characterization of transcriptional
changes have emerged [4-6].

In contrast to the gene-level analyses, module-based
approaches use gene modules as the basic building blocks
for analysis. Modules can be defined in a knowledge-
driven fashion based on existing knowledge on pathways,
biological processes, and protein complexes [5]; they can
also be derived in a data-driven fashion by identifying
subgroups of genes sharing similar expression pattern
across multiple conditions, i.e., co-expression modules
[7]. The latter is particularly interesting as it is not limited
to or biased towards existing knowledge, and holds the
potential to reveal truly novel regulatory mechanisms
underlying the dynamic molecular processes underpin-
ning disease[8]. Various studies have demonstrated the
significance of examining gene co-expression in address-
ing biological problems [7,9,10].

Some commonly used methods for analyzing gene co-
expression pattern in microarray data include hierarchi-
cal clustering [11], K-means clustering [12], and self orga-
nizing maps [13]. Generally, these methods are suitable
for understanding the global structure of the data but
suboptimal for module identification. Recently, various
methods for module detection in large-scale networks
have been proposed. Some representative methods
include the betweenness-based method [14], the modu-
larity optimization method [15], the spectral partitioning
method [16], and graph-theoretic approaches relying on
cliques and other tightly connected components [17,18].
Clique-based approaches have to date provided one of
the most successful ways to consider module overlap,
which is an important characteristic of real networks
[18]. For example, a gene/protein can have multiple func-
tions and therefore belong to multiple modules or com-
plexes. In fact, clique-based approaches have been
successfully applied on the identification of protein com-
plexes from protein interaction networks [18-21]. A
clique is a complete sub-network in which all nodes are
connected in a pairwise fashion. A clique is maximal if it
is not contained in any other clique, and maximum if it is
the largest maximal clique in the graph. Clique-based
approaches usually start with the identification of all
maximal cliques in the network. Because maximal cliques

overlap in real networks, algorithms have been developed
to merge highly overlapping cliques to facilitate further
analysis [18,21].

Applying graph-theoretic approaches on gene expres-
sion data requires the construction of gene co-expression
network from the data [22]. Usually, gene expression sim-
ilarity is calculated for each pair of genes, and then a net-
work is constructed by setting a threshold for the pair-
wise similarity. Such a network is usually represented as
an un-weighted graph, in which each node is a gene and
two genes are connected by an edge if their expression
similarity level is above a pre-selected threshold. The
choice of a threshold can significantly affect the integrity
of the network and the co-expression modules derived
from it. Various methods have been proposed in an
attempt to guide the selection of an appropriate thresh-
old, including those based on statistical analysis [23,24]
or network properties [25,26]. Usually, functional similar-
ity derived from Gene Ontology (GO) is used subse-
quently to evaluate the biological relevance of the
selected threshold [25,27].

The application of clique-based approaches on gene co-
expression networks is hampered by an extreme degree of
overlap among maximal cliques in a network. While
allowing overlap is an important advantage of clique-
based approaches, excessive overlap carries too much
redundant information and makes downstream analysis
difficult. Although one may consider a post-processing
step to merge highly overlapping cliques [18,21], this is
usually impractical for gene co-expression networks
because there may exist billions of maximal cliques in a
network and it is already a significant challenge just to
store these cliques.

In this paper, we propose a clique-based framework for
the analysis of gene expression data. An iterative clique
enumeration (ICE) algorithm is developed to identify a
manageable number of modules that can represent major
transcriptional programs encoded in a co-expression net-
work. Downstream analyses on the modules further
reveal biological processes and regulatory mechanisms
underlying disease phenotypes of interest. Using publicly
available human breast cancer gene expression datasets,
we demonstrated that the ICE algorithm was able to
detect functionally homogeneous co-expression mod-
ules, and the detected modules covered a diverse variety
of biological processes. We further identified modules
whose overall expression levels were correlated with
tumor grade, and showed that the correlations were more
reproducible in an independent data set than those based
on individual genes or modules identified by other algo-
rithms. Next, we illustrated that the module-based
approach could reveal important biological processes as
well as previously reported and novel regulatory mecha-
nisms underlying breast tumor progression. Finally, we
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showed that the expression pattern of the modules could
cluster patients into subgroups with significantly differ-
ent relapse-free survival times and provided useful prog-
nostic information that was independent of tumor grade.

Results and Discussion
Overview of the co-expression module-based analysis 
framework
Figure 1 depicts an overview of the co-expression mod-
ule-based analysis framework. Based on a gene expres-
sion data set, a co-expression network is constructed in
which each node is a gene and two genes are connected
by an edge if their expression similarity level is above a
pre-selected threshold. Although we used the Pearson's
correlation coefficient for the similarity calculation in this
study, other measurements such as the Spearman's corre-
lation coefficient and the mutual information can be
equally applied. A knowledge-guided method is
employed for threshold selection to ensure the biological
relevance of the gene co-expression network. Next, the
ICE algorithm developed in this study is used to identify
relatively independent maximal cliques as co-expression
modules. In contrast to the single gene-based analyses in
which individual genes are tested for their correlation to a

phenotype of interest (e.g. tumor grade or stage), the
module-based approach analyzes modules as units and
identifies co-expression modules that are significantly
correlated with the phenotype, i.e. potential module bio-
markers. Finally, identified modules are queried against
gene set databases such as the GO gene sets and Tran-
scription Factor Binding Site (TFBS) gene sets to infer
biological processes and regulatory mechanisms underly-
ing the phenotype of interest.

