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Abstract
Background: The identification of potentially relevant biomarkers and a deeper understanding of molecular 
mechanisms related to heart failure (HF) development can be enhanced by the implementation of biological network-
based analyses. To support these efforts, here we report a global network of protein-protein interactions (PPIs) relevant 
to HF, which was characterized through integrative bioinformatic analyses of multiple sources of "omic" information.

Results: We found that the structural and functional architecture of this PPI network is highly modular. These network 
modules can be assigned to specialized processes, specific cellular regions and their functional roles tend to partially 
overlap. Our results suggest that HF biomarkers may be defined as key coordinators of intra- and inter-module 
communication. Putative biomarkers can, in general, be distinguished as "information traffic" mediators within this 
network. The top high traffic proteins are encoded by genes that are not highly differentially expressed across HF and 
non-HF patients. Nevertheless, we present evidence that the integration of expression patterns from high traffic genes 
may support accurate prediction of HF. We quantitatively demonstrate that intra- and inter-module functional activity 
may be controlled by a family of transcription factors known to be associated with the prevention of hypertrophy.

Conclusion: The systems-driven analysis reported here provides the basis for the identification of potentially novel 
biomarkers and understanding HF-related mechanisms in a more comprehensive and integrated way.

Background
Heart failure (HF) is a clinical syndrome that results from
cardiac disease. HF can be characterized as the heart's
inability to pump enough blood to meet physiological
requirements. HF may be caused by cardiac injury (e.g.
failure after myocardial infarction) or by non-ischemic
diseases (e.g. dilated cardiomyopathy). Independently of
the etiology, HF is known to be the by-product of a large-
scale, dynamic interplay of proteins, hormones and
metabolites. These interactions are in turn brought about
and controlled by a diversity of genes and molecular
pathways responsible for different processes, which range
from inflammation trough extracellular-matrix remodel-
ing to angiogenesis. This motivates the development of
approaches to the systematic, integrated analysis of pro-
tein interactions related to HF.

Many questions connected to the elucidation of the
complex molecular mechanisms spurring the emergence,
progression and repair of cardiac malfunction remain to
be answered. The increasing amounts of information
about accepted and putative HF biomarkers and thera-
peutic targets, as well as of annotated datasets of protein-
protein interactions (PPIs) in humans, offer new oppor-
tunities to understand HF within a systems biology
framework [1].

Advances in high-throughput technologies for the
quantitative assessment of different "omic" information
variables are fostering a more comprehensive, systems-
level view of the PPIs involved in different physiological
and pathological conditions. Over the past few years,
larger amounts of experimentally-validated human PPIs
[1-3] have been made available via public or proprietary
Web-based information resources. Advances in this area
have traditionally concentrated on the analysis of large-
scale, global PPI networks (i.e., interactomes) in a small
number of model organisms and more recently in

* Correspondence: francisco.azuaje@crp-sante.lu
1 Laboratory of Cardiovascular Research, Centre de Recherche Public - Santé, L-
1150, Luxembourg
Full list of author information is available at the end of the article
© 2010 Azuaje et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20462429


Azuaje et al. BMC Systems Biology 2010, 4:60
http://www.biomedcentral.com/1752-0509/4/60

Page 2 of 19
humans. For instance, using experimentally-validated or
expert-annotated interactomes, researchers have shown
how the structure and composition of PPI networks can
be linked to specific biological processes, properties and
clinical outcomes [4-6]. Furthermore, investigations have
demonstrated how such information can be meaningfully
correlated with observations and predictions at different
"omic" information levels, e.g. genomic variation [6], gene
expression [7,8] and standard functional annotations [9].

Major steps forward in this area have been: a) the
capacity to link clusters of highly-connected proteins
(commonly referred to as "modules") within these net-
works and specific biological processes [4,10] and b) the
capacity to detect potential biomarkers, therapeutic tar-
gets or critical functional components using network
topology features [5,11]. The majority of these contribu-
tions have focused on the investigation of large-scale net-
works that are not specific to diseases or phenotypes.
Furthermore, network-based approaches have not been
sufficiently investigated in the area of HF research. The
potential of network-based analyses in the cardiovascular
area has been previously reported in dilated cardiomyo-
pathy (DCM) investigations [8,12]. Zhu et al. [12] inte-
grated public gene expression data with a layered PPI
network that was organised into four functional compart-
ments: extracellular, plasma membrane, cytoplasm and
nucleus. This allowed them to identify the Janus family
tyrosine kinase-signal transducer and activator of tran-
scription (Jak-STAT) signaling pathway as a potential key
driver of DCM development.

Despite the potential limitations related to knowledge
incompleteness and uncertainty in the network inference
process, the characterization of complex biological phe-
nomena on the basis of functional modular architectures
and topological parameters present us with new opportu-
nities to improve our understanding of the evolution,
operation and possible re-engineering of these systems
[6,13,14].

Here we report the analysis of a PPI network in the con-
text of human HF and in relation to diverse, complemen-
tary resources of "omic" information. This analysis aimed
to characterize potential functional and structural pat-
terns and associations, which may explain fundamental
molecular mechanisms underlying HF, as well as the role
of biomarkers, from a systems biology standpoint. The
practical utility and potential biomedical relevance of the
outcomes of this research are two-fold. First, the prod-
ucts of this research can be seen as a disease-specific
knowledge reference for future research. Second, we offer
testable hypotheses and predictions relevant to the dis-
covery of potential novel biomarkers or targets based on
an integrated network-based methodology. We aimed to
uncover potential biologically-meaningful modules and
inter-module relationships. Given that protein activity is

influenced by different forms of regulation and between-
process relationships, we investigated structural and
functional features that can characterize the "centrality"
or "traffic" mediation capability of network proteins.
Finally, we addressed possible intra- and inter-module
regulatory control mechanisms.

