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Abstract
Background: Genomics has substantially changed our approach to cancer research. Gene expression profiling, for 
example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic 
signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and 
epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the 
potential for large scale integration of genome and transcriptome data generated from a variety of technology 
platforms to acquire a better understanding of cancer.

Results: Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms 
that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in 
a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption 
(MCD) analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would 
be overlooked in single genomic dimension investigations.

Conclusions: Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide 
analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our 
findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape 
conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

Background
Genomic analyses have substantially improved our
knowledge of cancer. Gene expression profiling, for
example, is utilized to delineate subtypes of breast cancer,
and has facilitated the derivation of predictive and prog-
nostic signatures [1-5]. However, not all of the gene
expression changes observed are causal to cancer devel-
opment, and global gene expression analysis alone cannot
distinguish between causal and reactive changes. Corre-
sponding alteration at the DNA level is regarded as evi-
dence of causality; for example, gene deletion or gene
silencing by methylation. Hence, examining genetic and
epigenetic events in conjunction with the changes in gene

expression pattern should improve the identification of
causal changes that lead to disease phenotype.

Analysis of gene copy number alone has correlated
breast cancer genome features with poor prognosis based
on the degree of genomic instability observed [6]. In
terms of gene discovery, specific genomic regions con-
taining important loci have been shown to be frequently
gained or lost [7-11]. Integrative analyses of gene dosage
and gene expression in breast cancer have revealed spe-
cific genes which are deregulated at the gene expression
level as a result of changes in DNA copy number. From a
global perspective, studies have shown a broad range in
concordance between DNA amplification and overex-
pression of genes. This variability is attributable to the
sensitivity of the methods used in detecting gene copy
number and gene expression changes as well as the num-
ber of genes examined [12-15]. Conversely, when examin-
ing gene overexpression, it was found that only ~10% of
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the overexpression could be attributable to gene amplifi-
cation [14]. It is certain that altered gene expression can
not only be attributed to disruption of regulatory/signal-
ing cascades and downstream effects, but also to a multi-
tude of causal genetic and epigenetic aberrations.

We reason that by examining multiple genomic dimen-
sions simultaneously, with a dimension representing a
genome wide assay measuring DNA level alterations such
as gene copy number or DNA methylation, we are likely
to achieve the following: (i) explain a greater fraction of
the observed gene expression deregulation as compared
with explaining expression deregulation using only a sin-
gle dimension, (ii) improve the discovery of critical onco-
genes and tumor suppressor genes (TSGs) by focusing on
those genes altered simultaneously at multiple genomic
dimensions, and (iii) begin to understand the complex
mechanisms of dysregulation of oncogenic pathways. In
this study, we demonstrate the power of an integrative
genomics approach by performing multi-dimensional
analyses (MDA) of the genome, epigenome, and tran-
scriptome of breast cancer cell lines. We illustrate and
demonstrate the need for integrative analysis of multiple
genomic dimensions by showing the co-operative contri-
bution of DNA mechanisms to explaining differential
gene expression. Using a strategy to identify genes exhib-
iting congruent alteration in copy number, DNA methyla-
tion, and allelic (or loss of heterozygosity, LOH) status,
which we term multiple concerted disruption (MCD)
analysis, we find genes representing key nodes in path-
ways as well as genes which exhibit prognostic signifi-
cance. In examining the neuregulin pathway, we observe
the variability among samples in the mechanism of dys-
regulation of this commonly altered breast cancer path-
way, highlighting the importance of multi-dimensional
analysis of a given pathway in individual tumor samples --
in addition to the conventional approach of identifying
loci simply based on frequency of disruption in a cohort.
Finally, examining the subset of triple negative breast
cancer cell (TNBC) lines, we show that a downstream
target of FGFR2, a recently implicated oncogene in
TNBC, COL1A1 is frequently affected by MCD even
though in FGFR2 itself is rarely affected. Notably, this is
the first such in-depth genomic, epigenomic, and tran-
scriptomic analyses of breast cancer.

Methods
Data generation and acquisition
Commonly used breast cancer (HCC38, HCC1008,
HCC1143, HCC1395, HCC1599, HCC1937, HCC2218,
BT474, MCF-7) and non-cancer (MCF10A) cell lines
were selected for analyses (Additional File 1). Copy num-
ber profiles were obtained from the SIGMA database
[11,16]. These profiles were generated using a whole
genome tiling path microarray CGH platform [17,18].

