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Abstract
Background: A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. 
The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering 
and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits 
consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential 
for simultaneous binding of adaptors.

Results: The model was used to simulate recruitment of four different signaling molecules (Grb2, PLCγ1, Stat5, Shc) to 
the phosphorylated EGFR tail, with rules based on coarse-grained prediction of spatial constraints. Parameters were 
derived in part from quantitative immunoblotting, immunoprecipitation and electron microscopy data. Results 
demonstrate that receptor clustering increases the efficiency of individual adaptor retainment on activated EGFR, an 
effect that is overridden if crowding is imposed by receptor overexpression. Simultaneous docking of multiple proteins 
is highly dependent on receptor-adaptor stability and independent of clustering.

Conclusions: Overall, we propose that receptor density, reaction kinetics and membrane spatial organization all 
contribute to signaling efficiency and influence the carcinogenesis process.

Background
The ErbB or Epidermal Growth Factor Receptor (EGFR)
family of receptor tyrosine kinases consists of four mem-
bers: EGFR (ErbB1), ErbB2, ErbB3, and ErbB4. Under
normal physiological conditions, they propagate signals
regulating cell proliferation, differentiation, motility and
apoptosis. Changes in expression and aberrant activation,
especially of EGFR and ErbB2, are associated with a vari-
ety of cancers [1]. Upon ligand binding, EGFR undergoes
a conformational change that leads to the formation of
homodimers (EGFR-EGFR) and heterodimers (i.e.,
EGFR-ErbB2) [2]. Dimerization induces kinase activation
and transphosphorylation of multiple tyrosine residues in
receptor cytoplasmic tails [3-5]. The phosphotyrosine
residues serve as docking sites for a large number of cyto-
plasmic adaptor proteins and enzymes [6]. For a given cell
type, the specificity and potency of EGFR-mediated intra-
cellular signaling is mediated by the cell's repertoire of

phosphotyrosine-binding proteins recruited to the EGFR
cytoplasmic tail.

In this work, we use an agent-based model to evaluate
the effects of reaction kinetics, steric constraints and
receptor clustering on the docking of four EGFR binding
partners: Grb2, Shc, Stat5 and PLCγ1. The adaptor Grb2
lacks enzymatic activity and consists of one Src homology
(SH) 2 domain and two SH3 domains [7]. Its SH2 domain
docks to specific EGFR phosphotyrosine residues and its
SH3 domains bind to a Ras guanine nucleotide exchange
factor, Sos [8,9]. The adaptor Shc also binds directly to
activated EGFR by two distinct phosphotyrosine interac-
tion domains, an NH2-terminal phosphotyrosine binding
(PTB) domain and a COOH-terminal SH2 domain
[10,11]. Recruitment of Grb2 and Shc lead to activation of
ERK (extracellular signal regulated kinase) [12], which
translocates into the nucleus and induces gene expression
[13]. The transcription factor Stat5 is activated by phos-
phorylation after docking to EGFR or indirectly through
Src-mediated EGFR signaling [14,15]. Activated Stat5
translocates into the nucleus where it regulates the tran-
scription of selected genes involved in oncogenesis
[16,17]. PLCγ1 has two SH2 domains, one SH3 domain
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and two pleckstrin homology (PH) domains [18]. It is
recruited to phosphorylated EGFR through its SH2
domains, where it serves as a substrate for EGFR kinase
activity. Tyrosine phosphorylation of PLCγ1 then leads to
an increase in its enzyme activity [19]. PLCγ1 pathway
plays a significant role in EGFR-mediated cell signaling,
including calcium signaling [20], receptor endocytosis
[21] and cell motility [22]. Overexpression and hyperacti-
vation of PLCγ1 has been implicated in breast and pros-
tate cancers, and has especially been linked to cancer cell
invasion [23,24].

The process of signaling through ErbB receptors
involves highly connected networks of interacting com-
ponents. Improved understanding of receptor signaling
through systems biology approaches has a number of
potential practical applications, such as the rational
design of drugs to treat cancer [25]. The accuracy of
mathematical models relies heavily on quantitative char-
acterization of signaling components and their interac-
tions, such as measurement of expression levels and
reaction rate constants. However, the acquisition of
quantitative information is no small task, in part because
signaling proteins contain multiple phosphorylation sites
and may interact with multiple binding partners. Many
groups have studied the affinity between EGFR phospho-
peptides and the binding domains of Grb2, Shc, STATs,
and PLCγ1 using protein microarrays [26], Surface Plas-
mon Resonance (SPR) [27-29] and Isothermal Titration
Calorimetry (ITC) [30,31]. These studies provided esti-
mates of dissociation equilibrium constants (Kd) but
association and dissociation rate constants of the reac-
tions were typically either not measured or derived indi-
rectly. Moreover, none of these measurements were
based upon whole EGFR within lipid bilayers. To under-
stand distinct recruitment behaviors for the different sig-
naling proteins, it is important to arrive at better
estimates of their association and dissociation kinetics.
This will require new experimental and computational
approaches. In an recent experimental development,
Morimatsu and colleagues applied single molecule analy-
sis to measure the reaction rate constants of Grb2 with
membranes bearing intact, phosphorylated EGFR [32]. In
this study, we combined several quantitative experimen-
tal approaches, including western blotting analysis and
semi-quantitative electron microscopy, to evaluate the
kinetics of EGFR phosphorylation and adaptor recruit-
ment to the plasma membrane of EGF-stimulated cells.
Rate constants for EGFR phosphorylation/dephosphory-
lation and adaptor docking are estimated by fitting this
data to simulations in our agent-based stochastic model,
Signaling Pathways Simulator (SPS) [33].