Knowledge guided co-expression network construction
Microarray gene expression data on two cohorts of breast
cancer patients were used for demonstration in this study.
Both datasets (GSE2109_breast and GSE2990 [28]) were
downloaded from the Gene Expression Omnibus (GEO)
database http://www.ncbi.nlm.nih.gov/geo/.
GSE2109_breast was generated using the Affymetrix
U133 Plus 2.0 Array, while GSE2990 was generated using
the Affymetrix U133A Array. Clinical information on
patients in each dataset is summarized in Table 1.

We used the GSE2109_breast dataset consisting of 351
breast tumor specimens for co-expression network con-
struction. The construction of co-expression network by
thresholding is a critical step in the analysis framework.

Figure 1 Schematic overview of the co-expression module-based analysis framework. GO: Gene Ontology. TFBS: Transcription Factor Binding 
Sites.

Enrichment Analysis 

Iterative Clique 
Enumeration 

Phenotype Correlation 

STMN1CDC45L RRM2 CDC2KIF20ATPX2CDKN3CENPF RACGAP1SPC25KIF23

NFYB

ESPL1UBE2CTACC3TTK NEK2 TOP2A

Co-expression network Co-expression modules 

Module biomarkers 

Biological processes 
Regulatory mechanisms 

Grade 1 Grade 2 Grade 3 

3 

-3 

�
�

�
�
�
�
�
�
	

�
�

�
�
	


�
�

�
�

�
	
�
�
�


�

�
�

�
�
�
�
�
�

�
�

�
�


�
�
�
�

�
�

�
�
�
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�


�
�
�
	

�
�

�
�
	
�


�

�
�

�
�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�

�
�


	
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�


	

�
�

�
�
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�
�


�
�
	



�
�

�
�
�
�
�
�

�
�

�
�
�


�
�

�
�

�
�
	
�


	
�

�
�

�
�
�
�
�
�



�
�

�
	
�
�
�
�
�

�
�

�
�
�




�

�
�

�
	
�


�



�
�

�
�
�
�
�


�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�
�
�

�
�

�
�


�
�
�
�

�
�

�
	
�


�



�
�

�
	
�


�
�

�
�

�
�
�
�
�
�



�
�

�
�
�
�
�
�
	

�
�

�
�
�
�
�
�

�
�

�
�
	


�
�

�
�

�
�
�


�
�

�
�

�
�
	
�


�

�
�

�
�
�
�
�



�
�

�
�


�
�


�

�
�

�
�
�
�
	
�

�
�

�
�
�
�
�


�

�
�

�
�
�
�
�


�

�
�

�
�
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�
�


�
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�


	
�
�



�
�

�
	
�


�
�

�
�

�
�
�
�
�


	

�
�

�
�
�
�
�



�
�

�
�


�
�
�
�

�
�

�
�


	
�
�
	

�
�

�
�


	
�


�

�
�

�
�
�
�
�
�

�
�

�
�
	
�
�
�
	

�
�

�
�
�
�
�
�

�
�

�
�
�
�
�


�

�
�

�


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�


	
�


�

�
�

�


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
	
�


�
�

�
�

�
�


	
�
�



�
�

�
�
�
�
�
�



�
�

�
�
	
�
�
�
�

�
�

�
�
�
�


�

�
�

�
�
	
�
�
	
�

�
�

�
�
�
�
�
�

�
�

�
�
	
�
�
	
�

�
�

�
	
�


�
	

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
	
�

�
�

�
�
	
�


�



�
�

�
�


�


�
�

�
�

�
�
�







�
�

�
�
�
�
�
�
�

�
�

�
�
	


�
�

�
�

�
	


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�



�
�

�
�
�
�
�
�

�
�

�
	


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�


	
�
�
�

�
�

�
�
	
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�
	
�
�
�



�
�

�
�
�
�
�
�



�
�

�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�


�

�
�

�
	
�


�
	

�
�

�
�
�
�
�
�
�

�
�

�
	
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
	
�
�
�
	

�
�

�
�
�


�
�

�
�

�
�
�


�
�

�
�

�
�
�
�
�
�
	

�
�

�
�
�




�

�
�

�
�
	
�
�
�
�

�
�

�
�
	
�
	
�

�
�

�
�
�
�
�


�

�
�

�
�
	
�


�



�
�

�
�
�


�
�

�
�

�
	
�


�
�

�
�

�
�


	
�
	
�

�
�

�
�


�
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�
�


	
�
�



�
�

�
�
�
�
�
�

�
�

�
�
�


�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�

�
�

�
�
�
�
�
�

�
�

�
�
	
�
�





�
�

�


�
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�
�



�
�

�
	
�
�


�

�
�

�
�
�
�
�
�



�
�

�
�


	
�
�
�

�
�

�
�


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�


�

�
�

�


�
�
�
	

�
�

�
�
	
�
�
�



�
�

�
�


	
�
�
�

�
�

�
�
�


�
�

�
�

�
�


	
�
�
�

�
�

�


�
�
�



�
�

�
�
�
�
�
	



�
�

�
�
�
�
�
�



�
�

�
�


	
�
�
�

�
�

�
�
	


�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�


�

�
�

�
�
	


�



�
�

�
�
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�


�

�
�

�
�


�
�
�
	

�
�

�
�
�
�
�
�
�

�
�

�
�


	
�
�
�

�
�

�
�
	
�
�
�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�



�
�

�
�
�
�
�



�
�

�
�
�


�
	

�
�

�
�
	
�


�
�

�
�

�
�
	
�
�
�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�


�

�
�

�
�


�
�
�
	

�
�

�
�
�
�
�
�

�
�

�
�
�


�
�

�
�

�
�


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�


	