Expression profiles for BT474 and MCF-7 were obtained
from the NCI Cancer Biomedical Informatics Grid
(caBIG, https://cabig.nci.nih.gov), MCF10A profile from
GEO (GSM254525), and the rest were generated using
Affymetrix U133 Plus 2.0 platform at the McGill Univer-
sity and Genome Quebec Innovation Centre. Affymetrix
500 K SNP array data were obtained from caBIG. DNA
methylation profiles were generated using the Illumina
Infinium methylation platform at the Genomics Lab,
Wellcome Trust Centre for Human Genetics. A summary
of the sources of all the data used is provided in Addi-
tional File 2. Gene expression and methylation data gen-
erated were deposited in NCBI GEO (GSE17768 and
GSE17769).

Data processing and normalization
Array CGH data were normalized using a stepwise nor-
malization framework [19]. In addition, data were filtered
based on a stringent standard deviation cut-off of 0.075
between replicate spots, with those exceeding this cut-off
excluded from further analysis. To identify regions of gain
and loss, smoothing and segmentation analysis was per-
formed using aCGH-Smooth [20] as previously described
[21]. Copy number status for clones which were filtered
from above were inferred using neighboring clones
within a 1 Mb window.

Affymetrix SNP array data were normalized and geno-
typed using the "oligo" package in R, specifically using the
crlmm algorithm for genotyping [22]. Genotype calls
whose confidences were less than 0.95 were termed "No
Call" (NC). Subsequently, genotype profiles were ana-
lyzed using dChip [23] and LOH was determined using a
panel of 60 normal genotypes from the HapMap dataset
[24] as provided by dChip, as matching blood lympho-
blast profiles were not available. LOH ("L"), Retention
("R"), and No Call ("N") status was determined for every
marker in each sample. Analysis parameters used were as
specified in the dChip manual.

Raw gene expression profiles from all ten cell lines were
RMA normalized using the "affy" package in Bioconduc-
tor [25,26](Additional File 3). Gene expression data were
further filtered using the Affymetrix MAS 5.0 Call values
("P","M", and "A"). Since the comparison of differential
expression was one cancer line to one normal, both call
values could not be "Absent" in order to be retained for
analysis.

Methylation data were normalized and processed using
Illumina BeadStudio software (http://www.illumina.com/
software/genomestudio_software.ilmn, Illumina, Inc.,
San Diego, CA, USA). Beta-values and confidence p-val-
ues were retained for further analysis. Beta-values with
associated confidence p-values > 0.05 were excluded.
Data from all genomic dimensions were mapped to the
hg18 (March 2006) genome assembly.

https://cabig.nci.nih.gov
http://www.illumina.com/software/genomestudio_software.ilmn
http://www.illumina.com/software/genomestudio_software.ilmn
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Strategy for integrative analysis
Copy number and LOH profiles were mapped to genes
using the mapping of the Affymetrix U133 Plus 2.0 plat-
form as well as the UCSC Genome Browser [27]. Methy-
lation data were linked to the other three types of data
using either the RefSeq gene symbol as specified by the
Illumina mapping file (Illumina), or the RefSeq accession
number. Differential expression was determined by sub-
tracting the expression value in the non-malignant line
MCF10A from the value in each cancer line. Since the
obtained gene expression values after RMA normaliza-
tion were represented in log2 space, a gene was consid-
ered differentially expressed if the difference between the
cancer line and MCF10A was greater than 1, which corre-
sponded to a two-fold expression difference. DNA meth-
ylation status was determined by subtracting beta-values,
with hypermethylation defined as a positive difference
between tumor and normal (≥ 0.25) and hypomethylation
defined as a negative difference between tumor and nor-
mal (≤ -0.25). Briefly, a beta value for a given CpG site
ranges from 0 to 1 and represents the ratio of the methy-
lated signal over the total signal (methylated plus unm-
ethylated signal). These thresholds are comparable to
those used in previous studies using an earlier Illumina
methylation platform [28]. Using this mapping strategy,
12,910 unique genes were mapped across platforms cor-
responding to 24,708 of the ~27,000 Illumina Infinium
probes and to 27,053 probes of the Affymetrix U133 Plus
2.0 platform. Visualization of multi-dimensional data was
performed using the SIGMA2 software [29].

