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Abstract

levels.

Background: Within the emerging field of synthetic biology, engineering paradigms have recently been used to
design biological systems with novel functionalities. One of the essential challenges hampering the construction of
such systems is the need to precisely optimize protein expression levels for robust operation. However, it is difficult to
design mMRNA sequences for expression at targeted protein levels, since even a few nucleotide modifications around
the start codon may alter translational efficiency and dramatically (up to 250-fold) change protein expression. Previous
studies have used ad hoc approaches (e.g., random mutagenesis) to obtain the desired translational efficiencies for
mMRNA sequences. Hence, the development of a mathematical methodology capable of estimating translational
efficiency would greatly facilitate the future design of mRNA sequences aimed at yielding desired protein expression

Results: We herein propose a mathematical model that focuses on translation initiation, which is the rate-limiting step
in translation. The model uses mRNA-folding dynamics and ribosome-binding dynamics to estimate translational
efficiencies solely from mRNA sequence information. We confirmed the feasibility of our model using previously
reported expression data on the MS2 coat protein. For further confirmation, we used our model to design 22 luxR
MRNA sequences predicted to have diverse translation efficiencies ranging from 10-5to 1. The expression levels of
these sequences were measured in Escherichia coli and found to be highly correlated (RZ2= 0.87) with their estimated
translational efficiencies. Moreover, we used our computational method to successfully transform a low-expressing
DsRed2 mRNA sequence into a high-expressing mRNA sequence by maximizing its translational efficiency through the
modification of only eight nucleotides upstream of the start codon.

Conclusions: We herein describe a mathematical model that uses mRNA sequence information to estimate
translational efficiency. This model could be used to design best-fit mRNA sequences having a desired protein
expression level, thereby facilitating protein over-production in biotechnology or the protein expression-level
optimization necessary for the construction of robust networks in synthetic biology.

Background

The emerging research field of synthetic biology differs
from conventional biotechnology in terms of its problem-
solving strategies [1]. Synthetic biology uses the engineer-
ing paradigm of system design to build biological systems
with novel functionalities that often do not exist in
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nature. Therefore, synthetic biology allows the rational
design or redesign of living systems at a deep and com-
plex level [2-4], allowing researchers to use existing bio-
logical knowledge to rationally and systematically tackle
biological problems.

When synthetic networks are designed, genetic regula-
tion is considered at the level of transcription, while
translation is assumed to be straightforward and is there-
fore ignored [5,6]. However, a few nucleotide changes
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around the start codon can dramatically affect translation
efficiency and may alter protein expression levels by up to
250-fold [7-10]. Thus, if both transcription and transla-
tion processes are not considered during the design of
synthetic networks, the realized networks could show
unpredictable or unstable behavior [7,8,11,12]. In order
to guarantee the robust operation of synthetic networks,
the kinetics of both transcription and translation should
be optimized, much in the way that nature has optimized
biological systems through evolution [13,14].

The translational efficiency of an mRNA is highly
dependent on the nucleotides in the translation initiation
region determining the mRNA molecule's conformation
and ribosome-binding affinity. Thus, it is difficult to esti-
mate translational efficiency directly from mRNA-
sequence data, and to design mRNA sequences that will
be expressed at desired protein levels. Random mutagen-
esis of nucleotides in the translation initiation region has
been widely used to tailor mRNA sequences toward
desired expression levels. However, because translational
efficiency is highly dependent on the downstream coding
sequence, the time-consuming process of repeated muta-
genesis and selection must be used to optimize the nucle-
otides in the translation initiation region of each coding
sequence [13,15-17].

The ability to express a given protein at the desired
level is key to systematically and efficiently building
robust synthetic networks. Toward this end, it would be
highly useful to develop a mathematical model capable of
estimating the translational efficiency of mRNA
sequences, thereby facilitating the rational design of use-
ful mRNA sequences. The development of such a model
would be expected to accelerate the evolution of syn-
thetic biology.

Here we describe a model that estimates translational
efficiency by focusing on the translation-initiation pro-
cess which is the rate-limiting step of translation, while
considering mRNA-folding dynamics and ribosome-
binding affinities. To confirm the feasibility of this model,
we used the MS2 coat gene as an example and compared
our estimated translational efficiencies with the previ-
ously reported expression levels of the corresponding
mRNA sequences. We then used our model to design
luxR mRNA sequences in which nucleotide alterations in
the translation-initiation region were predicted to yield
the desired translational efficiencies, and compared these
predictions with the corresponding experimental results.
Finally, to show one potential application of our model,
we used our model to design alterations in the transla-
tion-initiation region of the DsRed2 gene, and showed
that these alterations could be used to maximize transla-
tional efficiency and transform a low-expressing DsRed2
gene into a high-expressing gene.
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Methods

As shown in Figure 1A, we define a few new terms in this
study, in order to avoid causing confusion by using con-
ventional terms such as ribosome-binding site (RBS) or
Shine Dalgarno (SD) sequence.