�
�

�
�
�
�
�
�
�

�
�

�
�


�







�
�

�
	


�
�
�
�

�
�

�
�
	
�




�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�


	
�

�
�

�
�
�
�
�



�
�

�
	
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�

�
�

�
	
�


�



�
�

�
	
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�


�
�
�
�

�
�

�
�


�


�
�

�
�

�
�


�


�
�

�
�

�
	
�
	
�
�
�

�
�

�
�
�
�
�
�

�
�

�
�


�
�





�
�

�
�


�




�

�
�

�


�
�
�
	

�
�

�
�
�




�

�
�

�
�
	
�
�
�
�

�
�

�
	
�


�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�


�
�

�
�

�
�
�
�
�
�



�
�

�
	


�
�
�
�

�
�

�
�
	


	
�

�
�

�
�
	
�


�
�

�
�

�


�
�
�
�

�
�

�
�
	


�
�

�
�

�
�
�


�
�

�
�

�
�


�


�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
	



�
�

�
�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
	
�
�


�

�
�

�
�
	
�
�
�



�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
�



�
�

�
�
�
�
�
�
�

�
�

�


�
�
�



�
�

�
	
�


�
�

�
�

�
�
�




�

�
�

�
�
�
�
�


�

�
�

�


�
�
�



�
�

�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
	
�


�



�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�


�
�
�



�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
	
�
�


�

�
�

�
�
�
�
�


�

�
�

�
�


	
�


�

�
�

�
�
�
�
�



�
�

�
�
�
�
�
�
	

�
�

�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�




	

�
�

�


�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
	


�
�
�



�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�

�
�


�
�
�
�

�
�

�
	
�
�
�
�
�

�
�

�
�
�


�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
�


�
�

�
�

�
�


�
�
	
�

�
�

�
	
�


�
�

�
�

�
�
	
�
�
�

�
�

�
�


�


	
�

�
�

�
	
�


�
�

�
�

�
�


�
�


�

�
�

�
�
�
�
�
�
�

�
�

�


�
�
�



�
�

�
�
�
�
�


�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�

�
�
�


�
	

�
�

�
	


�
�
�
	

�
�

�
�
�
�
�


�

�
�

�
�
	
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�

�
�
	
�
	



�
�

�


�
�
�



�
�

�


�
�
�
�

�
�

�
�
�
�
�
	
�

�
�

�
�
	
�
�
�
�

����	
�����
�����
�����
�����
�����
�����
����
�����
�����
����
������
���
����

����	�
������
����
�����
��	� !	
��"��
��"��
�#"��
����
����

����
������
�#��

���
��
"�������
�#���
����
�#��
�
����
�#���
�#�
�
�$�"�
�#���
�����
�����
�����
�����
����	
������
����
�#���
���"
�#����
�����
�#��	
���%
���
�����
��#��
����
"������
�����
����
����	
""��
�����
������
��#�
������
�"��
�"#��	
�����
���
�����
�����

GO 
TFBS 

Gene expression data 

Co-expression 
Thresholding 

http://www.ncbi.nlm.nih.gov/geo/


Shi et al. BMC Systems Biology 2010, 4:74
http://www.biomedcentral.com/1752-0509/4/74

Page 4 of 14
To ensure the biological relevance of constructed net-
work, we used a knowledge-guided method for threshold
selection. Figure 2 shows the relationship between co-
expression level (as measured by the Pearson's correlation
coefficient) and functional similarity (as measured by GO
semantic similarity). As shown in the figure, in general, a
higher co-expression level corresponds to a higher func-
tional similarity score. Although large positive and nega-
tive correlations are both statistically significant, large
negative correlations don't correlate with higher func-
tional similarity. We examined different threshold selec-
tions corresponding to the Bonferroni adjusted p value of
0.01, the top 1% of all correlations, and the top 0.1% of all
correlations (Figure 2). No critical functional similarity
change was observed at the co-expression level corre-
sponding to the Bonferroni adjusted p value of 0.01, indi-
cating that statistical significance couldn't be transferred
directly into biological significance. In contrast, a sharp
increase in functional similarity was observed above the

co-expression level corresponding to the top 0.1% of all
correlations. Therefore, we used this threshold (Pearson's
correlation coefficient of 0.6533) and constructed a gene
co-expression network with 7,819 nodes and 195,928
edges. Because biological networks, including co-expres-
sion networks, usually share some important characteris-
tics such as the power law degree distribution and high
clustering coefficient [7,29], we further examined these
topological characteristics of the constructed network.
Indeed, the network showed a power law degree distribu-
tion (data not shown) and a high clustering coefficient of
0.52, suggesting its biological relevance.

Functional homogeneity within and heterogeneity across 
co-expression modules
The extremely high clustering coefficient of the network
indicated a highly modular structure. In the ICE algo-
rithm, we define co-expression modules as subgroups of
perfectly interconnected genes, i.e., cliques. A classic
maximal clique enumeration algorithm [30] identified
1,306,734,139 maximal cliques of size 10 or more from
the network, making existing methods relying on the
maximal cliques such as the C-Finder algorithm [18]
impractical. Applying the ICE algorithm proposed in this
study, we identified 50 maximal cliques as relatively inde-
pendent co-expression modules. A major concern in the
application of clique-based approaches is their computa-
tional complexity. However, as gene co-expression net-
works are sparse with a scale-free distribution, clique-

Table 1: Microarray datasets used in the study

GSE2109_breast GSE2990

Sample size 351 189

Pathological stage 0 4 -

1 38 -

2 129 -

3 67 -

4 5 -

NA 108 -

Pathological grade 1 31 67

2 113 46

3 136 59

NA 71 17

Recurrence 1 - 67

0 - 120

NA - 2

Figure 2 Functional similarity for gene pairs at different co-ex-
pression level. Co-expressions are binned into 0.1 unit intervals and 
the average GO semantic similarity for each bin is plotted as an open 
circle. The three vertical lines correspond to three co-expression levels: 
Bonferoni corrected p value of 0.01 (blue), the top 1% of all correlations 
(red), and the top 0.1% of all correlations (green).
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based approaches are applicable on these networks [22].
For the above analysis, it took only 8 minutes and about
128 MB memory for the ICE algorithm to generate the
results on a computer with a 2.4 GHz AMD Opteron
CPU and 4 GB memory.