To determine the genetic events that caused (or could
explain) gene expression status, we first identified a set of
overexpressed and underexpressed genes for each cell
line sample relative to MCF10A based on differential
expression criteria mentioned above. Each cancer sample
may have a different number of differentially expressed
genes. Second, for each differentially expressed gene in
each sample, we examined the copy number status, meth-
ylation status, and allelic status. A differential expression
was considered "explained" when the observed expression
change matched the expected change at the DNA level. If
a gene was overexpressed, the causal copy number status
would be a gain, DNA methylation status would be
hypomethylation, or allelic status would be allelic imbal-
ance. Conversely, if a gene was underexpressed, the causal
copy number status would be a loss, DNA methylation
status would be hypermethylation, or allelic status would
be LOH. From this point forward, when a change in allele
status with overexpression is discussed, it will be denoted
as allelic imbalance (AI). Conversely, for underexpression,
a change in allele status will be denoted as loss of
heterozygosity (LOH). While changes in methylation or
changes in gene dosage leading to differential expression
are more commonly discussed, previous studies have

shown that changes in allele status without change in
copy number (copy neutral AI or LOH) can also lead to
differential gene expression due to preferential allelic
expression [30-32].

Multiple concerted disruption (MCD) analysis
To determine what are likely key nodes in pathways and
functions, we hypothesize that, in addition to being
altered frequently (by one mechanism or multiple mecha-
nisms), these genes also exhibit multiple concerted dis-
ruption (MCD) in a given sample. That is, a congruent
change in gene copy number (gain or loss) accompanied
by allelic imbalance and change in DNA methylation
(hypomethylation or hypermethylation) resulting in a
change in gene expression (over or underexpression).
Moreover, the MCD events would be used as a similar
screening approach to gene amplifications (multi-copy
increases) or homozygous deletions whereby the expecta-
tion is that these events would occur at a lower frequency
than disruptions through one mechanism alone and
observation of these events would signify importance to
the genes in question.

In this study, the MCD strategy can be broken down
into four sequential steps. First, using a pre-defined fre-
quency threshold, we identify a set of the most frequently
differentially expressed genes. Second, we identify the
most frequently differentially expressed genes from step 1
whose expression change is frequently associated with
concerted change in at least one DNA dimension (either
DNA copy number, DNA methylation or allelic status)
within the same sample. Next, we further refine this sub-
set of genes from step 2 by selecting those having con-
certed change in all dimensions in the same sample which
we term as MCD. Finally, we introduce an additional level
of stringency by requiring a minimum frequency of MCD
in the given cohort. At the end of the process, we identify
a small subset of genes which exhibit disruption through
multiple mechanisms and show consequential change in
gene expression.

Simulated data analysis
Using the status of DNA alteration and expression for
every gene in every sample, data within each sample were
shuffled and randomized ten times to create ten simu-
lated datasets. Each dataset was analyzed for overall dis-
ruption frequency and MCD and all results were then
aggregated to determine the frequency distribution of
different thresholds observed in the randomized data
analysis.

Pathway enrichment analysis
For pathway analysis, Ingenuity Pathway Analysis soft-
ware (version 8.5) was used (Ingenuity Systems, CA,
USA). Specifically, the core and comparison analyses
were used, with focus on canonical signaling pathways.
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Briefly, for a given function or pathway, statistical signifi-
cance of pathway enrichment is calculated using a right-
tailed Fisher's exact test based on the number of genes
annotated, number of genes represented in the input
dataset, and the total number of genes being assessed in
the experiment. A pathway was deemed significant if the
p-value of enrichment was ≤ 0.05 (adjusted for multiple
comparisons using a Benjamini-Hochberg correction).

Survival and differential gene expression analysis in 
publicly available datasets
For survival analysis, Kaplan-Meier analysis was per-
formed using the statistical toolbox in Matlab (Math-
works). For each gene, the expression data were sorted
from lowest to highest expression across the sample set
and survival times were compared between the top 1/3
and bottom 1/3 of the samples. Two publicly available
gene expression microarray datasets with survival data
were utilized for this analysis [4,33]. For the Sorlie et al
dataset, individuals whose cause of death was not breast
cancer were excluded from the analysis and missing data
due to quality control issues were filled using the knn
method in the "impute" package in Bioconductor [34]. Of
the 23 genes selected by our MCD analysis (see Results),
17 were represented in either dataset. Survival distribu-
tions were compared using a log rank test and two-tailed
p-values unadjusted for multiple comparisons were
reported. Log-rank test code was obtained from Matlab
File exchange http://www.mathworks.com/matlabcen-
tral/fileexchange/22317-logrank.

Subsequently, these 17 genes were further evaluated for
differential expression in publicly available expression
datasets of clinical breast cancer samples using the
Oncomine database [35].

Results and Discussion
Analysis of individual genomic dimensions
When examining each genomic dimension alone, we see
that many of the common features identified are consis-
tent with the current knowledge of breast cancer
genomes, for example, previously reported chromosomal
regions of frequent copy number gain, segmental loss and
loss of heterozygosity (LOH)/allelic imbalance (AI) (Fig-
ure 1A) [6,8,11,12,36]. While many regions of frequent
LOH/AI do overlap with regions of copy number change,
others are in regions of neutral copy number. Key genes
implicated in breast cancer reside in these specific
regions and are altered expectedly (Figure 1B).