Translation is a sequential process of initiation, elonga-
tion, and termination. Unlike elongation and termination,
initiation is a rate-limiting step that controls the overall
translational efficiency [18,19]. Its efficiency is deter-
mined by various factors, including: the secondary struc-
ture of the mRNA's translation-initiation region, which is
located around the start codon and mediates the transla-
tion-initiation process; and the hybridization affinity of
the SD sequence in the translation-initiation region to its
corresponding complementary sequence called the anti-
SD sequence in the ribosome's 16S rRNA [20-27].

Briefly, during the translation-initiation process, the
translation-initiation region of a transcribed mRNA
dynamically folds and unfolds into and out of its second-
ary structure [23]. The folded structure interferes with
ribosomal binding [27,28]. Once the structure is
unfolded, ribosomal binding is mediated by the SD
sequence based on the binding affinity between the SD
and anti-SD sequences. The ribosome then incorporates
the first aminoacyl-tRNA that corresponding to the start
codon at the P site, thereby initiating translation. The effi-
ciency of translation initiation is thus determined by the
chance that the translation-initiation region will be
unfolded, and the affinity of the SD and anti-SD
sequences [23,26].

Translation model

We herein developed a translation model that focuses on
translation initiation, which is the first and rate-limiting
step of translation, and pivotally facilitates the next step
of translation elongation by stably attaching a ribosome
to the mRNA [29]. The aim of our model is to estimate
the translational efficiency of a given mRNA sequence by
obtaining the probability of a given mRNA being bound
to a ribosome which is directly proportional to the level
of protein expression [23].

As illustrated in Figure 1B, our model includes three
sequential events in initiation: (1) the thermodynamic
folding of all transcribed mRNAs; (2) the regional unfold-
ing of a given mRNA's ribosome-docking site (RDS),
which is a 30-nucleotide sequence near the start codon
where actual ribosome docking occurs [18,30-32]; and (3)
the binding of a ribosome to the unfolded RDS through
the ribosome-recognizing sequence (RRS), which is a 10-
nucleotide sequence that includes the SD sequence and is
complementary to a sequence at the 3' end of the 16S
rRNA, termed anti-RRS (e.g., 5'-UCACCUCCUU-3' in E.
coli) [33].
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Figure 1 Schematic of the translation-initiation processes included in our model. A simple illustration of our translation-initiation model. (A) A
common prokaryotic gene structure, including the parts that are essential for translation initiation. The ribosome-docking site (RDS) is the mRNA re-
gion that is actually occupied by the ribosome. Any secondary structure formed in the region can impede ribosome binding. The RDS, structurally
identified by X-ray crystallography previously, starts from the first nucleotide of the Shine Dalgarno (SD) sequence, continues downstream for 30 nu-
cleotides, and includes part of the coding sequence. The ribosome-recognizing sequence (RRS) within the RDS mediates actual binding of the ribo-
some to the mRNA. The strength of this binding is based on the affinity of the RRS for the anti-RRS, which is a corresponding complementary sequence
found at the 3" end of the 16S rRNA (5'-UCACCUCCUU-3"in Escherichia coli). The 10-nucleotide sequence contains the conventional SD sequence
(AAGGAQ). (B) The translation-initiation process is modeled from mRNA folding to ribosome binding. (1) A transcribed mRNA folds into several struc-
tures according to its structural free energy. (2) Similarly, the RDS region of the mRNA is dynamically folded or unfolded according to its regional free
energy. The site is exposed to ribosomes when unfolded. (3) Ribosomes bind to the exposed RDS via hybridization of the RRS and anti-RRS; the
strength of this hybridization determines the ribosome-binding strength.
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Briefly, a transcribed mRNA can fold into diverse con-
formations according to its structural stabilities. A parti-
tion function can be used to calculate the fraction of each
conformation based on its free energy [34]. Although
each conformation has a certain overall stability, any
regional secondary structure (e.g., a helix or stem) can be
dynamically folded or unfolded according to its regional
stability. For a ribosome to bind, the RDS must be
unfolded. In short, all nucleotides in the site must lose
their base pairings. We therefore estimate the chance of
regional unfolding at a ribosome-docking site, and call
this the "exposure probability."

In order to recruit ribosomes, a ribosome-docking site
must possess a sequence complementary to the ribo-
somal 16S rRNA, as this is where hybridization occurs
[35]. The hybridizing sequence in the mRNA is defined as
the "ribosome-recognizing sequence” (RRS) in this study;
this is a 10-nucleotide sequence containing the conven-
tional SD sequence, as illustrated in Figure 1A. Although
the consensus SD sequence is generally known to be criti-
cal for ribosomal recruitment, the ribosome-binding
affinity is truly mediated by a longer (10-nucleotide)
region that includes the SD sequence and can hybridize
with a sequence at the 3' end of the 16S rRNA [19,24].

In summary, we can obtain the probability of a given
mRNA being bound to a ribosome using kinetic equa-
tions derived from: (1) the probability of each conforma-
tion; (2) the exposure probability of the RDS for each
conformation; and (3) the hybridization energy of the
RRS and anti-RRS. The probability of ribosome-bound
mRNA enables us to estimate the translational efficiency
since ribosome-bound mRNAs produce proteins and also
to design mRNA sequences with desired expression lev-
els.