Methods
Figure 1 schematically summarizes the main analytical
phases implemented in this research. First, a list of known
HF biomarkers was gathered from the literature. This set
of biomarkers was expanded by the identification of func-
tionally-related genes using different "omic" resources
and databases. The set of proteins resulting from the
combination of the HF biomarkers and the retrieved
functionally-related genes represented the "network
seeds" in this investigation. The network seeds were used
as inputs to the PPI search and retrieval phase. Using dif-
ferent repositories of annotated PPIs, a HF-related PPI
network was assembled. Several bioinformatic analyses
generated insights into structural and functional proper-
ties of this network, as well as novel associations between
biomarkers and potentially-relevant network-based bio-
logical features. The latter aimed to determine potential
useful relationships between the modules and different
biological properties, such as specific biological pro-

Figure 1 Integrative analysis of "omic" information in the context 
of a HF PPI network: Overview of main analytical phases imple-
mented in this research. Novel relationships refer to new associations 
between proteins and specific processes and cellular localizations, and 
between functional modules and specific transcriptional regulatory 
mechanisms.
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cesses, cellular localizations and shared transcriptional
co-regulatory mechanisms within the modules.

Before providing a more detailed description of these
analysis phases, basic concepts relevant to network-based
biology are defined as follows.

Basic concepts
Networks are used here to represent direct, protein-pro-
tein interactions. Network "nodes" (or "components") and
"edges" (or "links") represent proteins and interactions
respectively. A group of highly-interconnected nodes can
be defined as a "module". A module may be identified
through network clustering, which meets specific statisti-
cal analysis criteria as explained below. There are various
statistical or topological features that can be used to char-
acterize the networks, its modules, and individual com-
ponents. Two such fundamental features are the node
"degree" and "traffic". The degree of a node refers to the
number of edges associated with a node, i.e.,, given a pro-
tein, x, its degree represents the number of interactions
between x and any other proteins in the network. Nodes
with large degree values are commonly referred to as
"hubs". The traffic going through a network node, x, also
referred to as its "betweeness centrality" [15,16] is a mea-
sure of the total number of shortest paths that go through
x, and which connect any two other nodes in the network.
Thus, a "traffic value" can be seen as a numerical estima-
tion of the communication-mediating capacity of a net-
work node, and can be used to infer "cross-
communication" hotpots or "bottlenecks" in the network.

Known biomarkers and identification of functionally-
related genes
Guided by recent reviews on cardiovascular disease bio-
markers [17,18], a list of known HF biomarkers was com-
piled as the initial set of input information to our analysis
framework. At least 2 biomarkers from the following bio-
logical process categories were included, as defined in
[18]: inflammation, oxidative stress, extracellular-matrix
remodeling, neurohormones, myocyte injury, myocyte
stress and other validated biomarkers not falling within
conventional categories. Examples of biomarkers
included in this list are: CRP, MPO, MMP proteins,
EDN1, TNNI1, NT-proBNP and GDF15. The complete
list of HF biomarkers is available in the Additional file 1
(Table S1).

Genes and proteins functionally-related to the list of
known biomarkers were searched in several external
databases using the Endeavour system [19]. These
resources comprised annotation databases, gene
sequences, public gene expression data, PPI databases,
putative transcription factors binding sites, abstracts and
computational predictions of gene-disease associations.
The goal was to retrieve genes and proteins from those

resources that were functionally "similar" to the list of
known HF biomarkers. Similarity or functional related-
ness was estimated by different data type-specific crite-
ria. For example, gene-gene similarity at the DNA
sequence level was estimated using BLAST searches.
Correlation coefficients were used to measure similarity
between genes at the expression level using data stored in
public repositories. The number of Gene Ontology (GO)
terms or domain family annotations shared by a pair of
gene products was used to assess annotation-based func-
tional similarity. Endeavour calculates annotation-based
similarity between genes by applying the Fisher's omni-
bus method [19]. Given two genes with shared annota-
tions, this technique combines the P values of those
annotations that were found statistically-enriched in the
set of known biomarkers. For each "omic" database, a list
of functionally-related "candidate" genes was retrieved
and ranked on the basis of their corresponding similarity
scores. After performing a whole-genome search, a global
ranking of candidate genes was obtained by combining all
the database-specific similarity scores into a single simi-
larity score based on order statistics, as proposed by [19].
Thus, the list of candidate genes retrieved was defined as
functionally similar to the set of input HF biomarkers, as
a whole. In this analysis, we focused on the top-100 genes
retrieved by this procedure. These genes are those
reporting the lowest ranking scores (RS) as estimated by
the Endeavour system (RS < 2E-6). There is no empirical
or standard approach for defining ranking thresholds
using these scores. Although this score estimates the like-
lihood that a candidate gene would obtain the observed
rank by chance, these scores cannot be interpreted as
probability values. By focusing on these top 100 genes we
also aimed to obtain a list of the most relevant, potentially
biomarker-associated candidates, which may in turn con-
tribute to the reduction of false positive associations. Fur-
thermore, this selection allowed the inclusion of a list of
known biomarkers, as well as a list of candidate biomark-
ers at least twice as large as the list of known biomarkers.

The complete list of candidate genes obtained and their
similarity rankings are available in the Additional file 1
(Table S2). Additional information on the computational
implementation of this search and retrieval procedure is
offered below.

The combination of the list of HF biomarkers and the
candidate genes defined the set of network seeds, which
were used as inputs to the PPI network construction
phase.

PPI network construction
PPIs associated with the network seeds were identified
and retrieved from different public databases of anno-
tated interactions. The PPI databases included in this
analysis were: the Human Protein Reference Database
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(HPRD) [20], the general repository for interaction data-
sets (BioGRID) [21], and the Molecular INTeraction
database (MINT) [22]. Only expert-annotated interac-
tions observed in humans were considered. The retrieved
interactions were combined into a unique set of interact-
ing pairs. This integrated PPI set represented the union of
the database-specific sets of retrieved PPIs. The obtained
PPIs were used to assemble the HF PPI network. The net-
work consists of all interactions of the network seeds.
Thus, we concentrated on first-level interacting partners.
This allowed us to focus on a set of highly relevant pro-
teins in relation to known HF biomarkers. Also we aimed
to reduce the amount of potential false positive interac-
tions in our disease-specific network. We admit that this
is done perhaps at the expense of potentially novel,
deeper interactions. Nevertheless, at present it would not
be possible to obtain accurate, experimentally-validated
interactions belonging to expanded interaction levels in
the specific context of human HF.