Multi-dimensional analysis (MDA) reveals a higher 
proportion of intra-sample deregulated gene expression 
can be explained when more dimensions are analyzed
The impact of integrative, multi-dimensional analysis on
gene discovery is observed at two levels: (i) within an

individual sample as well as (ii) across a set of samples.
Within a given sample, we see that by sequentially exam-
ining more genomic dimensions at the DNA level, i.e.
gene dosage, allelic status, and DNA methylation, we can
explain a higher proportion of the differential gene
expression changes observed. Interestingly, although this
proportion may vary between samples, it always increases
with every additional dimension examined (Figure 2A).
For example, in HCC1395, a single genomic dimension
alone can explain as much as 64.4% of overexpression but
when using all three DNA based dimensions, whereby
gene overexpression can be explained by disruption at the
DNA level in at least one dimension, as much as 75.7% of
aberrant overexpression can be explained. Similarly, in
HCC1937, an increase from 56.9% to 74.7% explainable
underexpression is observed when moving from one to
three genomic dimensions respectively. Conversely, in
HCC2218, we observe 44% and 36% of overexpression
and underexpression respectively when using all three
DNA dimensions. This suggests that the majority of dif-
ferential expression in sample HCC2218 is most likely a
result of complex gene-gene trans-regulation and conse-
quently, highlights the individual differences between
samples.

MDA reveals genes are disrupted at higher frequencies 
when examining multiple dimensions as compared to any 
single dimension alone
When considering across a sample set, we see that analy-
sis of multiple genomic dimensions leads to the discovery
of more disrupted genes than what would be detected
using a single dimension of analysis alone. For each iden-
tified gene, we gain insight in how multiple mechanisms
are complementary in gene disruption (Figure 2B). For
example, the tumor suppressor gene caspase 1 (CASP1)
has been thought to be deactivated through DNA hyper-
methylation in multiple cancer types [37,38]. The gene is
underexpressed in all nine cases examined in this study.
In a subset of these cases, the observed underexpression
can be attributed to copy number loss. Interestingly, in
the remaining cases, DNA hypermethylation and copy
neutral LOH are observed. Similarly, in another example,
GNAS is differentially expressed in all nine cases, with a
subset of cases showing concerted copy number change
while the remaining cases reveal concerted change in
DNA methylation. Notably, our conclusion is supported
by recent studies of glioblastoma, that also showed higher
than expected disruption frequencies of specific genes
when multiple genomic dimensions were analyzed
[39,40]. These examples illustrate how deregulated genes
can be detected in more cases when multiple, but com-
plementary, approaches are used.

Until very recently, multi-dimensional genomic analysis
typically represented the parallel examination of gene

http://www.mathworks.com/matlabcentral/fileexchange/22317-logrank
http://www.mathworks.com/matlabcentral/fileexchange/22317-logrank
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dosage and gene expression. To demonstrate the power of
examining multiple dimensions, we examine the fre-
quency of gene expression deregulation explained by con-
gruent alteration at the DNA level. Briefly, for each gene,
a sample is determined to have a DNA explained gene
expression change if any of the following criteria are met;
gene overexpression should be accompanied with either
(i) copy number gain, (ii) copy neutral allelic imbalance,
or (iii) hypomethylation and gene underexpression

should be accompanied with either (i) copy number loss,
(ii) copy neutral LOH, or (iii) hypermethylation.

To determine an appropriate frequency of disruption
threshold, ten random, simulated datasets were gener-
ated and a distribution plot was generated for all of the
observed frequencies from 0/9 to 9/9 across all simula-
tions (Figure 3A). The proportion of observed frequen-
cies ≥ 5/9 was 0.086 but for ≥ 6/9, the proportion was
0.020. Thus, since the 6/9 threshold was the first thresh-

Figure 1 Genomic profiles of breast cancer cell lines. (A) Whole genome frequency analysis copy number gain (red), copy number loss (green), 
loss of heterozygosity/allelic imbalance (AI) (top blue) and copy number neutral LOH/AI (bottom blue). Vertical lines through all four graphs represent 
the genomic location of key breast cancer genes, using the hg18 build of the human genome map. (B) Illustration of copy number and LOH/AI status 
for ESR1, BRCA1, BRCA2, ERBB2 and TP53 in each of the samples. Each of these DNA events is evident in all of these genes.
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old ≤ 0.05, 6/9 was used for further analysis. Using this
threshold, we found that 437 differentially expressed
genes have a corresponding change in gene dosage. Scal-
ing this approach to examining the whole genome at mul-
tiple dimensions, we anticipate identifying more
disrupted genes. When we added the remaining dimen-
sions to account for differential expression, at the same
frequency cut-off, we identified the mechanism of disrup-
tion for 1162 deregulated genes (Figure 3B, Additional
File 4).