Global folding of transcribed mRNAs

As shown in Figure 1B (Equation 1), transcribed mRNAs
fold into diverse conformations according to their struc-
tural energies [36,37]. We used the UNAFold v3.3 sec-
ondary structure-predicting software to estimate the
Gibbs free energy of each conformation [38,39]. The
probability of a given mRNA molecule existing in a given
conformation is obtained using a partition function for
the predicted conformations and their Gibbs free ener-
gies [34], as follows:

o el

THRNA 5. exp( 201
p( )
; RT

p(Si) = (1)

where T,y 4 denotes the total number of mRNAs that
may be transcribed from the gene of interest, S; denotes
one of the conformations of the transcribed mRNAs,
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AG(S;) denotes the Gibbs free energy of S;, R denotes the

gas constant, T denotes an absolute temperature, and /
denotes the number of predicted conformations.

Regional unfolding at the ribosome-docking site

We define the RDS as the 30-nucleotide sequence start-
ing from the first nucleotide of the RRS (Figure 1A), as
this has been structurally identified as the region where a
ribosome actually sits on an mRNA molecule [18,30-32].
The RDS spans the RRS and several N-terminal codons.
Thus, in order to determine an RDS, we must identify the
RRS (see Ribosome binding below).

Although ribosomes and elongation factors can coop-
erate to unwind helical structures during translation
elongation, ribosomes cannot unwind base-paired
mRNA structures during translation initiation [27,28,40].
Thus, in order for a ribosome to bind, the RDS must lose
(through unfolding) any secondary structure that might
prevent ribosomal docking. For example, the mRNA of
the MS2 phage replicase gene is not translated unless the
secondary structure around the start codon is disrupted
[41,42]. Due to the inability of helical mRNA structures to
be unwound during translation initiation, we herein
modeled the probability that all secondary structures in
an RDS would be unfolded at any given moment. This is
called the "exposure probability."

The exposure probability of each conformation is
summed to obtain an overall exposure probability for a
given RDS (Equation 2). As the probability of each con-
formation differs according to its stability (Equation 1),
the exposure probability of a certain conformation is
multiplied by the probability of the corresponding con-
formation to obtain the overall RDS-exposure probability.

Py :zp(si)'pi (2)

In Equation 2, p(S;) denotes the probability of the i-th
conformation S;, p; denotes the RDS-exposure probability
of the i-th conformation S, and P,, denotes the overall
RDS-exposure probability.

p; = HQi,j (3)
J

1 ,if jin Loop

0, = % Jif jin Stack  (4)
L 1,]
1+exp(——
P2 )
In Equations 3 and 4, 0, ; denotes the nucleotide-unpair-
ing probability of the j-th nucleotide in an RDS of confor-
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mation §;, AG;; denotes the Gibbs free energy of a stack
structure in a ribosome-docking site containing the j-th
nucleotide, and L denotes the number of nucleotides in a
given stack structure.

The nucleotides in an RDS may be either paired or
unpaired. The ribosome-docking site-exposure probabil-
ity (p;) of a given conformation S, is defined as the prod-
uct of the unpairing probabilities for all nucleotides in the
site (Equation 3).

The nucleotides in a loop structure are free of base
pairing. If a nucleotide is in a loop region, no Gibbs free
energy term is required, and its unpairing probability is 1.
In contrast, the nucleotides in a stack structure are base
paired, and the ability of the nucleotides in a stack struc-
ture to lose their base pairings depends on the structural
flexibility of the stack. Their unpairing probabilities are
calculated using a partition function similar to that
shown in Equation 1; here, it is assumed that all nucle-
otides in the stack must simultaneously lose their base
pairings in order for the stack structure to unfold (Equa-
tion 4). More specifically, a stack structure has only two
possible states: folded and unfolded. Therefore, the prob-
ability that a stack is unfolded is 1/(1+exp(-AG,,,/RT)),
where the Gibbs free energy of an unfolded stack is 0
kcal/mol. As all of the nucleotides in a stack must lose
their base pairings simultaneously in order for a stack to
unfold, the product of all of the nucleotide-unpairing
probabilities should equal the stack-unfolding probability.
For instance, if a stack structure consisting of four nucle-
otides has an unfolding probability of 0.0001, then the
nucleotide-unpairing probabilities of the four nucleotides

are equal to 0.1 (4/0.0001 ).

Ribosome binding

Ribosome-recognizing sequence identification

Once an RDS is unfolded and exposed, ribosome binding
is mediated by hybridization of the RRS in the RDS with
an anti-RRS sequence present in the ribosomal 16S rRNA
(Figure 1B) [18]. Thus, the RRS must be identified not
only to allow definition of the RDS (see above), but also to
allow us to calculate the hybridization affinity between
the RRS and anti-RRS.