Detection of network modules
The resulting network was digitally encoded, displayed
and analyzed using different topological and functional
features. Potential network modules were identified with
a "greedy" network clustering algorithm [23]. This algo-
rithm searches for network regions with highly-con-
nected nodes, and the outcome is the partition of the
network into a set of disjoint clusters that optimize a
"modularity score", Q. The Q score measures the number
of edges observed in a putative module in relation to the
number of edges that would be obtained by randomly
pairing the proteins in the module [16,23]. The Q score is
defined as [16]:

Where numIME is the number of intra-module edges,
and numE is the total number of network edges. The first
term deals with the network investigated, while the sec-
ond refers to a randomized version of the network: nodes
are randomly connected with node degree preservation.

Thus, the module discovery algorithm searches for
groups of inter-connected nodes that maximize the Q
score. This algorithm has allowed the identification of
biologically-relevant modules, such as protein complexes
and other functionally-related protein clusters, in differ-
ent model organisms and humans [4,5,10,24].

Gene expression analyses
To assess the potential application of the network-based
predictions of putative biomarkers or targets, we ana-
lyzed their gene expression in the context of two groups
of patients after acute myocardial infarction (MI): a group
of 16 patients with HF, and a group of 16 non-HF
patients. The non-HF patients exhibited preserved left

ventricular (LV) systolic function and high ejection frac-
tion (EF) after MI (EF > 40%, median 63%, range 45-73).
The HF group presented impaired LV function and low
EF (EF ≤ 40%, median 35%, range 20-40). Patient charac-
teristics are gathered in Table S3 (Supplementary Sec-
tion).

Acute MI was defined by the presence of chest pain <12
hours with significant ST elevation and increase in cre-
atine kinase and troponin I to greater than 2-fold upper
limit of normal levels. Blood samples were obtained at the
time of mechanical reperfusion. EF was determined by
echocardiography 1 month after MI. All patients signed
an informed consent.

Total RNA was extracted from 2.5 mL of whole blood
by the PAXgene™ technology. Gene expression profiles of
blood cells were obtained with genome-wide arrays [25].

Ethics Statement
The protocol was approved by the local ethics commit-
tees (Comité national d'éthique de la recherche, CNER;
Comission nationale pour la protection des données,
CNPD) and written informed consent was obtained from
all patients.

Software tools, additional information resources and basic 
statistical analyses
The identification of genes functionally-related to the set
of known HF biomarkers was implemented with the
ENDEAVOUR system [26]. Only functional relationships
involving human genes/proteins were considered. The
list of HF biomarkers was used as the set of "training"
genes. All "omic" data sources integrated under ENDEA-
VOUR were selected to search for the candidate genes, as
defined above. PPIs were searched and retrieved with in-
house developed software coded in Java (Additional file
1). Exploratory network visualization and exploration
tasks were performed with Cytoscape [27] and Polar
Mapper [16].

Network module identification and traffic estimations
were carried out with Polar Mapper [16]. Network mod-
ules were characterized on the basis of GO biological
process and cellular localization terms that were statisti-
cally over-represented in the modules. This was imple-
mented with the Fatigo tool, under the BABELOMICS
(v3.1) software platform [28]. P values describing the sta-
tistical strength of these associations were estimated with
(two-tailed) Fisher's exact tests and corrected to account
for multiple-hypotheses testing using the Benjamini &
Hochberg adjustment procedure [28]. Unless otherwise
indicated, only corrected P values are reported here and
statistical significance is defined at the P = 0.05 level.
Other GO annotation visualization tasks were carried out
with GenNav v1.11 [29]. Whole-genome associations
between transcription factors (TFs) and microRNAs

Q numIME numE numIME numE random= −[ / ] [ / ]
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(miRNA) and the genes defining the network modules
were estimated using the same statistical testing proce-
dures and software tool. TF- and miRNA-module associ-
ations were searched in the TRANSFAC [29] and
miRBase [31] databases respectively.

Independent, two-group statistical comparisons were
performed with the Student's t-test. Correlation between
numerical variables was estimated with the Pearson's cor-
relation coefficient. These calculations and statistical dis-
plays were implemented with the Statistica package [32]
and T-REX under the GEPAS 4.0 platform [33]. Classifi-
cation models based on gene expression data were imple-
mented with Weka [34]. Other network-based statistical
measures were computed with (Java-written) software
developed in our laboratory.

Results
Known biomarkers and network protein seeds
The set of known HF biomarkers included 37 proteins
(Table S1). Out of the top 100 genes that were found to be
functionally related to the set of known biomarkers as a
whole, 32 genes actually encoded known protein bio-
markers. Thus, a total of 68 (unique) genes were found to
be functionally relevant to the set of known biomarkers.
The union of the set of known biomarkers and their func-
tionally-related genes represented the "network seeds".
The network seeds comprised a total of 105 proteins
(Tables S1 and S2), and were used to assemble the PPI
network as described in the Methods section.

A core network of PPIs in HF
The PPI search and retrieval task generated a global net-
work consisting of 772 nodes (proteins) and 1443 edges
(PPIs). The resulting network comprises a single "core
network" (Figure 2A), which is composed of 746 proteins
and 1420 interactions. This is the single, largest intercon-
nected region of the global network. In addition, six small
"islands" of interconnected proteins detached from the
core network were found. These islands included from 2
to 8 proteins, and from 2 and 14 interactions (not shown).
Figure 2 also shows the degree distribution of the core
network. The global and core networks follow a power-
law degree distribution of the form: D(k)~k-γ, where k
represents the degree values observed in the network,
D(k) is the observed frequency of nodes with degree k, γ
is known as the power-law exponent and ~ represents
proportionality between these variables. On a logarith-
mic scale, as shown in Figure 2B, the power-law expo-
nent, γ, represents the slope of the line fitted to this
distribution. In this analysis the global and core networks
exhibited a γ = 1.29. In previous research, power-law dis-
tributions have been used to characterize different bio-
logical networks, and they reflect the diversity of the
number of connections exhibited by the nodes in a net-

work. A power-law distribution indicates that the major-
ity of the network nodes tend to show small numbers of
interactions and that only a minority of nodes is highly-
connected.

Hereafter we focus our analyses on the core network.
The core network not only concentrates the vast majority
of nodes and edges, but also represents a single inter-con-
nected network that preserves the degree distributions of
the "global" set of nodes and interactions. By focusing on
the core network, we also aim to identify biologically-
meaningful interrelated groups of proteins based on the
structural analysis of this network, e.g. detection of mod-
ules of inter-connected nodes.