Because all genes in a module are highly co-expressed
and are likely co-regulated, we expect functional homo-
geneity within the modules. On the other hand, because
overlap between the modules is restrained, we expect the
modules to be functionally heterogeneous and to repre-
sent relatively independent biological processes and tran-
scriptional regulatory programs. In order to evaluate the
functional homogeneity of the modules, we performed
the functional category enrichment analysis for the mod-
ules against the GO categories. Among the 50 modules,
36 (72%) showed high functional homogeneity, with a
Bonferroni-adjusted p-value (B-adjp) less than 0.05 in at
least one of the GO categories. Moreover, these modules
corresponded to a diverse variety of biological processes
including metabolic process, immune system process,
developmental process, system process, cell cycle,
response to stimulus, transport, signal transduction, etc.
These results suggest that co-expression modules identi-
fied by the ICE algorithm are functionally homogeneous
within a module and heterogeneous across modules.
Lack of functional enrichment for some of the modules
may be attributed to the false discovery of the algorithm,
the incompleteness of the GO annotations, or the non-
functional relationship among genes in a module (e.g.
genomic proximity).

Modules correlated with breast cancer progression
The modules identified above were dynamically
expressed in response to different conditions. Because
samples in the dataset included tumor specimens from
different stages and grades, we hypothesized that the
dynamic expression of some of the modules might corre-
late with tumor stage or grade. Average expression of all
genes in a module was used to represent the overall
expression level of the module. We used the non-para-
metric Jonckheere-Terpstra trend test to evaluate the cor-
relation between the expression levels of the modules and
stage or grade. Because we were testing 50 modules at the
same time, the p values generated by the test were further
adjusted using the Benjamini and Hochberg correction
[31] to derive False Discovery Rates (FDRs). To our sur-
prise, none of the modules was correlated with tumor
stage (FDR > 0.46). On the other hand, 19 out of the 50
modules were significantly correlated with tumor grade
(FDR < 0.01), and some of the correlations were
extremely significant. For example, module_2 showed an
FDR of 3.52e-22. Module_2 is used for illustration in Fig-
ure 1. As shown in the heat map, all genes in this module
were highly correlated, and their expression levels were

drastically increased in grade 3 tumors compared to
grade 1 and 2 tumors. These results are consistent with a
previous report that different tumor grades are associated
with distinct gene expression signatures, while tumor
specimens from distinct pathological stages may share
remarkable similarity in the expression profiles [32].

Reproducibility of the module-based biomarkers in 
independent data set
Potential application of molecular features (e.g. individual
genes or modules) as disease biomarkers relies on the
reproducibility of the association between molecular fea-
tures and the disease phenotype in independent patient
cohorts. Ideally, if we find a biomarker from one patient
cohort, we hope that this biomarker could hold signifi-
cant in independent cohorts. In this study, we define
reproducibility of a biomarker set identified from one
patient cohort as the percentage of included biomarkers
that hold significant in an independent cohort.

19 modules showed significant correlation with tumor
grade in the GSE2109_breast dataset (FDR < 0.01). We
calculated the percentage of the correlations that held
significant in the independent dataset GSE2990. Despite
GSE2990 being generated on a different microarray plat-
form on which only 64% of the genes in the
GSE2109_breast dataset were present, 17 out of the 19
modules (89.47%) showed significant correlation with
tumor grade (FDR < 0.01) in this independent dataset,
indicating high reproducibility of this module-based bio-
marker set. We also checked the modules for their gene
components. The 19 modules identified in the
GSE2109_breast dataset comprised 405 genes, among
which 371 were included in the 17 reproducible modules
(91.60%). When we focused on genes common to both
platforms, the 19 modules comprised 352 common
genes, among which 330 were included in the 17 repro-
ducible modules (93.75%).

As a comparison, we repeated the analysis at the indi-
vidual gene level. Among the 19,803 genes in the
GSE2109_breast dataset, 5,107 showed significant corre-
lation with tumor grade (FDR < 0.01). When tested in
GSE2990, only 1,569 genes (30.72%) maintained signifi-
cant correlation with tumor grade (FDR < 0.01). Some of
the inconsistency can be explained by the difference
between the array platforms because only 3,758 out of the
5,107 genes were presented in the GSE2990 dataset. Nev-
ertheless, even when we considered only the 3,758 genes,
the gene-level reproducibility (41.75%) was still much
lower than that for the ICE modules (Figure 3).

We also used the popular partitioning method K-means
and the graph-based module identification algorithm
MCODE to identify modules from the GSE2109_breast
dataset. For the K-means analysis, the number of clusters
was arbitrarily set to 50 to match the number of modules
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identified by ICE. For the MCODE analysis, 37 modules
with 10 or more genes were identified. Based on the Jon-
ckheere-Terpstra trend test, 27 K-means modules and 21
MCODE modules were significantly correlated with
tumor grade (FDR < 0.01) in the GSE2109_breast dataset.
When tested in the GSE2990 dataset, 16 K-means mod-
ules (59.26%) and 14 MCODE modules (66.67%) showed
significant correlation with tumor grade (FDR < 0.01).