Approximately 10 nucleotides at the 3" end of the 16S
rRNA are involved in the hybridization of a ribosome
with an mRNA sequence [19,24]. We therefore defined
the RRS as a 10-nucleotide sequence complementary to
the anti-RRS sequence in the 3' end of 16S rRNA. In the
case of E. coli, the anti-RRS sequence is 5'-UCACCUC-
CUU-3' [33], and the RRS contains a variation of the con-
sensus SD sequence [43], which is capable of hybridizing
with part of the anti-RRS.

In order to identify an RRS within a given mRNA
sequence, we computationally hybridized every 10-nucle-
otide sequence in the region from -30 to -10 upstream of
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the start codon to the anti-RRS sequence, and estimated
the hybridization energy using the hybrid-2s program
contained within the UNA Fold software package [38]. We
then selected one of the lowest-energy sequences for use
as the RRS [24,44].

Ribosome-binding kinetics

In order to estimate the probability of ribosome-bound
mRNA, we modeled ribosome binding using ordinary
differential equations (Equation 5). An RDS folds or
unfolds thermodynamically, and an unfolded RDS can
recruit free ribosomes according to the hybridization
affinity between the RRS and anti-RRS.

Equation 5 does not include the RDS folding reaction,
as the number of folded or unfolded RDSs can be
obtained from the RDS's overall exposure probability.
Here, we assume that the RDS-folding reaction is rela-
tively faster than ribosome binding, and thus reaches
equilibrium.

dm R

d—th—kf-TF-mE+k,~mR

dm R

TtR=kfvTvaE—k,-mR (5)
dR R

d—tF:—kf-TF-mE+k,-mR

In Equations 5 and 6, my, mypand Rpdenote the number
of RDS-exposed mRNAs, ribosome-bound mRNAs, and
free ribosomes, respectively; k;and k, denote the ribo-
some-association and -dissociation rate constants,
respectively; and s denotes the number of bound ribo-
somes (polysomes) per transcript.

kf  mp ( AGR)
Lo TR epl - =K, 6
mp-RE RT ©)

s
The probability of a given mRNA being bound to a
ribosome (P,) at steady state is then derived (Equation 7)
from Equations 5 and 6. Here, the ribosome-association
and -dissociation reaction constants, k; and k, are
replaced with an equilibrium constant (Kj) that is
obtained from the hybridization energy between the RRS
and anti-RRS (AGg) (Equation 6), as estimated using the
hybrid-2s program in the UNAFold software package
[38]. The numbers of RDS-exposed and ribosome-bound
mRNAs are replaced with the total number of mRNA
molecules, which is calculated as T, g4 = Mg/ P, + 1.

2 2 5,2 R
a—\/a _4'KR'Pex'TT'TmRNA

2-KR-Pex- TmRNA
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In a=1+Ky-P, ~R?T+KR P, - Tyyrna » Ry denotes
the total number of ribosomes in a cell (R; = Ry + s-m1y),
K denotes an equilibrium constant derived from the
hybridization energy (AGyg), P,, denotes an overall RDS-
exposure probability, and P denotes the probability of
ribosome-bound mRNA.

As shown in Equation 7, three parameters are needed
to calculate the probability of ribosome-bound mRNA:
the total numbers of mRNAs in the cell (7),,zx4), the total
number of ribosomes in the cell (R;), and the number of
ribosomes per polysome (s). We obtained the necessary
parameters from the literature. For the [uxR gene used as
an example below, the total number of [uxR transcripts
was calculated using a kinetic equation for transcription
at steady state: [transcribed mRNA] = [gene copy num-
ber] x [transcription rate] x [mRNA half-life]/In(2). For
the utilized plasmid, the luxR gene is transcribed at a rate
of 20 mRNAs/min under the control of the lac promoter,
and there are about 100 copies of the gene per cell [45].
The half-life of the /uxR mRNA is assumed to be about 2
min, as this is the average half-life of an mRNA in E. coli
[46,47]. Therefore, the total number of [uxR mRNAs
(T,,rna) is taken to be approximately 5,700 per cell. The
number of ribosomes in a given E. coli cell (Ry) is about
57,000 [48], and the number of ribosomes simultaneously
translating a given transcript (s) is 20 [49].

Translational efficiency

We herein define the probability of a given mRNA being
bound to a ribosome as translational efficiency, since pro-
tein production is proportional to the number of bound
ribosomes [23]. However, it has been reported that an
RRS with a strong hybridization energy (i.e., lower than -
13 kcal/mol) could have a 10-fold lower translational effi-
ciency [28,50,51]. Therefore, when a given RRS had a
strong hybridization energy, we decreased the transcript's
translational efficiency by a factor of 0.1.

Estimation of translational efficiency: an example

Here we show an example of our model's translational
efficiency estimation (Figure 2). First, we identified an
RRS upstream of the start codon. We used this RRS to
determine the RDS, calculate the overall exposure proba-
bility of the RDS, and compute the probability of ribo-
some-bound mRNA. As shown in Figure 2A, among the
various 10-nucleotide sequences from the mRNA,
AAGGAGTAGG was found to have the lowest hybridiza-
tion energy (AGp = -6.8 kcal/mol) to the anti-RRS
sequence, and was thus selected as the RRS.