Functional landscape and modular organization of the HF 
PPI network
The clustering analysis of the core network generated 17
clusters of highly-connected proteins, which are hypothe-
sized as potential functional modules in this network.
Table 1 describes major features of these modules,
including GO biological processes and cellular localiza-
tions statistically over-represented in each module. Such
statistical estimations were made after correcting P val-
ues for multiple-testing. The vast majority of modules
can be labeled with a variety of GO biological processes
(16 out of 17 modules), and 14 of these modules can be
assigned with confidence to specific cellular compart-
ments. Module 17 did not show statistical enrichment of
GO terms after making multiple-testing adjustments.
Modules 10 and 14 did not include over-represented GO
cellular localization terms at the nominal (P = 0.05) level.
Overall, many of these modules tend to be implicated in
cell adhesion and immune responses, with a significant
number of proteins expressed in extracellular regions.
However, a diverse range of specialized functional roles
and cellular localizations were also observed. Examples of
the former include: muscle contraction, tissue remodel-
ing and signal transduction. Moreover, partial functional
overlaps were observed. A more detailed description of
these modules is available in the Additional file 1 (Table
S4).

These structural and functional features provide evi-
dence of a hierarchical, module-oriented organization of
the HF biomarker-centric network investigated here. This
allows one to visualize their structure and functionality at
a higher level of complexity, in which highly specialized,
yet partially overlapping, functional modules interact and
orchestrate their functional contributions to processes
implicated in HF. Figure 3 graphically illustrates this
functional landscape and module-oriented architecture.
Lines linking the different modules represent inter-mod-
ule PPIs. Figures 3A and 3B describe each module on the
basis of statistically representative GO biological pro-
cesses and cellular localizations, as described in Table 1.
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A more detailed description of biological processes and
cellular localizations is given in the Additional file 1
(Table S4). This visualization reveals the existence of
strong interplay and cross-communication between the
different functional modules. Moreover, it indicates that
modules not only tend to interrelate to other modules
involved in similar processes, but also to modules impli-
cated in dissimilar or complementary roles. For example,
modules specialized in cell adhesion tend to interact with
each other, as in the case of Modules 7 and 2, but also
with modules strongly involved in muscle contraction
and tissue remodeling. Figure 3B also illustrates the coor-
dinated interplay between modules across different cellu-
lar regions, e.g. cytoplasm-extracellular space and
organelle-membrane interactions.

A GO-based functional analysis of the set of known
biomarkers reported the following biological processes as
statistically detectable (strongest enrichments below level
3 of GO): blood pressure regulation (P = 1.35E-05),
organismal catabolic process (P = 1.35E-05) and protein
digestion (P = 1.35E-05). In addition, the extracellular
space was the localization with the most significant
enrichment of biomarkers (P = 1.09E-16). The module-

based analysis detected significant associations that were
not found in the list of biomarkers, e.g., tissue remodel-
ling (Module 6, P = 8.4E-05). We also observed that the
statistical significance of the biological process terms
overrepresented in the set of known biomarkers was
weaker than that observed in the module-based analysis.
For example, "blood pressure regulation" (P = 1.35E-05)
was the most over-represented biological process in the
set of biomarkers. In the network-based analysis, the
enrichment of this term (Module 4) was statistically
detectable at P = 3.33E-11. This indicates that our net-
work-based approach was capable to recognise known
relationships, as well as more specific ones, which could
not have been detected by solely looking into the list of
known biomarkers.

Inter-module relationships and network highways
These modules can also be characterized on the basis of
their cross-communication capability. This is important
to identify potential communication "coordination" or
"routing" centers, which may play major roles in the regu-
lation of functional activity at a systems-level. The mod-
ules incorporate different numbers of inter-module

Figure 2 Schematic representations of PPI networks related to HF. A. Core HF PPI network. B. Degree distribution of the core network. In A, nodes 
and edges represent proteins and interactions respectively. Nodes located near the center represent highly-connected nodes, or nodes at the inter-
section between different node-node pathways. In B, the relationship between node degree and the observed frequency is plotted on a logarithmic 
scale (ln) for this network.
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Table 1: Overview of functional modules indentified through network structural analysis.

Network 
module

Number of 
proteins

Number of 
interactions

Median 
traffic

Number 
of IMIs

BP CC

1 33 87 64 2 Innate immune response (P = 2.0E-22) Extracellular region part (P = 5.1E-17)

2 17 57 32 3 Immune response (P = 5.0E-04) Cell part (P = 0.01)

3 21 84 40 12 Cell adhesion (P = 1.8E-06) Extracellular matrix part (P = 8.4E-14)

4 33 84 64 7 Circulation (P = 2.3E-19) Plasma membrane (P = 0.003)

5 32 94 62 7 Coagulation (P = 1.6E-08) Extracellular region part (P = 2.0E-04)

6 37 117 72 4 Tissue remodeling (P = 8.4E-05) Integral to plasma membrane 
(P = 0.005)

7 133 731 264 46 Cell adhesion (P = 2.7E-18) Extracellular region part (P = 9.9E-47)

8 11 26 20 1 Taxis (P = 1.9E-14) Plasma membrane part (P = 5.4E-06)

9 100 469 198 31 Protein digestion (P = 2.6E-13) Extracellular region part (P = 5.1E-33)

10 24 64 46 7 Positive regulation of signal 
transduction (P = 1.3E-05)

?

11 19 54 36 8 Proteolysis (P = 2.4E-13) Endoplasmatic reticulum (P = 0.004)

12 51 182 100 8 Immune response (P = 7.1E-13) Extracellular space (P = 0.002)

13 68 212 134 14 Cell adhesion (P = 4.4E-15) Receptor complex (P = 7.5E-12)

14 7 21 12 3 Cell adhesion (P = 2.0E-04) ?