These comparisons demonstrate that module-based
biomarker sets are more reproducible than the one based
on individual genes when the same selection criterion
(FDR < 0.01) is applied. Using more stringent criteria for
the selection of gene-based biomarkers may improve the
reproducibility of the selected biomarkers [28]. However,
with a very stringent criterion, the functional context of
selected biomarkers may be lost, making it difficult to
understand the underlying biology. For the module-based
methods, although the numbers of reproducible modules
were comparable for the three methods, the ICE method
outperforms both K-means and MCODE with regard to
the reproducibility (Figure 3). The higher reproducibility
of ICE may be attributed to the knowledge-guided net-
work construction and the stringent requirement
imposed by the module definition in the ICE algorithm
that ensures high-level of co-expression among all genes
in a module. Incorporating GO information in the K-
means analysis might help improve its performance.
Although MCODE starts with the same network as ICE,
high-level of co-expression among all genes in a module
is not guaranteed. High-level of co-expression is critical
for the inference of co-regulation [8], therefore, the ICE
algorithm is more likely to identify truly co-regulated
gene sets that are reproducible in independent data sets.

On the other hand, owing to its stringent requirement,
the ICE algorithm is likely to miss some genes in a mod-
ule, which will limit its use in applications sensitive to
false negatives. However, as long as the core components
in a co-expression module can be identified, one should
be able to use the modules as biomarkers or for the infer-
ence of underlying regulatory mechanisms through
enrichment analysis.

Major biological processes associated with breast tumor 
progression
To understand the biology related to the grade-correlated
modules and the interaction among the modules, we cre-
ated a network for genes within the 17 reproducible ICE
modules based on the GSE2109_breast dataset. As shown
in Figure 4, the modules can be divided into three major
groups, corresponding to the three connected compo-
nents in the figure.

Group I included five up-regulated modules, all of them
were related to immune system processes or immune
response. Group II included seven up-regulated modules,
six of which were related to cell proliferation. Group III
included five down-regulated modules that were involved
in cell adhesion and systems development. High cell pro-
liferation in high-grade tumors fits with a 'hallmark' of
cancer being uncontrolled proliferation [33]. Low cell
adhesion levels in high-grade tumors is consistent with
the fact that the loss of cell adhesion is required for cells
to invade tissues and reach the bloodstream, where they
can travel to distant sites to establish metastases [34].
Although the exact roles of the immune system during
cancer development is complex and still a matter of
debate [35], the association between immune system and
cancer development has been known for over a century
[36]. These results demonstrate that the module-based
approach provides easily interpretable characterization of
transcriptional changes. By correlating modules instead
of individual genes with tumor grades, we gain a higher-
order understanding of the biological processes related to
breast cancer progression.

Although the ICE algorithm aims at identifying rela-
tively independent modules by ensuring a proportion of
unique genes in individual modules (10 in this study), we
noticed considerable overlap among some of the modules
(e.g. Module_2 and Module_20). It is not clear whether
these modules are really independent. However, down-
stream transcription factor target enrichment analysis
could help elucidate whether they are associated with dif-
ferent regulatory mechanisms.

Genomic gain during breast tumor progression
Module_36 in Group II (Figure 4) was not enriched in any
GO categories and would not have been identified using
any knowledge-driven analyses based on GO. However,

Figure 3 Reproducibility of grade-correlation in an independent 
data set. Modules or genes correlated with tumor grade were identi-
fied in the GSE2109 dataset using different methods and tested for re-
producibility in the GSE2990 dataset. ICE, MCODE, and K-means are 
three module-based methods. Gene_1 and Gene_2 are based on indi-
vidual genes. Gene_1 does not exclude the difference between mi-
croarray platforms used for the two datasets, while Gene_2 is based on 
common genes on the microarray platforms.

0%

20%

40%

60%

80%

100%

ICE MCODE K-means Gene_1 Gene_2

������

�	��
�

���
��

������


�����

R
ep

ro
d

uc
ib

ili
ty

 in
 in

d
ep

en
d

en
t 

d
at

a 
se

t 
(%

)

Methods



Shi et al. BMC Systems Biology 2010, 4:74
http://www.biomedcentral.com/1752-0509/4/74

Page 7 of 14
careful examination of the module found that all 13 genes
in this module lie in close proximity on chromosome 8,
suggesting potential biological relevance of the module.
Specifically, 9 of the genes are located in the 8q22 region,
3 in 8q21, and 1 in 8q23 (Figure 4). If we randomly pick 13
genes from all 19,803 genes on the microarray, we only
expect to find 0.09 genes in the 8q21-23 region that has a
total of 144 genes. Finding all 13 genes from the module
in this region is significantly non-random (p = 2.92e-28 in
the Hypergeometric test).

To check whether this enrichment was due to the
genomic gain of 8q21-23 in high-grade tumors, we plot-
ted the gene expression data for all genes in this region
based on the GSE2109_breast dataset (Figure 5). It is
clear from the figure that not only the 13 genes, the
majority of genes in this region showed consistent and
elevated expression in high-grade tumors. Previously,
genomic gain at 8q22 in breast tumor samples has been
reported by independent groups and has been associated
with poor-prognosis [37,38]. A recent study identified
MTDH, one gene in module_36, as the most significant
functional mediator of this poor-prognosis genomic gain

[37]. Our results indicate that the genomic gain may
affect a broader region including 8q21, 8q22, and 8q23.
Interestingly, a published bioinformatics study using 12
independent human breast cancer microarray studies
comprising 1422 tumor samples also identified 8q21-23
as a potential aberrant chromosomal region [39]. It is not
clear why this region is consistently duplicated in high-
grade tumors. However, because Module_36 is moder-
ately correlated with the cell proliferation modules (Fig-
ure 4), we hypothesize that this genomic instability may
be associated with increased cell proliferation.