Second, we predicted the possible secondary structures
of the mRNA sequence. In the example shown, the
mRNA may fold into two different conformations with
Gibbs free energies of -33.3 and -31.9 kcal/mol (Figure
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2B). The probability for each conformation was obtained
from the free energies using Equation 1. The results
revealed that the conformation with the free energy of -
33.3 kcal/mol comprised 90.6% of all folded versions of
this mRNA, while the other conformation (free energy, -
31.9 kcal/mol) comprised only 9.4%.

Third, we calculated an overall RDS-exposure probabil-
ity from the RDS-exposure probability of each conforma-
tion. Each RDS-exposure probability was calculated from
the nucleotide-unpairing probabilities of the nucleotides
in that RDS. As shown in Figure 2C, the RDS (upper-case
letters) of the conformation with the Gibbs free energy of
-31.9 kcal/mol had a stem-loop structure composed of
one loop and one stack. The nucleotide-unpairing proba-
bilities in the loop region were taken as 1, while those in
the stack were calculated using Equation 4:

1.0

0= =0.155

0 1.0+exp _63'8
1.99x10" °%x310.15

Consequently, the RDS-exposure probability of the sec-
ond conformation was the product of all unpairing-prob-

abilities for the nucleotides in the RDS (Figure 2D), as
follows:

Py =1, X1, X1oX1gX ... Loop
0.155, x0.15545%0.1557 X 0.155, X 0.155, x0.1555 % ... Stack
1o X1 X1 X1, X1, X1y X1, Xeee ... Loop

=1.39x107

If the mRNA sequence of interest can fold into more
than two different conformations, the same calculation
would be carried out for each conformation. The RDS-
exposure probability of the first conformation in the
example was found to be p; = 9.26 x10°. The overall
RDS-exposure probability was the sum of the two RDS-
exposure probabilities (p; and p,), multiplied by each
conformation probability, as follows:

P, =0.906x1.39x107° +0.0935x9.26x10™° =1.26x10™°

Fourth, we calculated the probability of ribosome-
bound mRNA using Equation 7. For this calculation, we
used parameter values obtained from the literature:
There are 57,000 ribosomes in a cell (R, = 57,000) [48]; 20
ribosomes simultaneously produce proteins from a given
mRNA sequence in the form of a polysome (s = 20) [49];
and there are 5,700 transcribed mRNAs in total (T),zpn4 =
5,700) [45-47]. The equilibrium constant (Kj) for ribo-
some association and dissociation was derived using
Equation 6, using the hybridization energy of the identi-
fied RRS (AGp = -6.8 kcal/mol) with the anti-RRS
sequence (Figure 2A).
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Figure 2 An example of estimating translational efficiency using our model.

exposure probability ribosome-bound mRNA

RDS-exposed mRNAs

As shown in Figure 2E, the probability of a given mRNA
being bound to a ribosome was P = 0.49, indicating that
about 49% of the transcribed mRNA sequences were
occupied by ribosomes (and were therefore producing
proteins). According to our definition, this corresponds
to the translational efficiency of E = 0.49.

Computational design of synthetic ribosome-docking site
sequences

To design mRNA sequences that should be expressed at
the desired protein levels, we created 22 synthetic RDS
sequences with diverse translational efficiencies ranging

from 10-5 to 1. Although the RDS as defined herein con-
tains several N-terminal codons, we only mutated nucle-
otides upstream of the start codon, so as to avoid altering
any protein properties.

As shown in Figure 3, a genetic algorithm was used to
computationally optimize the 10 nucleotides upstream of
the start codon, with the goal of designing an mRNA
sequence with a specific translational efficiency. Briefly,
the 10 nucleotides upstream of the start codon were ran-
domized to generate 100 different mRNA sequences, and
the translational efficiency of each mRNA was estimated
and ranked relative to the target translational efficiency.



Na et al. BMC Systems Biology 2010, 4:71 Page 8 of 16
http://www.biomedcentral.com/1752-0509/4/71
Input asequence (UTRACD3) and 5 UTR._ . CDs ) ey
target translational efficiency (E) L mes —* TargetE=0.24
- Candidate sequences
Generate candidate sequences
by randomizing 10 nucleotides -
upstream of start codon
I Candidate sequences }
Translational efficiency ]
P e ity ~ I Evaluate candidate sequences I
||’ — \ ‘l L
1 Ak ¥ ] 1
': v oo ! 9 1 Rank evaluated sequences ! o— )20 Cross-over
! : | ding to the closeness 2 — — () 138
|l ﬂ 3 lA H accoramgto %
N tot t effici
‘..::::::’..'_,' oRargetEtticiedcy 3 —w w — () 001 <
e———a -
E=0.138 Check whether
z : oe the efficiencies of Evolve sequences
the candidates by mutations or cross-over
E=0.001 converge
Mutation
E=0.20 1
Genetic algorithm

Figure 3 The use of a genetic algorithm to design synthetic RDS sequences having specific translational efficiencies. The RDS design process
starts with a user-specified 5' untranslated region (UTR) and a coding sequence (CDS). The 10 nucleotides upstream of the start codon, which make
up part of the RDS, are modified to satisfy a target translational efficiency using a genetic algorithm. The generated sequences are randomly mutated
or crossed over. If the translational efficiency of the generated sequences converges to the target efficiency, the algorithm terminates.