15 18 42 34 4 Muscle contraction (P = 5.1E-05) Myofibril (P = 9.0E-04)

16 112 390 222 9 Cell communication (P = 7.7E-27) Cytoplasm (P = 0.007)

17 30 91 58 1 Response to stress* (P = 0.01) DNA-directed RNA polymerase 
complex* (P = 0.04)

BP and CC are examples of biological processes and cellular localizations terms respectively, which are highly over-represented in each module, 
as defined in the GO. P values estimating the statistical significance, after correcting for multiple-testing, of the enrichment of the terms are also 
included. "*": enrichment of GO term in the module was nominally significant at P = 0.05, i.e., no statistical significance was observed after 
correcting P value for multiple-testing. "?": statistically detectable GO terms were not found. The numbers of interactions includes both inter- and 
intra-module interactions. Additional details are included in the Additional file 1 (Table S4). BP: biological process. CC: cellular component. IMIs: 
Inter-module interactions.
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Figure 3 Functional landscape and module-oriented architecture of the HF PPI network. Lines linking the modules represent inter-module in-
teractions (independently of the number of individual PPIs). A. Functional characterization based on module-specific involvement in different biolog-
ical processes. B. Functional characterization based on module-specific associations with cellular localizations.
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interactions, ranging from 1 (Module 17) to 46 (Module
7) (Table 1). Aside from Module 7, Modules 9 and 13 rep-
resent examples of major routing centers of information
flow in this network, with 31 and 14 inter-module inter-
actions respectively. Module 7 is the largest network
module and is enriched in proteins heavily implicated in
diverse processes, such as cell adhesion (P = 2.7E-18),
anatomical structure development (P = 9.8E-09) and
coagulation (P = 2.4E-07). This module appears to mainly
operate in the extracellular region part (P = 9.9E-47) and
collagen (P = 6.9E-33), as defined by the GO.

Based on an estimation of "traffic" values (Table 1),
Module 7 again is shown to be the module with the stron-
gest inter-module mediating capability (median traffic =
264). This indicates that Module 7 represents an efficient
(or short) communication pathway to link different pro-
teins and modules across the different locations in this
network. For all the network modules, the number of
inter-module interactions is strongly correlated with their
respective (median) traffic values (Pearson correlation: r
= 0.81, P = 0.0007).

Network hubs tend to be high-traffic nodes
We found a strong linear correlation between node
degree and traffic (r = 0.92, P = 0.0001). Figure 4A illus-
trates this relation for all the core network nodes. An
alternative view of the underlying communication and
connectivity structure of the HF network is shown in Fig-
ure 4B. In this contour plot, the black squares represent
network proteins plotted against their corresponding
degree values, and the color-coded regions reflect the
traffic levels for these proteins. The higher the position of
a protein on the plot, the larger their degrees and traffic
levels. Thus, red regions reflect the existence of network
"superhighway" hotpots, i.e., those nodes with both high
traffic levels and number of connections. Proteins
fibronectin 1 (FN1), integrin beta 1 (ITGB1) and platelet-
derived growth factor receptor beta (PDGFRB) represent
the top three 3 communication "hotpots" with the highest
degree and traffic values in this network. Such superhigh-
way nodes not only represent central components with
strong influence in the structural integrity of the net-
work. They also define key mediating nodes in the net-
work, i.e., they facilitate closer interactions between
different modules and individual proteins by providing
shorter communication pathways between them.

Known biomarkers tend to be hubs and high-traffic 
hotpots in the HF network
A comparison between the group of known HF biomark-
ers and the other nodes in the network showed statisti-
cally detectable differences in terms of node degrees and
traffic levels. Known biomarkers, in average, have more
connections (t = 6.60, P = 1E-07) and tend to exhibit

greater traffic levels (t = 7.85, P = 1E-07) in comparison to
the other proteins included in the core network.

Prediction of putative novel biomarkers and targets
Based on the evidence that HF biomarkers tend to be
high-traffic nodes, we suggest that such a network-based
feature may be used to point out to potential new bio-
markers or targets. Table 2 displays the top-20, high-traf-
fic proteins in the HF core network together with
representative GO annotations and their network module
locations. The top five, high-traffic proteins are FN1,
PDGFRB, ITGB1, complement component 3 (C3), colla-
gen type I alpha 1 (COL1A1) and transforming growth
factor beta 1 (TGFB1) (also see Figure 4). Among the list
of proteins with known associations with HF, the follow-
ing proteins were included in this top ranking: matrix
metalloproteinase 2 (MMP2), chromogranin B (CHGB),
collagen type II alpha 1 (COL2A1), tumor necrosis factor
(ligand) superfamily member 11 (TNFSF11), matrix met-
alloproteinase 9 (MMP9) and tumor necrosis factor
(TNF). A diversity of biological processes, ranging from
cell adhesion to G-protein coupled receptor protein sig-
naling pathways, can be found in this ranking. Moreover,
these proteins have been assigned to different cellular
compartments, including cytoplasm, plasma membrane
and different protein complexes. Table 2 also shows dis-
tinguishing features between HF biomarkers and other
high-traffic proteins. Proteins from the latter group are
annotated to GO biological processes that are not
observed in the annotation set of (high-traffic) HF bio-
markers, such as proteins with angiogenic and metabolic
roles. Examples are COL1A1 (blood vessel development),
LRP1 (lipid metabolic process) and PDGFRB (positive
regulation of cell proliferation). The correlation between
the top-20 high-traffic proteins and the top-20 most-con-
nected proteins was: 0.98 (Pearson correlation, P = < 1E-
5) and 0.84 (P = <1E-6) for traffic and degree values
respectively.

Gene expression of putative biomarkers and targets
A traditional approach to identify potential biomarkers or
targets is to estimate the differential expression of genes
across clinically-relevant groups of samples. Using
microarray technology, we analyzed the expression of the
genes encoding the top-20 high-traffic proteins across HF
and non-HF samples, as specified in Methods. Statistical
analyses (t-tests) reported very low differential expres-
sion of these genes between the clinical classes (Table 3).
No statistically detectable differences were observed at
(or around) the P = 0.05 level, except in the cases of
TGFB1 (t = -1.98, P = 0.06) and PTEN (t = -2.45, P =
0.02). Traffic values and levels of differential expression
(as estimated by the t-statistic) are indeed uncorrelated
(Spearman correlation, r = 0.09). This shows how these
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Figure 4 Characterization of major network communication properties. A. Relationship between node degree and traffic. B. A 3D contour plot 
of the communication and connectivity structure of the HF network. In A. a line is fitted to the data to highlight the linear relationship between the 
variables. In B. the black squares represent network proteins plotted against their corresponding degree values, and the colour-coded regions reflect 
the traffic levels. Colour regions and contours were fitted according to a distance weighted least squares procedure. The higher the position of a pro-
tein on the plot, the larger its number of connections and traffic level. Fibronectin 1 (FN1), integrin beta 1 (ITGB1) and platelet-derived growth factor 
receptor beta (PDGFRB) are the top three communication "hotpots" with the highest degree and traffic values in this network.
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Table 2: Top-20 high-traffic proteins in the HF core network.