Regulatory mechanisms underpinning breast tumor 
progression
Because genes in a co-expression module are likely to be
regulated by a cohesive mechanism [8], we performed the
functional category enrichment analysis for the modules
against the gene sets of transcription factor targets in
order to identify potential transcriptional regulatory
mechanisms underlying the modules. Among the 17
modules, 8 were enriched with targets of certain tran-
scription factors (B-adjp less than 0.05, Figure 6).

Figure 4 Network of genes in the 17 modules reproducibly correlated with tumor grade. Nodes represent genes and edges represent co-ex-
pression between genes. Edges connecting genes in the same module are colored in dark grey, while edges connecting genes in different modules 
are colored in light grey. Genes in the same module are represented by nodes of the same shape. Genes belonging to multiple modules are repre-
sented by round nodes. The color scale bar shows the scale of p values for correlations between gene expression and tumor grade as calculated by 
the Jonckheere-Terpstra test. Modules are clustered into three connected components I, II, and III. Primary function annotations for each module are 
labeled in the figure.
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In a previous study using a different data set (GSE3494),
Niida et al. employed a Bayesian network approach and
identified motifs bound by ELK1, E2F, NRF1 and NFY as
principal regulatory motifs driving malignant progression
of breast cancer [40]. All these transcription factors were
detected in our study. Genes regulated by NYFB, E2F1/
E2F3, NRF1, and ELK1 were enriched in module_2,
module_20, module_50, and module_46, respectively. All
these previously reported regulatory mechanisms are
related to increased cell proliferation in high-grade
tumors. The result that overlapping modules such as
module_2 and module_50 are associated with different
transcription factors (Figure 6) suggests that they are
likely to be independent.

We also identified regulatory mechanisms related to
increased immune response in high-grade tumors. Spe-
cifically, transcription factors in the IRF family (IRF1,

IRF2, IRF7, and IRF8) were associated with module_22
and module_31, and those in the ETS family (SPI1, ELF1,
and ETS2) were associated with module_5. Both of these
families have implicated roles in breast cancer [41,42].

Module_7 was down-regulated in high-grade tumors,
and it was enriched with the targets of transcription fac-
tors CEBPB, TBP, POU2F1, and PPARG. Interestingly,
PPARG itself was included in the module and is a target
of all the other three transcription factors. Eight out of
the 35 genes in this module, including LPL, SORBS1,
PPARG, PLIN, FABP4, AQP7, CD36, and ADIPOQ, are
involved in the PPARA signaling pathway according to
the annotation in the KEGG database. The result indi-
cates that this transcriptional program might contribute
to breast tumor progression through inhibiting the
PPARA signaling pathway. Consistently, it has been
recently reported that the odds of breast cancer are dou-

Figure 5 Expression profile of genes in the chromosome region 8q21-23. Expression data for genes in the chromosome region 8q21-23 were 
collected from the GSE2109 dataset and visualized in a heat map. Rows present genes and columns represent samples. Genes are ordered by their 
chromosome location and colored-coded on the left by three cytogenetic bands 8q21, 8q22, and 8q23. Genes in module_36 are marked in red and 
labeled on the left. Samples are color-coded on the top by tumor grade, where blue, cyan, and pink correspond to grades 1, 2, and 3, respectively. The 
color scale bar at the bottom shows the relative gene expression level (0 is the mean expression level of a given gene).
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bled among women with PPARA polymorphism
rs4253760 [43].

As shown in Figure 6, some transcription factors, such
as IRF1 and PPARG are highly correlated with target
genes and therefore are included in the modules. Some
transcription factors are not included in the module but
still show positive correlation with target genes, such as
E2F1, E2F3, and IRF7. Some transcription factors are
negatively correlated with target genes such as CEBPB. It
is worth noting that most of the transcription factors do
not show significant transcriptional changes and cannot
be identified by individual gene based analysis. Our mod-
ule-based approach not only confirmed previously
reported regulatory mechanisms, but also generated
novel hypotheses on regulatory mechanisms associated
with breast tumor progression.

Prognostic value of the grade-correlated modules
It is well known that morphologically similar tumors may
have very different clinical courses. Because tumor speci-
mens with the same grade annotation showed very differ-
ent expression pattern of the modules (see Additional file
1), we explored whether expression pattern of the mod-
ules could be used to classify tumors more accurately

with regard to their likelihood of recurrence. Specifically,
we applied unsupervised hierarchical clustering on the
GSE2990 dataset to cluster cancer patients into sub-
groups based on the expression pattern of the 17 mod-
ules, and then investigated difference in relapse-free
survival for different patient subgroups by comparing
their survival curves estimated using the Kaplan-Meier
method.

As shown in Figure 7A, the modules can be categorized
into 3 groups based on the overall expression patterns,
corresponding to the three connected components in Fig-
ure 4. Patients in the dataset are first divided into two
groups based primarily on the expression of group II and
group III modules. The group with low-expression of
group II modules and high-expression of group III mod-
ules (patient group a) comprised mostly patients with
grade 1 or 2 tumors, while the group with high-expres-
sion of group II modules and low-expression of group III
modules (patient group b) was enriched in patients with
grade 3 tumors. This was expected as all of the modules
were significantly correlated with tumor grade in this
dataset, although they were identified in the independent
GSE2109_breast dataset. Patient group b can be further

Figure 6 Co-expression modules and their regulators. Nodes represent genes and edges represent transcriptional regulation between transcrip-
tion factors (top) and target genes (bottom). Transcription factors that are also included in the module are represented by square nodes, while others 
are represented by triangle nodes. The color scale bar shows the scale of p values for correlations between gene expression and tumor grade as cal-
culated by the Jonckheere-Terpstra test.
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divided into two subgroups based on the expression of
group I modules. One subgroup showed low-expression
of group I modules (patient group b1), while the other
showed high-expression of these modules (patient group
b2).