The 10 highest-ranked sequences proceeded to the next
round of the algorithm without modification, while 90
new mRNA sequences were generated by crossing-over
or mutating randomly selected sequences from the 100
original mRNA sequences. The translational efficiencies
of the newly generated sequences were then estimated,
ranked, and selected as described above. This process
was repeated until the translational efficiency of the best-
fit mRNA sequence converged to the target translational
efficiency.

Plasmid construction

For cloning of [uxR gene sequences harboring diverse
synthetic RDS sequences under the control of the lac pro-
moter, we constructed a customized vector containing
the RSF replication origin and lacl? gene. The RSF repli-
cation origin and /lacl1 were cloned from pRSF-Duet
(Novagen). The lac promoter (P,,,) and lacZa gene were
cloned from pBluescript (Stratagene). The kanamycin

resistance gene was cloned from pCR-Blunt II-TOPO
(Invitrogen). The 5' coding sequence of [uxR from Vibrio
fischeri (ATCC 700601D) was first modified based on
codon degeneracy in order to increase the GC content,
and then PCR was used to create and amplify /uxR genes
with various synthetic RDS sequences. The gene encod-
ing DsRed2 was cloned from pDsRed2-N1 (Clontech).
The utilized primers are described in Additional file 1.

Measurement of luxR expression

The generated luxR genes were fused with lacZa as
described above, and their expression levels were mea-
sured by p-galactosidase assays, as reported previously
[52,53]. In brief, E. coli DH5a cells were transformed with
the constructed plasmids and cultured to log phase in LB
broth containing 0.1% glucose. The cells were induced
with 2.5 mM isopropyl B-D-1-thiogalactopyranoside
(IPTQ) for 2 hours, and then harvested and resuspended
in Z-buffer (4.27 g Na,HPO,, 2.75 g NaH,PO,H,0, 0.375
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g KCl, 0.125 g MgSO, 7H,0, and 1.4 ml B-mercaptoetha-
nol in 500 ml distilled water). Resuspended cells (150 pl)
were permeabilized with 5 pl of 0.1% SDS and chloro-
form. After equilibration for 2 min, 60 pl of o-nitrophe-
nyl-B-D-galactoside was added. The cells were then
incubated until yellow color developed, at which point
150 pl 1 M Na,CO5 was added. The samples were centri-
fuged at 13,000 rpm for 1 min for removal of cell debris,
and the optical density at 420 nm (OD,,,) was measured.
The activity of B-galactosidase was calculated as follows:

OD420
ODg5xtime (hr)

Activity =

Measurement of DsRed2 expression

E. coli DH5a cells harboring a DsRed2 plasmid were cul-
tured to stationary phase, and red fluorescence intensity
was measured using a Tecan Infinite M200 instrument
(excitation at 558 nm and emission at 583 nm). The
results were normalized with respect to the optical den-
sity at 600 nm (ODg)-

Results and Discussion

Validation using data in the literature: the MS2 coat protein
gene

We confirmed the validity of our model using expression
data for constructs in which the MS2 coat gene was
ligated to diverse RDS sequences shown to yield various
RDS secondary structures and ribosome-binding affini-
ties [33]. We used our model to predict the translational
efficiencies, ribosome-bound mRNA probabilities, over-
all RDS-exposure probabilities, and RRS-hybridization
energies for the various MS2 coat gene mRNA sequences.
The highest MS2 coat protein expression level achieved
in the experiments had been normalized to 1 in the previ-
ous study, so we normalized our highest ribosome-bound
mRNA probability to 1 for comparison. Our model suc-
cessfully predicted the relative expression levels, with a
high correlation of R? = 0.77 (Figure 4A). The other esti-
mated properties are shown in Figure 4.

Interestingly, a sequence showing a relative expression
level of 0.44 was estimated to have an overall RDS expo-
sure probability of 1.0 x 10 and a ribosome-bound
mRNA probability of 0.41. In other words, only 1 out of
RDS regions was predicted to be naturally exposed to
ribosomes, but 41% of the overall RDS regions were pre-
dicted to be occupied by ribosomes. Our model esti-
mated that despite the severely low RDS-exposure
probability, the RDS had a strong ribosome-binding affin-
ity (hybridization energy, AG = - 8.9 kcal/mol). Therefore
our model suggests that once a ribosome was bound to
this sequence it would rarely detach from the RDS, while
unbound RDS regions would be dynamically driven to
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the unfolded state in order to resolve their disequilib-
rium.

Computational design of luxR mRNA sequences with
desired translational efficiencies

To experimentally validate our model, we chose the luxR
gene from V. fischeri for mRNA sequence design. We
computationally generated 22 synthetic mRNA
sequences, specifically RDS sequences, predicted to have
various translational efficiencies (ranging from 10->to 1;
Figure 3). The plasmid structure is shown in Figure 5A
and the designed synthetic RDS sequences are listed in
Figure 5B.