The impact of multi-dimensional integrative analysis
on cancer gene discovery is the enhanced detection of
genes which are disrupted by multiple mechanisms but at
lower frequencies for individual mechanisms. Collec-
tively, the detection of gene dosage, allelic conversion and
change in methylation status enable the identification of
such genes as frequently disrupted. Using the list of 1162
genes, the distributions of alteration frequencies for each
genomic dimension or combination of dimensions were
assessed (Figure 4A). Examining the median frequencies

in each box plot, there is a sequential increase in the
median as more dimensions are examined. This point can
be further validated using specific genes. For example, the
CD70 and ENG genes are underexpressed in the majority
of samples. Using copy number analysis alone, the
observed frequency of disruption (loss and underexpres-
sion) is 44% and 22% respectively. If we then examine the
methylation status, in the remaining cases not explained
by DNA copy number, we observe an additional 33% of
cases exhibiting hypermethylation and underexpression
for ENG (red) and 22% for CD70 (blue). Finally, when we
also examine allelic status, we observe an additional 22%
of cases with copy neutral LOH and gene underexpres-
sion for CD70 and 11% for ENG. In total, by using all
three dimensions, the cumulative frequency of disruption
is 88% for CD70 and 77% for ENG (Figure 4B). This
example demonstrates the utility of a multi-dimensional
approach to elucidate events which would escape conven-
tional single dimensional analysis.

Figure 2 Quantitative and qualitative benefits of integrative analyses. (A) Heatmap and bar plot illustration of the additive benefit of multi-di-
mensional DNA analysis for the explanation of consequential differential gene expression. Within a sample, when sequentially adding a DNA dimen-
sion of analysis, an increasing percentage of observed differential gene expression can be explained. For each dimension or combination of 
dimensions, in the bar plot, the median value is used (grey bars). Heatmaps display the percentage of differential expression explained by DNA mech-
anisms, with values near to 100 either dark red (overexpression) or green (underexpression) and values closer to 0 in white. (B) Two specific genes 
GNAS and CASP1 are given as examples to show multiple and complementary mechanisms of gene disruption, illustrating the importance of multi-
dimensional analysis (MDA).
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MDA identifies significantly enriched cancer related 
pathways
Using the set of 1162 genes identified by MDA (Addi-
tional File 4) and the similar lists of genes identified from
each of the simulated datasets, pathway analyses were
performed with Ingenuity Pathway Analysis. From the
pathway analysis of MDA genes and focusing only on
canonical signaling pathways, 53 pathways were signifi-
cantly enriched for at a Benjamini-Hochberg corrected p-
value of 0.05 (Additional File 5). In contrast, using the
gene lists from the 10 simulated datasets, nine of the 10
pathway analyses yielded no significant pathways
enriched for at the same p-value with one of the pathway
analyses yielding one significant pathway. Similar results
from Gene Ontology analysis were obtained using the
publicly available GATHER database [41] (Additional File

6). Specific pathways involved in breast cancer, ovarian
cancer, and prostate cancer were amongst the ones iden-
tified as most significant (Figure 5). Consequently, these
results suggest that the genes identified using MDA have
a high degree of biological relevance.

Figure 3 Determination and application of a disruption frequen-
cy threshold. (A) Results of the analyses of ten simulated datasets. Ag-
gregating the results of the simulated analyses, the proportion of 
genes in random simulations at the observed frequency thresholds are 
shown. From these analysis, approximately 2% of the simulations were 
≥ 6/9. (B) Using a frequency cut-off of 6/9, the number of genes dis-
rupted at that frequency using a single or combination of DNA dimen-
sions. With a single dimension alone, we can maximally identify 437 
genes which are differentially expressed and exhibit a concerted 
change at the DNA level in a minimum of 6/9 samples. However, using 
all three dimensions, we find that 1162 genes are in fact differentially 
expressed and contain at least one concerted change in one of the 
DNA dimensions. This represents over a two-fold increase in the num-
ber of genes identified.
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MDA of the Neuregulin signaling pathway reveals a 
complex pattern of deregulation
Among the 53 pathways which were statistically over-
represented from our list of 1162 genes, one of the path-
ways identified is the neuregulin pathway. This pathway
contains the well known breast cancer oncogene ERBB2
as well as other genes known to be affected in breast and
other cancers [42-45]. Examining the components of this
pathway, we observe that some are genes commonly
altered while others are infrequently altered across our
sample set by multiple patterns of genomic alteration,
and some genes which behave oppositely in different
samples (Figure 6).