Our model specifically considers the phenomenon
referred to as combinational complexity, which has been
a challenging problem for deterministic mathematical

models that employ differential equations to describe cell
signaling pathways [34,35]. For example, because the
EGFR becomes phosphorylated on at least nine tyrosine
residues during signaling, there are more than 260,000
distinct combinations of these phosphoforms for a dimer
of EGFR. Additional molecular diversity can arise when
accounting for potential simultaneous interactions of
receptor tails with multiple cytoplasmic adaptors. Previ-
ous models of ErbB signaling reduce the problem of com-
binatorial complexity by making several assumptions,
including simultaneous phosphorylation and dephospho-
rylation of receptor tyrosine residues, representation of
all tyrosine residues as a single 'virtual phosphorylation
site', and exclusion of multiple cytoplasmic adaptors on
the same receptor tail based upon competitive binding
[34,36-39]. In an important advance, Blinov and col-
leagues developed a rules-based model of early EGFR sig-
naling events, capable of evaluating more than 300
molecular species connected through ~4000 unidirec-
tional reactions [35]. Our spatial stochastic model is also
"rules-based" and specifically designed to consider largely
unexplored contributions of 1) EGFR clustering
[33,40,41] and anomalous diffusion [42], 2) distinct tem-
poral patterns of EGFR tyrosine phosphorylation and 3)
the potential for multiple adaptors to bind to the same
phosphorylated EGFR tail. We refer to the latter concept
as "sharing" and base our simulation rules upon the
results of coarse-grain molecular docking modeling. In
SPS, receptors diffuse in the two dimensional plasma
membrane. Rules established for diffusion in and out of
defined subdomains of the membrane (protein islands or
rafts) provide a mechanism for receptor clustering [33].
We demonstrate that the agent-based spatial model can
effectively address problems associated with combina-
tional complexity and make testable predictions about
adaptor binding and signaling output that are consistent
with novel, quantitative experimental data sets. The sim-
ulation results suggest that adaptor sharing is highly
dependent on reaction kinetics. The spatial model also
predicts receptor clustering results in more efficient
adaptor retainment, particularly at normal receptor
expression levels.

Results
Coarse-grained molecular docking simulations establish 
rules for competitive or simultaneous adaptor recruitment 
to the EGFR cytoplasmic tail
For convenience's sake, conventional models typically
assume that the docking of adaptor proteins is a competi-
tive process [34,36,37,43]. Nevertheless, it is possible that
neighboring phosphotyrosine residues on the EGFR tail
can recruit distinct proteins at the same time [26], a phe-
nomenon we refer to hereafter as "sharing". In theory, the
ability of multiple proteins to dock on the same tail could
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influence signal transduction efficiency. To address this
in our stochastic model, we first sought to establish dock-
ing "rules" based upon coarse-grained molecular docking
methods.

The fundamental concept in this approach is that
coarse-grained molecular docking is similar to assem-
bling a jigsaw puzzle. The docking software, PatchDock
[44], is based on shape complementary principles and
shape matching algorithms. We used PatchDock to esti-
mate the capability for combinations of four different
adaptor proteins to bind to both tails in an asymmetric
EGFR dimer (Figure 1A). We focused on Grb2, Shc,
PLCγ1 and Stat5, beginning with homology modeling
and protein structure prediction methods to arrive at a
range of potential 3D structures; details of these
approaches are found in Material and Methods and illus-
trated in Figure 1B. The asymmetric model of the EGFR
kinase domain dimer was based upon the crystal struc-
ture solved by Zhang and colleagues [45]. In this model,

the distal surface of the C lobe of one kinase domain
interacts with the N lobe of the other kinase domain in
the dimer. In this orientation, only one kinase in the pair
is activated, leading to transphosphorylation of the other
C-terminal tail. However, if the EGFR juxtamembrane
domain is flexible, it is possible that the two kinase
domains in the dimer can switch positions dynamically to
result in activation and phosphorylation of both receptor
tails [45]. In the simulations described below, we assume
participation of both receptor tails in a dimer based upon
this flexibility theory. Structural details of the C-terminal
region of the tail are missing, since crystals were formed
from recombinant proteins truncated after the kinase
domain. However, the final 200 amino acid stretch of the
EGFR tail appears to lack a predicted secondary structure
(Fig 1A) and is likely to be highly flexible. This conclusion
is consistent with FRET studies showing that activation
leads to separation of the tail from the tyrosine kinase
domain giving a more extended molecule [46].