We first investigated whether the patient groups a and
b had different recurrences. As shown in Figure 7B_1,
they did show significant different relapse-free survival (p
= 0.004 in log-rank test). To test whether this result was
independent of tumor grade, we limited the survival anal-
ysis to grade 2 patients. As shown in Figure 7B_2, grade 2
patients in groups a and b also showed significant differ-
ent relapse-free survival (p = 0.017), even with a small
sample size.

Next, we compared relapse-free survival for patient
groups a, b1, and b2 as identified from the hierarchical
clustering. According to the log-rank test, the overall dif-
ference among these groups was statistically significant (p

= 0.013). As shown in Figure 7B_3, group a patients had
obviously better outcome than group b patients. More-
over, outcomes for the two subgroups in group b were
also discernible: patients in group b1 seemed to have
higher risk of recurrence compared to those in group b2.
Considering the function of the modules (Figure 4), the
result suggests that patients with lower cell proliferation
and higher systems development and cell adhesion have
lower risk of recurrence. For patients with high cell prolif-
eration, although the sample size was too small to draw
any statistical conclusions, it seems that the subgroup
with higher immune response has relatively lower risk of
recurrence, at least from year 4 to year 8. One explana-
tion is that the activation of adaptive immunity in the
high cell proliferation group could elicit antitumor
responses through T-cell-mediated toxicity, antibody-
dependent cell-mediated cytotoxicity, and antibody-
induced complement-mediated lysis. However, as

Figure 7 Patient subgroups identified based on module expression pattern and their relapse-free survival. Panel A: two-dimensional cluster-
ing of the samples and the 17 modules in the GSE2990 dataset. Rows represent modules and columns represent samples, which are colored-coded 
by tumor grade, where blue, cyan, pink, and yellow correspond to grades 1, 2, 3, and unknown, respectively. Module expression is calculated as the 
average standardized expression of all genes in the module. The color scale bar shows the relative module expression level, where 0 is the mean ex-
pression level of a given module. Modules and samples are clustered independently by hierarchical clustering. Major module clusters (I, II, and III) and 
major patient clusters (a, b1, and b2) are labeled on the dendrograms. Panel B shows the survival analysis results for different patient subgroups. B1: 
group a versus group b, all tumor grades. B2: group a versus group b, limited to grade 2 (G2) tumors. B3: groups a, b1, and b2, all tumor grades. B4: 
grade 1(G1), 2 (G2), and 3 (G3).
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immune system may play paradoxical roles during cancer
development[35], the relationship between immune sys-
tem activity and the risk of recurrence may not be
straightforward.

In comparison, we investigated the association between
grade annotation and relapse-free survival. As shown in
Figure 7B_4, grade 1 patients had considerable better out-
come than grade 2 and 3 patients, while the outcomes for
grade 2 and 3 patients were hardly discernible. The over-
all difference in relapse-free survival for the three groups
with different tumor grades was only marginally signifi-
cant (p = 0.065).

These results demonstrate that the expression pattern
of the grade-correlated modules is associated with the
risk of recurrence, that the expression pattern of the
modules can classify grade 2 patients into two groups
with high versus low risks of recurrence, and that the
three patient groups identified by the module expression
pattern may classify patients more accurately than the
traditional grading system. Similar findings have been
reported in the original study in which a gene-level
approach was applied on the GSE2990 dataset [28]. How-
ever, our module-based approach puts genes into biologi-
cal contexts and helps reveal biological processes and
regulatory mechanisms underlying the biomarkers.
Along the same line, protein interaction modules have
been proposed as biomarkers for the classification of
breast cancer metastasis[44]. As co-expression modules
are sub-networks identified from gene co-expression net-
works in a data-driven fashion, they are not limited by
existing knowledge on protein interaction and should
compliment the protein interaction module-based
approach. An obvious extension of the current study is to
construct prediction models based on the co-expression
modules and to evaluate their performance in different
patient cohorts.

Conclusions
We have developed a novel algorithm ICE for identifying
relatively independent maximal cliques as co-expression
modules and a co-expression module-based approach to
the analysis of gene expression data. The ICE algorithm
can identify functionally homogeneous modules from
complex gene co-expression networks. Because the over-
lap among the modules is restrained, the algorithm is able
to identify a small number of modules covering a variety
of biological processes, in turn facilitating downstream
analyses to investigate major transcriptional programs
encoded in gene co-expression networks. On the other
hand, the stringent requirement imposed by the module
definition in the algorithm ensures high-level of co-
expression among all genes in a module. Therefore, the
algorithm is able to identify truly co-regulated gene sets
that are reproducible in independent data sets. Applying

the module-based approach on a breast cancer microar-
ray gene expression dataset revealed important biological
processes and previously reported regulatory mecha-
nisms underlying breast tumor progression. In addition,
novel hypotheses on regulatory mechanisms and
genomic gain associated with breast tumor progression
have been generated. The 17-module signature of breast
tumor progression clustered patients into subgroups with
significantly different relapse-free survival times in an
independent dataset and provided useful prognostic
information that is independent of tumor grade.