While genes such as HRAS (down), BAD (down),
HSP90AB1 (up), SOS2 (up) and RPS6KB1 (up) generally
exhibit consistent differential expression with concerted
change at the DNA level across our sample set, genes
such as GRB7, PTEN, and MAP2K1 exhibit both overex-
pression and underexpression, with concerted DNA
change, in different samples. For example, if we examine
PTEN, we observe copy number loss, LOH, DNA hyper-
methylation and consequent underexpression in
HCC1395 while HCC1008 contains copy number gain,
with DNA hypomethylation and consequent overexpres-
sion (Figure 7). The impact of such a difference on a
downstream targets was recently shown in a breast can-
cer study where AKT and mTOR phosphorylation were
higher in cases with low PTEN expression compared to
those with high PTEN expression [46]. Using this path-
way as an example, though average features across a sam-

ple set are important, those differences between samples
in the same pathway may also play an important role and
thus, may have a consequence on the biology of the
tumor.

Genes exhibiting multiple concerted disruption (MCD) - 
biological and clinical significance
We have demonstrated that we can identify more dis-
rupted genes in a given sample when considering any
mechanism of disruption. On the other hand, those genes
which exhibit multiple concerted disruption (MCD)
across all DNA dimensions -- i.e. overexpression of a gene
due to increased gene dosage, which led to allelic imbal-
ance, and DNA hypomethylation at the same locus reliev-
ing regulation -- may likely have strong biological
significance. Likewise, underexpression due to reduced
gene copy number, resulting in LOH, and complementary
DNA hypermethylation, leading to gene silencing may
also be significant. By employing multiple dimensions of
interrogation, genes exhibiting MCD are captured.

To determine what frequency of MCD was deemed sig-
nificant, we performed a similar analysis of the 10 simu-
lated datasets from before and assessed the proportion of
events at each frequency of MCD from 0/9 to 1/9 (Figure
8A). It was found that by random chance, a gene exhibit-
ing MCD in 1/9 would occur 0.3% of the time. Thus,
using this threshold of at least one MCD event, 974 genes
were identified (Additional File 7). Interestingly, the over-
lap of the MDA list (1162 genes) with the MCD list (974
genes) yielded 375 genes.

Figure 5 Pathway analysis of the 1162 genes identified by multi-dimensional analysis. Ingenuity Pathway Analysis of the 1162 genes identified 
by MDA as well as genes meeting the same frequency criteria (6/9) from the analysis of the ten simulated datasets. In total, using the list of 1162 MDA 
genes, 53 canonical signaling pathways were identified as significant after multiple testing correction using a Benjamini-Hochberg correction (Addi-
tional File 5). In contrast, using the same statistical criteria, nine of the 10 simulated datasets yielded no significant pathways with one of the datasets 
yielding one pathway. In this figure, ten of the most well known, cancer-related pathways are shown. The yellow threshold line represents a Benjamini-
Hochberg corrected p-value of 0.05 with bars above that line deemed significant. The first blue bar represents the analysis of the actual dataset and 
the subsequent ten bars represent the analyses of the ten simulated datasets.
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The MCD strategy sequentially refines the roster of tar-
get genes with the intent of identifying critical genes for
tumorigenesis (Additional File 8). Such genes which
exhibit multiple mechanisms of deregulation, for exam-

ple, may represent important nodes in pathways such as
hub proteins [47], whereby disruption of the gene has an
effect on multiple downstream targets or genes with bio-
logical and/or clinical relevance. Thus, although these

Figure 6 Complex deregulation of the Neuregulin/ERBB2 signaling pathway. Each gene is color-coded red and green to represent over and un-
derexpression respectively. Genes colored both represent genes which are over and underexpressed in different samples. Beside each gene is the 
status for gene expression, copy number, LOH/AI and DNA methylation, with the alterations in each dimension colored as per the legend. DNA alter-
ations are only shown when a change in gene expression is observed. It should be noted that LOH can be derived from multiple mechanisms. In this 
study, we do not distinguish between the which mechanisms. Likewise, methylation changes may affect one or both alleles. In this study, we do not 
distinguish the status of the alleles individually. Genes denoted with * have one sample exhibiting multiple concerted disruption (MCD). Samples are 
coded as follows: S1 = HCC38, S2 = HCC1008, S3 = HCC1143, S4 = HCC1395, S5 = HCC1599, S6 = HCC1937, S7 = HCC2218, S8 = BT474, and S9 = MCF7.