Protein Network module BP CC Traffic

FN1 7 cell adhesion, response to wounding extracellular region 140037.9

PDGFRB 16 positive regulation of cell proliferation, 
positive regulation of cell migration

? 118789.9

ITGB1 13 homophilic cell adhesion, leukocyte 
adhesion

cell surface 107208.2

C3 1 G-protein coupled receptor protein 
signaling pathway

extracellular region 53979.1

COL1A1 7 blood vessel development plasma membrane 48837.3

TGFB1 6 connective tissue replacement during 
inflammatory response

extracellular region 45861.8

MMP2 9 proteolysis extracellular space 43355.8

PTEN 17 regulation of cyclin-dependent protein 
kinase activity

cytoplasm 43018.0

CHGB 17 ? ? 42398.0

ITGB3 7 blood coagulation integrin complex 41256.5

ADAM15 16 cell-matrix adhesion ? 36080.8

IL6ST 16 positive regulation of cardiac muscle 
hypertrophy

interleukin-6 receptor 
complex

35295.1

COL2A1 7 collagen fibril organization collagen type II 33618.7

TNFSF11 9 immune response extracellular region 32703.6

ITGAV 9 cell adhesion cytoplasm 31291.3

PDGFRA 16 cell activation integral to plasma 
membrane

31130.0

LRP1 9 lipid metabolic process membrane fraction 30483.8

SRC 16 protein kinase cascade plasma membrane 28672.6

MMP9 9 macrophage differentiation extracellular space 27463.8

TNF 12 anti-apoptosis plasma membrane 27462.7

Bold rows highlight proteins known to be HF biomarkers. For each protein, BP and CC represent examples of biological processes and cellular 
localization annotations respectively assigned to the protein, as defined in the GO. "?" means that no GO annotation was found for the protein 
(as of January 2009).



Table 3: Differential gene expression of the top-20 high-traffic proteins between HF and non-HF patients.

Protein t-statistic P Traffic

FN1 -0.99 NS 140037.9

PDGFRB 0.62 NS 118789.9

ITGB1 -0.44 NS 107208.2

C3 1.12 NS 53979.1

COL1A1 1.43 NS 48837.3

TGFB1 -1.98 0.06 45861.8

MMP2 0.16 NS 43355.8

PTEN -2.45 0.02 43018.0

CHGB 0.27 NS 42398.0

ITGB3 NA NA 41256.5

ADAM15 -0.21 NS 36080.8

IL6ST NA NA 35295.1

COL2A1 NA NA 33618.7

TNFSF11 NA NA 32703.6

ITGAV NA NA 31291.3

PDGFRA -0.65 NS 31130.0

LRP1 -0.37 NS 30483.8

SRC -0.54 NS 28672.6

MMP9 -1.15 NS 27463.8

TNF 1.39 NS 27462.7

Bold rows highlight known HF biomarkers. t-statistic and P values of differential expression between HF and non-HF patients: 16 samples in 
each class. NS: Non-significant difference or difference statistically detectable at P > 0.1. 'NA': data not available in our expression dataset. A 
negative t-statistic means that the gene has a higher expression in the HF class.
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potentially influential proteins could not have been
detected on the basis of their gene expression alone.
However, the potential of gene expression information of
high-traffic proteins for biomarker or therapeutic target
applications deserves further investigations. We found
that patient classification models built on the expression
values of TGFB1 and PTEN could correctly classify 72%
of these samples using a linear support vector machine
classifier (SVM) and leave-one-out cross-validation
(LOO). To further explore the potential prognostic accu-
racy of these genes, we implemented SVM classifiers
using high-traffic, known biomarkers as inputs (Table 1).
Different models based on the combination of the expres-
sion values of these biomarkers reported classification
performances equal or worse than random prediction
(LOO, area under the receiver operating characteristic
curve, AUC < 0.5).

Functional modules can be regulated at the transcriptional 
level
A closer look at the composition of the network modules
gives evidence of the existence of shared regulatory
mechanisms at the transcriptional level. We investigated
possible regulatory mechanisms through an analysis of
statistical associations between these modules and
known transcription factors and miRNAs. Figure 5
depicts the statistically detectable associations observed
between transcription factors and functional modules.
No statistical associations between known miRNAs and
these modules were found at the (nominal) P = 0.05 level.
All the transcription factors belong to the E2F family of
transcription factors. This family is known to regulate cell
proliferation and tumor suppressor proteins, and to be a
target of small DNA tumor viruses [35,36].

Table 4 offers a more detailed description of these asso-
ciations, including examples of GO biological process

Figure 5 Regulation of modules at the transcriptional level through the action of transcription factors with known strong associations with 
module members.
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over-represented in the target module (statistically
detectable at P < 0.05, after adjusting for multiple-test-
ing). Table 4 also shows the statistical strength, PTF-Module,
of the associations between individual transcription fac-
tors and modules. Muscle creatine kinase (CKM) and
interleukin 6 (IL6) are examples of HF biomarkers
included in the regulated modules. ITGB1, four and a half
LIM domains 2 (FHL2), collagen type VIII alpha 1
(COL8A1), CKM, and integrin alpha 2 (ITGA2) represent
the highest traffic nodes controlled by the E2F family.

Discussion and conclusion
New insights and potential implications
This research shows how a biomarker-centric interac-
tome related to HF exhibits a functional architecture of
well-specified interconnected modules, which tend to be
distributed across different cellular compartments. Inter-
module communication is mediated by high-traffic or
central proteins, which establish relatively short interac-
tion paths between other proteins. Such a functional
modularity and inter-module interplay suggest a coordi-
nated, yet sometimes redundant, functional co-operation
of processes and proteins relevant to the emergence and
development of human HF. This coordinated cross-com-
munication tends to be established by proteins that rep-
resent both high-degree and high-traffic network nodes.
Moreover, these inter-module mediators appear to be
responsible for linking, and possibly coordinating, the
activities of multiple network modules associated with
diverse functional processes and cellular localizations.