Methods
Data preprocessing
cel files for each gene expression dataset were down-
loaded from the Gene Expression Omnibus (GEO) data-
base http://www.ncbi.nlm.nih.gov/geo/ and processed
using the Robust MultiChip Analysis (RMA) algorithm
[45] as implemented in Bioconductor [46]. Probe set iden-
tifiers (IDs) were mapped to gene symbols based on the
mapping provided by the GEO database. Median expres-
sion levels from multiple probe sets corresponding to the
same gene were calculated to represent the gene expres-
sion level. To make the gene expression level comparable
across genes, expression values for each gene were stan-
dardized using a Z-score transformation. For each data-
set, a gene expression matrix with normalized and
standardized expression values was thus generated.

Gene co-expression network construction
Given a gene expression matrix with n genes and m sam-
ples, Pearson's correlation coefficients are calculated for

all the  gene pairs. To evaluate functional similar-
ity between each pair of genes, the Resnik's semantic sim-
ilarity [47] is calculated based on the GO biological
process annotation according to Elo et al [25]. The aver-
age functional similarity of gene pairs at various correla-
tion ranges is calculated and plotted. A correlation
threshold above which a sharp increase in functional sim-
ilarity occurs is selected through manual inspection of
the plot. Based on the selected threshold, a gene co-
expression network is constructed in which each node is
a gene while two nodes are connected by an edge if their
Pearson's correlation coefficient is above the threshold.

Co-expression module identification
We propose an intuitive Iterative Clique Enumeration
(ICE) algorithm to identify a manageable number of max-
imal cliques as relatively independent co-expression
modules in order to facilitate further analyses of the tran-
scriptional mechanisms encoded in a gene co-expression
network. Given a graph , G = (V,E), the algorithm works
on the original graph G and "residual graphs" Gi= (Vi, Ei)

n n× −( )1
2

http://www.ncbi.nlm.nih.gov/geo/
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iteratively, where the residual graph Gi is generated by
removing all maximal cliques identified before step i from
G. At step i, the algorithm first identifies the maximum
clique Ci in Gi [48], and then finds the largest maximal
clique Ci

' in G that covers Ci. Ci' is considered as a module
and is removed from Gi to generate the next residual
graph Gi+1. Because Ci is identified in a residual graph, it
has no overlap with previously found modules. However,
expanding Ci to Ci

' allows overlap between Ci
' and existing

modules. Therefore, overlap among the identified mod-
ules is allowed but the amount of overlap is restrained.
The iteration stops when a pre-defined clique size thresh-
old cmin is reached. Because we focus on the major regula-
tory programs encoded in the network, cmin is set to 10 in
this study. The ICE algorithm is formally described in the
Appendix. A C implementation is available at http://bio-
info.vanderbilt.edu/ice. For comparison, we included the
popular K-means clustering algorithm and a graph-based
module identification algorithm MCODE in the study. K-
means clustering was performed on the gene expression
matrix using the kmeans function in R. MCODE analysis
was performed in Cytoscape [49]. Default parameters
were used in both cases.

Functional category enrichment analysis
For a module with n genes and an a priori defined func-
tional category with K genes, hypergeometric test[50] is
used to evaluate the significance of the overlap k between
the module and the category. All N genes on the microar-
ray are used as a reference. The significance of the overlap

can be calculated by . For the

source of the functional categories, we used the Gene
Ontology (GO) gene sets and the transcription factor tar-
gets gene sets downloaded from the MSigDB (http://
www.broad.mit.edu/gsea/msigdb/index.jsp, version 2.5).
The later was organized by transcription factor binding
motifs. We further collected known transcription factors
for the binding motifs from the Transfac database (http://
www.gene-regulation.com, professional version 12.1).
Genes associated with different binding motifs that cor-
respond to a common transcription factor were com-
bined into one gene set. Gene sets associated with
binding motifs that have no known transcription factors
were not considered in this study.

Overall expression level of a module
Because the gene expression data is normalized and stan-
dardized, for a selected sample and a specific module Mj,
average expression of all genes in the module is used to

represent the overall expression of the module in the

sample: .

Jonckheere-Terpstra test
Suppose that N samples (e.g., tumor specimens) are
assigned to s ordered categories (e.g., tumor grades) and a
selected attribute X (e.g., expression of a gene) is mea-
sured for the samples and ranked. The Jonckheere-Terp-
stra test[51] tests the null hypothesis H that there are no
difference among the categories. The alternative hypoth-
esis is that the sample means change monotonically along
the ordered sequence of the categories. Let us denote by
Xi1, ..., Xim and Xj1, ..., Xjn the observations on the ith and
jth categories where i <j, and by Wij the number of pairs
(α,β) for which Xiα <Xjβ. The Jonckheere-Terpstra test sta-

tistic W can be calculated as . Based on the

limit theorem, for large values of N, the statistic W is
approximately normally distributed, with an expected

mean of  and a variance of

[51]. Therefore, the
significance of W can be calculated based on the null dis-
tribution.

Survival analysis
Survival analysis was performed in R using the survival
package. Specifically, survival curves were estimated
using the Kaplan-Meier method, and survival compari-
sons among groups were made by the log-rank test.

Network visualization
Networks were visualized using Cytoscape [49].

Appendix
Algorithm 1. Iterative Clique Enumeration (ICE)

1. Given graph G = (V,E), clique size threshold cmin
2. i = 0, C0 is the maximum clique in G, output C0
3. C0 C0, G0  G, V0  V, E0  E
4. while ||Ci|| ≥ cmin do
5. i  i + 1
6. Gi = (Vi, Ei), where 

7. Find the maximum clique Ci in Gi
8. Find the largest maximal clique Ci' in G such that 
Ci'  Ci
9. Output Ci'
10. end while
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