ERBB2IP

GRB7

GRB2

PTEN

PIP2 PIP3

BAD

SOS2

HRAS

EREGEREG

RAF1

MAP2K1

MYC

ELK1

PRKCI

AKT2AKT2

mTOR

RPS6KB1

RPS6KB1

RPS6

CDKN1B

ERRFI1

STAT5

HSP90AB1

PIK3R1

E
R
B
B
4

E
R
B
B
4

E
R
B
B
4

Proliferation &
Differentiation

Cell Cycle

PI3K-AKT
Signalling

Mitogenic
Signalling

Survival &
Proliferation

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

ERK1/2

ERK1/2

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

Legend:
GE: Gene Expression: Over        Under
CN: DNA Copy Number: Gain     Loss
L: Allelic Status: LOH
M: DNA Methylation: Hypo       Hyper

E
R
B
B
2

E
R
B
B
2

E
R
B
B
2

PDK1

S1 S2 S3 S4 S5 S6 S7 S8 S9

CN

M
L

GE

CN

M
L

GE
S1 S2 S3 S4 S5 S6 S7 S8 S9

*

*

*

*

*

*

*



Chari et al. BMC Systems Biology 2010, 4:67
http://www.biomedcentral.com/1752-0509/4/67

Page 10 of 14
genes may not be affected at a high frequency across the
sample set, their disruption at multiple levels in individ-
ual samples would signify importance in tumorigenesis.
As shown earlier, 375 genes identified by both MDA and
MCD. If we further employed a criterion of frequent
MCD, whereby this event occurs in 4/9 of cases (signify-

ing high recurrence), we detect 23 genes (Additional File
8). Among the 23 genes identified are TUSC3 (8p22),
ELK3 (12q23), and CCNA1 (13q12.3-q13).

TUSC3 resides at 8p22, a locus frequently deleted
across multiple epithelial cancers [48-51]. ELK3 is an ETS

Figure 7 Deregulation of PTEN occurs differently between sam-
ples. In HCC1008 (top), PTEN is overexpressed with an associated gain 
in copy number and hypomethylation. Conversely, in HCC1395 (bot-
tom), PTEN is underexpressed, with an associated loss in copy number, 
LOH, and DNA hypermethylation. This illustrates how each tumor may 
behave differently from another.
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stream and downstream components of FGFR2 were selected to as-
sess their role in the subset of triple negative breast cancer (TNBC) cell 
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expression level relationship were selected. Of the seven components 
identified (four upstream and three downstream of FGFR2), one up-
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FGFR2 and COL1A1, while FGFR2 overexpression is not frequently asso-
ciated with DNA level alteration, COL1A1 is frequently affected at DNA 
level. Moreover, in the five TNBC cell lines examined, four have DNA 
level alteration of COL1A1 and the remaining line has DNA level altera-
tion of FGFR2.
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domain transcription factor which, in mice, acts as a tran-
scriptional inhibitor in the absence of RAS, but is a tran-
scriptional activator in the presence of RAS [52].
Recently, ELK3 was shown to be underexpressed in a
panel of breast cancer lines as well clinical breast tumor
specimens [53]. CCNA1 was shown to be hypermethy-
lated in multiple cancer types, including breast cancer
[54].

To validate the relevance of the 23 MCD genes in clini-
cal breast cancer samples, we evaluated gene expression
levels associated with survival and examined multiple
publicly available microarray datasets using the Oncom-
ine database [35]. Of these 23 genes, 17 were represented
in either the van de Vijver et al or Sorlie et al datasets.
Interestingly, eight of these genes, demonstrated a statis-
tically significant association with patient survival in at
least one of the two independent datasets (Additional
Files 9, 10) [4,33]. Moreover, when comparing the per-
centage of survival-associated genes (8/17, 47.1%) in the
MCD gene list with what was expected without pre-selec-
tion (27.1%), the increased percentage was statistically
significant based on the binomial test (p = 0.04131806).
To further evaluate the clinical significance of these
genes, we utilized the Oncomine database (Additional File
9). It should be noted the caveat of the Oncomine analysis
is that it may not detect all low levels of differential
expression. TUSC3 is shown as an example of one of the
genes whose expression correlates with survival (Addi-
tional File 8, also see Methods). Notably, in ovarian can-
cer, TUSC3, in conjunction with EFA6R, also correlated
with poor survival [55]. The observations that TUSC3 is
altered frequently by multiple mechanisms at the DNA
and RNA level and shows a strong association with
patient survival, highlight the use of MCD in systemati-
cally identifying biologically, and potentially clinically,
relevant genes.