Within the proposed methodological framework and
disease investigated, the systems-level analysis is promis-
ing because it can detect potentially novel genes beyond
the traditional differential gene expression analysis. Our
results indeed proved that this was the case by offering
potentially novel biomarkers that were not only biomedi-
cally-meaningful, but also capable to enable relatively
accurate patient classification.

Our results indicated that HF biomarkers implicated in
different biological processes tend to represent high-traf-
fic network nodes. High-traffic nodes can also be seen as
bottlenecks or cross-talking hotspots because they repre-
sent components inter-linking different network regions
and proteins. High-traffic nodes are found in a significant
number of shortest paths connecting different network
nodes. Previous studies have correlated high-traffic pro-
teins with cell essentiality, pleiotropy and mediating com-
munication roles between biological processes [11,37].

We also determined different proteins that deserve fur-
ther research as potential novel HF biomarkers or thera-
peutic targets. These proteins have been shown to be
involved in a wide range of processes, including blood
vessel development and regulation of protein kinase
activity. ITGB1 and FN1 were identified among the top-3

high-traffic proteins. Note that the rankings of ITGB1
and FN1 in the Endeavour-based prioritization were 66th

and 29th respectively. Interestingly, ITGB1 is a receptor
for FN1 and this ligand-receptor couple regulates leuko-
cyte adhesion. Taking into consideration that inflamma-
tion, mediated by recruitment of circulating leukocytes to
the heart through adhesion to the vessel wall, is an essen-
tial component of the pathogenesis of HF, our results sug-
gest that ITGB1 and FN1 play key roles in the
development and progression of HF. Indeed, accumula-
tion of extracellular matrix proteins, such as laminin and
fibronectin, is a hallmark of the development of HF [38],
and ITGB1 protects the heart from ventricular dysfunc-
tion and failure [39]. In addition, we found a statistically
significant association between module 13, to which
ITGB1 belongs, and the E2F family of transcription fac-
tors. In the cardiovascular disease domain, E2F transcrip-
tion factors have been linked to blood pressure regulation
[40] and the prevention of the development of hypertro-
phy [41].

FN1 is an acute-phase reactant synthesized by hepato-
cytes following injury, such as MI or ischemic stroke.
This may explain why transcriptomic analysis of blood
cells performed in the present study failed to readily
detect FN1 expression and a potential association with
clinical outcome of MI patients (i.e., FN1 is not differen-
tially expressed by HF and non-HF patients). Since FN1
does not belong to the family of known biomarkers of HF
and is released in the plasma following injury, it will cer-
tainly be interesting to determine its prognostic perfor-
mance and therapeutic utility in the context of HF.

Matrix metalloproteinases (MMPs) constitute a family
of matrix degrading enzymes that contribute to the devel-
opment of HF [42]. In the present study, two main MMP
family members, MMP2 and MMP9, were found to be in
the top-20 high-traffic proteins of the HF core network.
In accordance with these findings, several groups includ-
ing ours demonstrated the potential of MMP9 as a bio-
marker of HF [43-47].

Here we put forward a hypothesis about why biomark-
ers tend to reflect relevant states in the emergence or pro-
gression of the disease. Biomarkers can mirror inter-
module and global functional activities in an integrated,
network-oriented fashion. We showed how the role of
potential biomarkers or therapeutic targets may be
explained on the basis of network architecture features.
We found that potentially important proteins are
encoded by genes with relative low differential expression
between HF and non-HF samples (e.g. ITGB1 and FN1).
Thus, these key proteins could not have been detected
using standard gene expression analysis alone because of
the subtle differences in expression levels between these
prognostic classes. This underscores the importance of
alternative, post-genomic views of the biomarker and tar-
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Table 4: Transcription factors (TFs) strongly implicated in the regulation of HF core network modules.

TFs Module BP PTF-Module KHFB HTraffic

ITGB1

FHL2

E2F-4:DP-2 13 Cell adhesion, 
signal 

transduction

0.04 CKM COL8A1

CKM

ITGA2

ITGB1

FHL2

E2F-1:DP-2 13 Cell adhesion, 
signal 

transduction

0.04 CKM COL8A1

CKM

ITGA2

ITGB1

FHL2

E2F-1:DP-1 13 Cell adhesion, 
signal 

transduction

0.04 CKM COL8A1

CKM

ITGA2

ITGB1

0.04 CKM FHL2

E2F-1 13 Cell adhesion, 
signal 

transduction

COL8A1

CKM

ITGA2

PDGFRB

ADAM15

E2F-1 16 Cell 
communication, 
phosporilation

0.02 IL6 IL6ST

PDGFRA

GRB2

BP: Examples of GO biological process over-represented in a module (with P < 0.05 after adjusting for multiple-testing). PTF-Module: Probability 
value for the association TF-module (after correcting for multiple-testing). KHFB: Known HF biomarkers controlled by the TF within the 
specified module. HTraffic: examples of high-traffic proteins, including putative biomarkers, regulated by the specified TF.
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get discovery process based on the analysis of multiple
resources of "omic" information. Previous research has
shown that high-degree and high-traffic network nodes
may be encoded by genes that are not necessarily highly
expressed or differentially expressed across case-control
samples in different diseases [7,8]. This reinforces the
motivation for formulating advanced computational bio-
marker discovery approaches, which integrate different
levels of "omic" complexity. Furthermore, we provided
suggestive evidence of the potential of high-traffic pro-
teins for patient classification using gene expression data.

The lack of differential gene expression of the known
biomarkers may be explained by the following reasons:

1. Changes in the expression of these biomarkers do
not necessarily rely on transcriptional modifications.
Post-transcriptional and translational modification
mechanisms may be also responsible for their differ-
ential expression. Many of these biomarkers are
known to be differentially regulated at the protein
expression level.
2. Strong differential gene expression may not be pos-
sible to detect due to the small size of our dataset.
Also note that the new putative biomarkers have lev-
els of differential expressions that are not strong
enough to have allowed their discovery through stan-
dard gene expression analysis alone.

This motivated our systems-based discovery frame-
work based on the integration of gene expression, pro-
tein-protein interactions, biological process annotations
and DNA-gene interaction information.