The resulting [uxR expression levels are shown in Fig-
ure 6, along with the estimated properties of the synthetic
RDS sequences, including the translational efficiency, the
probability of ribosome-bound mRNA, the overall RDS-
exposure probability, and the RRS-hybridization energy
for each sequence. The [uxR expression levels observed in
our experiments were consistent with our design goals,
showing a strong correlation of R? = 0.87.

Among the synthetic sequences, the overall RDS-expo-
sure probabilities and RRS-hybridization energies of the
high-expressing RDS sequences varied from 1010 to 10-3
and from -9.8 to -5.5 kcal/mol, respectively, while those
of the low-expressing sequences varied from 10-13 to 10-10
and -13.9 to -4.6 kcal/mol, respectively. As shown in Fig-
ures 7A and 7B, the high-expressing sequences had high
exposure probabilities caused by the presence of many
unpaired nucleotides in the RDS region, and they had
strong RRS-hybridization energies. In contrast, the low-
expressing sequences had both low exposure probabilities
and low hybridization energies (Figure 7C and 7D). Our
experimental results revealed that the LuxR protein
expression levels among the high- and low-expressing
sequences were consistent with the estimated hybridiza-
tion energies and exposure probabilities: A high exposure
probability and hybridization energy enhanced ribosome
binding and thereby increased protein expression, while a
low exposure probability and hybridization energy pre-
vented ribosome binding and thereby decreasing protein
expression.

For example, sSRDS11 and sRDS22 had similar exposure
probabilities (10-19), but the hybridization energy of
sRDS11 was stronger by -2.6 kcal/mol, increasing the
ribosome-binding equilibrium constant by about 70-fold
(Figures 7A and 7C). The estimated translational efficien-
cies of sSRDS11 and sRDS22 were 0.265 and 0.010, respec-
tively, and their expression levels were 1 and 0.020,
respectively. As another example, sSRDS9 and sRDS2 had
the same hybridization energies, but sSRDS9 had a lower
exposure probability, showed a 70-fold lower expression
level, and was estimated to have a translational efficiency
of 1.28 x 105 due to its extremely low exposure probabil-
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ity. The structures and estimated properties of sSRDS2 and
sRDS9 are shown in Figures 7B and 7D, respectively.

Application of the model to protein over-production: over-
expression of DsRed2

We applied our model to the issue of over-expressing the
DsRed?2 gene. This gene is not expressed well in plasmids
other than its original vector, due to the presence of RDS
secondary structures that severely block ribosome bind-
ing [7]. We designed a DsRed2 transcript sequence pre-
dicted to have a high translational efficiency (DsRed2-H)
for over-expression, and one with a low translational effi-
ciency (DsRed2-L) for comparison. The translational effi-
ciencies of the designed transcripts were 0.49 for
DsRed2-H and 0.072 for DsRed2-L. The designed mRNA
sequences, predicted RDS secondary structures, and
resulting expression levels are shown in Figure 8.

Our results revealed that modification of only eight
nucleotides upstream of the start codon dramatically
changed the secondary structure of the RDS region,
resulting in an approximately 10-fold increase in protein
expression compared to that of DsRed2-L (Figure 8). This
increased expression resulted from a large change in the
RDS-exposure probability: DsRed2-H had an overall
RDS-exposure probability of 2.12 x 10-5, whereas the
exposure probability of DsRed2-L was six orders of mag-
nitude lower, at 2.78 x 10-!l, due to differences in the
stem-loop structures (Figure 8B). Although DsRed2-H
could form a more stable mRNA-ribosome complex than
DsRed2-L, the difference in hybridization energy did not
significantly change ribosome recruitment compared
with the change in the overall RDS-exposure probability.
The RRS-hybridization energies of DsRed2-H and
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lacO Synthetic RDS luxR

. acatctattaatt AAGGAGNNNNNNNNNN ATGaacatcaagaac

F lac
Designed lacZa
sequence
RSF ori :
=SCe Terminator
Name Designed sequence Name Designed sequence

sRDS1 AAGGAGCACCtacacaATG | SRDSI3  AAGGAGAGTGacgttcATG
sRDS2 AAGGAGTAGGgcaaatATG | sRDS14  AAGGAGGGAGggcgagATG
sRDS3 AAGGAGACCTataagcATG | sRDS15  AAGGAGGGTTgatctgATG
sRDS4 AAGGAGCAACagtgaaATG | SRDS16  AAGGAGGTGAtgcttgATG
sRDS5 AAGGAGATTTcggtagATG | SRDS17  AAGGAGCGTGagttctATG
sRDS6  ARGGAGATCGtgggtcATG | sRDSI8 AAGGAGAGATttcttgATG
sRDS7  ARGGAGTGGTttgcgtATG | sRDSI9 AAGGAGTGATtgttctATG
sRDS8 ARGGAGTTCGcggttcATG | sSRDS20 AAGGAGTGGGggttctATG