Association of genes exhibiting MCD and triple negative 
breast cancers (TNBC)
In this study, the majority of samples used (5/9) were of
the triple negative subtype of breast cancer; a subtype
which is estrogen receptor (ER) negative, progesterone
receptor (PR) negative, and HER2 negative and repre-
sents between 10% and 20% of all diagnosed breast malig-
nancies [56-59]. Genomic analyses of triple negative
breast cancers (TNBCs) have been previously performed
[60-63] and they revealed a heterogeneous and complex
view of this breast cancer subtype. A recent study, how-
ever, had implicated fibroblast growth factor receptor 2
(FGFR2) as novel therapeutic target amplified in TNBCs
[59]. Interestingly, from a meta-analysis of array CGH
data, this gene was found to be amplified in 4% of TNBC
cases [59]. Thus, we assessed the status of FGFR2 and its
downstream targets in our multi-dimensional dataset.

While FGFR2 is not amplified in any of the five TNBC
cell lines, all of the five cell lines showed overexpression
of FGFR2 with one of the cell lines exhibiting a low level
gain of a region encompassing FGFR2 (HCC1937). From
this analysis, within the sample set of TNBC cell lines,
though FGFR2 is overexpressed, it was not frequently
associated with DNA level alterations.

However, examining downstream targets of FGFR2
revealed a striking finding. Using the knowledge database
of Ingenuity Pathway Analysis, one of the downstream
components affected at the expression level, which was
also on both the MDA (Additional File 4) and MCD
(Additional File 7) lists, was COL1A1. Remarkably, of the
five TNBC cell lines, four exhibited DNA alteration asso-
ciated overexpression of COL1A1 (two lines exhibited
MCD at COL1A1 and two other lines have DNA copy
number associated overexpression). The remaining line
exhibited DNA copy number associated overexpression
of FGFR2 (Figure 8B). Hence, every TNBC line was
affected at either FGFR2 or COL1A1. Interestingly,
COL1A1 has been shown to be both prognostic and pre-
dictive in multiple cancer types, including breast cancer
[3,5,64,65].

Conclusions
In conclusion, we have demonstrated that a multi-dimen-
sional genomic approach is superior to analysis of one or
two genomic dimensions alone. Each additional genomic
dimension surveyed increases the amount of aberrant
gene expression that can be explained within individual
samples. As a by-product, when examining across a sam-
ple set, multi-dimensional genomic analysis can identify
relevant genes that may be overlooked due to low fre-
quencies of disruption by the individual mechanisms.
The increased frequency of gene disruption detected, due
to the consideration of multiple mechanisms of disrup-
tion, could potentially reduce the sample size of study
cohort needed for gene discovery.

Secondly, while the increased detection of genes dis-
rupted using multi-dimensional analysis is useful for
achieving a more comprehensive identification of deregu-
lated pathways and gene networks, it also presents a chal-
lenge in prioritizing which genes are likely key nodes or
hubs in the affected pathways and networks. Hence, one
way to prioritize is to identify genes with evidence of
multiple concerted disruption. The Knudson two-hit
hypothesis suggests that tumor suppressor genes require
two allelic hits to disrupt gene function. Bi-allelic altera-
tion, such as homozygous deletion, or concerted genetic
and epigenetic changes, are well documented causal
mechanisms of gene disruption. Likewise, hypomethyla-
tion and increased gene dosage are known mechanisms
for gene overexpression. The bi-allelic disruption phe-
nomenon (leading to loss or gain of function) provides a
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means to identify causative genes; hence, parallel analysis
of the genome and epigenome in the same tumor is of
great benefit. In this study, we have developed a stepwise
gene selection strategy to identify multiple concerted dis-
ruptions using an integrative genomics approach.

In this study, three DNA dimensions, which have cur-
rent affordable high throughput assays, were examined.
However, we envision that new techniques for analysis of
additional aspects such as histone modification states and
gene mutation status will reveal mechanisms that would
explain even more gene expression changes within indi-
vidual samples. The identification of a number of key
cancer-related genes and pathways using a relatively small
sample size suggests that limitations in requiring large
sample sizes for studies to identify relevant genes and
pathways may be circumvented by our comprehensive
approach. Consequently, this concept can be projected to
current technologies such as high throughput sequencing
where it may prove more prudent to perform this analysis
in multiple dimensions in a smaller number of samples
rather than in one dimension in many more samples at a
comparable cost. Finally, observing the same gene in a
given pathway being deregulated in a completely different
manner between samples highlights one of the shortcom-
ings of group-based analysis and highlights the eventual
need to move to systems analysis of tumors as individual
entities.
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