This investigation also suggests that intra-module func-
tional activity may be regulated by a family of transcrip-
tion factors previously associated with cancer
progression, blood pressure regulation and the preven-
tion of hypertrophy [19,35,40]. Moreover, because of the
inter-connected modular architecture underpinning the
HF-related network studied here, one may argue that
common transcriptional control may be achieved globally
on different modules based on this or other sets of tran-
scription factors. These insights offer evidence about
potential therapeutic targets, which will require further
computational and experimental investigations. In addi-
tion, the availability of new information sources, such as
validated miRNA-target associations of higher genome-
coverage, will open new research directions in this area.

Possible limitations and future work
Key limitations of this research relate to information
incompleteness and uncertainty. This investigation is
based on a sample of current knowledge about HF bio-
markers and the human interactome. Both information
sources may represent either biased or incomplete infor-
mation. Although we aimed to include a relatively large
number of known biomarkers and functionally-related

proteins to assemble the network, it is evident that false
negative and false positive relationships may have influ-
enced our findings. Nevertheless, because we do not use
network topology information to make de novo predic-
tions of interactions or functional annotations for specific
proteins, we expect this potential deficiency to have a less
significant effect on our findings. Our main research
objective was to establish system-level associations and
statistically detectable functional patterns, which may be
used to characterize PPIs and processes relevant to HF. In
addition, our analysis was not based on prior hypotheses
or assumptions about the structure of the network. To
reduce the potential number of false-positive interac-
tions, we also focused on human-specific, experimen-
tally-validated interactions. The strong statistical
relationships found between network modules and
known functional processes also suggest that the possible
inclusion of false-positives interactions, as well as the
possible exclusion of important biomarker-related pro-
teins, would not represent a major drawback of this net-
work.

The notion that known biomarkers tend to be relatively
more studied than other proteins may suggest a potential
source of bias in our estimations of the correlation
between the traffic and degree values of the biomarkers.
However, it is important to stress that in the list of known
biomarkers, there are proteins that exhibit high traffic
values despite their relative low degrees. The biomarkers
IL6 and CHGB illustrate this scenario. On one side, IL6
exhibits a traffic level higher than that obtained for
CHGB. On the other side, CHGB has more interacting
partners than IL6 (45 vs. 6 connections). Furthermore,
only 6 out of the 20 highest-traffic proteins in the global
network originate from the list of known biomarkers.
These observations indicate that the potential bias
toward well-studied proteins did not significantly impact
our findings.

In any case, we cannot rule out the possibility that a rel-
ative high number of false-negatives, i.e., true interac-
tions or proteins relevant to HF that were not included in
the network, may have influenced or biased the results
reported here. In the long-term, the generation of more
detailed descriptions of PPIs and the incorporation of
emerging biomarkers, can provide conclusive confirma-
tion or refutation of the results presented here. Future
research should also incorporate additional information
on biological context, such as tissue specificity or binding
affinities.

Another limitation relates to the transcriptomic analy-
sis of blood cells from MI patients. First, this analysis
included only a low number of MI patients and it will be
necessary to validate the gene expression data in a larger
population. Second, the use of readily available blood
cells instead of cardiac biopsy to draw a biosignature of
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HF can be questionable. However, several studies have
demonstrated the usefulness of blood cell transcriptomes
to identify biomarkers in both the oncology [48,49] and
cardiovascular fields [50].

Only GO biological process and cellular localization
annotations were examined to describe modules. This
was done to emphasize the involvement of genes in
entire, well-defined biological processes rather than in
unique "activity" terms, as defined in the molecular func-
tion hierarchy (MF). Unlike MF terms, biological process
terms can define involvement in more than one activity.
In addition, MF terms tend to be good estimators of cel-
lular localization terms, as reported in empirical studies
[51]. Moreover, according to the GO consortium website,
one can assume that for each biological process term
there will be a corresponding MF term.

We also acknowledge that the biological relevance of
network concepts, such as betweenness centrality or traf-
fic, and their direct correspondence with biological infor-
mation transfer phenomena remains a topic of
discussion. Despite the need for additional research in
this area, network-oriented concepts have proven to be
powerful approaches to the generation of testable predic-
tions about the functionality of complex biological sys-
tems in different model organisms and diseases
[5,19,50,52-54].

Key questions that deserve to be investigated are: What
is the effect of incorporating multi-level interaction net-
works (i.e. additional interactions moving away from the
first-level of biomarker-protein interactions)?; how the
HF-specific network relates to other phenotype-specific
networks?; what place the HF-specific network occupies
in a hierarchical organisation of the human interactome?;
how such knowledge may facilitate the discovery of new
key mediators of HF?. Answers to these questions will
require larger, high-quality annotated PPI networks, with
proven implications in human heart failure. Another rele-
vant topic is the role of network-based differential expres-
sion for prognostic applications, as investigated in [55]
for breast cancer. In a paper published elsewhere, we
reported an alternative approach in the specific domain
of ventricular dysfunction [56].

Summary of main findings
The main findings of this investigation can be summa-
rized as follows:

1. Well-defined functional modularity characterizes a
HF biomarker-driven PPI network. Such modules can
be assigned to specific cellular regions and their func-
tional roles tend to partially overlap.
2. Inter-module relationships are established and
facilitated by nodes exhibiting high-traffic or central-
ity betweenness in the network.

3. HF biomarkers tend to represent network hubs and
high-traffic nodes in this network.
4. Putative biomarkers or targets may be predicted on
the basis of their traffic level properties.
5. High traffic proteins may be encoded by genes with
relatively low differential expression between HF and
non-HF in post-MI patients.
6. The integration of expression data from high-traffic
genes may provide the basis for potentially accurate
prognostic systems.
7. Intra- and inter-module functional activity may be
regulated by a family of transcription factors known
to be implicated in cancer progression, blood pres-
sure regulation and the prevention of hypertrophy.

In conclusion, this investigation contributes to the
development of new global insights into complex molec-
ular interactions and processes relevant to human HF.
These results offer alternative views of crucial mecha-
nisms driving biomarker-related functionality and orga-
nization at a systems level. Based on our analyses, HF
biomarkers may be characterized as key coordinators of
intra- and inter-module communication.
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