sRDSI1  aaeceaeTGAGggttctATG | sRDS21  AAGGCETGGTttgcgtATG

sRDS12  AAGGAGTGAGgcaatcATG | SRDS22  AAGGATTGGTttgcgtATG

Figure 5 The constructed plasmids and designed synthetic RDS sequences. (A) Schematic of the plasmid harboring the luxR gene with the de-
signed RDS sequences. Based on a genetic algorithm, the 10 nucleotides upstream of the start codon were modified to create synthetic RDS sequenc-
es with specific translational efficiencies. For measurement of LuxR protein expression, the lacZa gene was fused to the luxR gene. (B) The designed
synthetic RDS sequences are listed; the RRS sequences are indicated in bold. For sSRDS21 and 22 they have the same designed spacer sequence but
their SD sequences were modified further.
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DsRed2-L were -9.3 kcal/mol and -8.6 kcal/mol, respec-
tively. Consequently, our model suggests that the varia-
tion in RDS secondary structure induced by our model-
directed mutations caused a significant change in DsRed2
protein expression.

Conclusions

We herein describe a mathematical model for estimating
mRNA translational efficiency based on the effect of RDS
secondary structures and the RRS-hybridization events
that occur during translation initiation. We confirmed
the validity of our model using previously reported
expression data, and further confirmed our model experi-
mentally using computationally designed synthetic RDS
sequences ligated to [uxR. The experimentally deter-
mined gene expression levels of the synthetic RDS

sequences were consistent with the efficiencies targeted
by our model; the correlation coefficient (R%) was 0.87
when linearly regressed.

Salis et al. recently proposed a thermodynamic model
for estimating the translational efficiency of mRNA
sequences [54]. Their model predicts the relationship
between the protein expression level and the summed
Gibbs free energies, including the hybridization energy of
the SD sequence and the 16S rRNA, the energy of helical
structures within the ribosome binding site, and so on.
Unlike the previously proposed model, our model is a
steady-state kinetic model based on the stepwise process
of translation initiation, from the global folding of tran-
scribed mRNA to ribosome binding. Therefore, our sys-
tem precisely models the translation-initiation process
based on the reactions involved in initiation, not through
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Figure 7 The predicted secondary structures and estimated properties of high-and low-expressing synthetic RDS sequences. The RDS nu-
cleotides considered in this calculation are shown in upper-case letters, and the estimated translational efficiencies (F), measured relative expression
levels (L), overall RDS exposure probabilities (P,,), probability of ribosome-bound mRNA (P, RRS-anti RRS hybridization energies (AGp) and the Gibbs
free energies (AG) of the helix structure inside RDS are also shown for sSRDS11 (A), sSRDS2 (B), sSRDS22 (C) and sRDS9 (D). The secondary structures were

a simple summation of energy terms. Although these two
approaches differ to some extent, the predictive value of
both models is similar, since the same key factors (the
secondary structure around the start codon and the ribo-
some-binding affinity) are taken as determining transla-
tion efficiency. However, the incorporation of actual
translation processes into our model gives us detailed
information on the translation-initiation process. For
example, we can assess how much each global mRNA
structure affects the translation efficiency, how many
ribosome-docking sites within the transcribed mRNAs
are exposed to ribosomes, and how many mRNAs are
occupied by ribosomes.

Furthermore, since we precisely model the stepwise
processes involved in translation without any parameter
fittings, our model could be extended to the examination
of other biological processes related to translation initia-
tion. For example, the incorporation of a molecule capa-
ble of competing with ribosomes would allow us to model
the process of translation repression by small regulatory
RNAs, which inhibit translation initiation by competing

with ribosomes [55]. In addition, since our model
assumes that transcribed mRNAs may fold into two or
more potential structures depending on their structural
Gibbs free energies, the model could be used to predict
the translation efficiencies of mRNA sequences that have
two or more folded structures at equilibrium [56].

Since our model is capable of estimating the transla-
tional efficiency of mRNA sequences, it can be utilized to
facilitate the assembly of genetic elements into robust
synthetic cellular systems. In natural systems, the kinetics
of the various elements has been evolutionarily optimized
for robust operation. Similarly, we must optimize the
kinetics of assembled elements in designed systems; how-
ever, such optimization has proven to be a main challenge
hampering the development of robust synthetic systems.
Our model can therefore assist in the design of synthetic
RDS sequences that will help researchers obtain mRNA
sequences with translation rates that will best fit the
kinetics of their designed systems. Finally, our model can
also be utilized to design optimal mRNA sequences for
over-expressing proteins of interest. This could be espe-
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cially useful for the production of therapeutic human
proteins such as interleukin-10, which is weakly
expressed in bacterial cells due to the presence of strongly
folded RDS structures [12]. In combination with such
engineering, protein expression levels could be synergis-
tically elevated through the use of conventional transla-
tion elongation-optimization methods, such as codon
optimization.
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Additional file 1 List of the primers used in our experiments. The prim-
ers used to construct the expression vectors, as well as the synthetic RDS-
containing mRNA sequences, are listed in this file.
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