Figure 1 Hierarchy of EGFR tail binding partners predicted by coarse-grained molecular modeling method. (A) Coarse-grained molecular 
modeling of EGFR C-terminal tail attached to the asymmetric model of EGFR kinase domain obtained from Zhang et al [45]. (B) Full-length coarse-
grained molecular models of Shc (purple), Grb2 (yellow), PLCγ1 (green), and Stat5 (cyan). (C) Simplified systematic interaction profiling of the EGFR 
tyrosine family used in our study. In this model, EGFR has four cytoplasmic interaction partners, one binding site for each of Stat5 and Grb2, and two 
binding sites for each of Shc and PLCγ1. Coarse-grained docking method was used to develop the hierarchy of EGFR tail binding partners. Some pos-
sible docking methods between the four adaptors and EGFR include (D) PLCγ1 docked to pY992, (E) PLCγ1 docked to pY1173, (F) PLCγ1, Shc, and 
Grb2 simultaneously docked to EGFR at pY992, pY1148, and pY1068, respectively, and (G) Stat5, Shc, and Grb2 simultaneously docked to EGFR at 
pY992, pY1148, and pY1068, respectively.
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The docking model is based the assumptions in Figure
1C (adapted from [15]). Only four of EGFR's phosphoty-
rosine sites are shown, along with their known interac-
tions with Grb2, Stat5, Shc and PLCγ1. The predicted
structures of Grb2, Shc, Stat5, PLCγ1 and the EGFR tail
were input to PatchDock, along with specifications of
their domains for docking to defined tyrosine residues in
the EGFR tail. As expected, many solutions result from
this type of simulation. Figure 1D-G show examples of
the docking configurations predicted by PatchDock, with
additional examples illustrated in the Supplemental Data
(Additional file 1). We focused on situations that permit-
ted multiple adaptors to dock simultaneously, as well as
situations that excluded one or more adaptors from dock-
ing on an occupied tail. Based upon these results, we
developed Table 1 as a foundation for docking rules in the
agent-based model. For example, the coarse-grained
docking model suggests that the docking of the relatively
large PLCγ1 molecule (molecular weight of 145 kDa) to
either Y992 or Y1173 prevents another PLCγ1 docking at
the remaining unoccupied site. Stat5, PLCγ1, and Grb2
can dock to pY992, pY1173 and pY1068 sites of an EGFR
tail, respectively, and the coarse grain model suggests any
two or all of them can feasibly dock to the tail at the same
time ("sharing"; Table 1, plus symbols in the first row).
Note that we make no claim that the coarse-grain method
accurately reflects the orientation of proteins bound in
the complex. Instead, our goal was to ask if there
appeared to be sufficient space to accommodate more
than one protein on a given EGFR tail. Thus, our coarse-
grained molecular docking model predicts combinations

of the four adaptor proteins that might reasonably be
expected to bind a single cytoplasmic domain of EGFR.
Note also that, because the C-terminal tails are highly
flexible, no additional hindrances were predicted based
upon similar simulations incorporating both tails of an
asymmetric dimer (not shown).

Simulation of EGFR phosphorylation/dephosphorylation 
kinetics
In preparation for spatial simulations, we characterized
receptor distributions in EGF-treated cells and deter-
mined the phosphorylation/dephosphorylation kinetics
for each of the four tyrosine residues. Our study is based
upon data from A431 breast cancer cell line. Based upon
our own flow cytometry measurements of ErbB family
receptor levels [41], this line expresses over 4 million
EGFRs and very little of other ErbB family members.
Electron microscopy (EM) images in Figure 2A report the
nanoscale spatial distribution of EGFR on membrane
sheets produced using the "rip-flip" technique [47] from
A431 cells after 2 hrs of serum starvation and batimastat
treatment to prevent stimulation by serum-derived or
shedding of EGFR ligands. Resting EGFR are distributed
in small clusters (Figure 2A), typically with an increase in
cluster size following addition of EGF (Figure 2B). We
applied the Hopkins test to confirm that EGFR distribu-
tions are significantly non-random. The Hopkins spatial
statistical test has been extensively used by our group
[33,48]; a right shift of the data is interpreted as evidence
for clustering (Figure 2A-B, inset). Western blots in Fig-
ures 2C-E,G compare the kinetics of phosphorylation on

Table 1: Docking rules for adaptors on EGFR cytoplasmic tails, as established by coarse-grained molecular docking 
modeling simulations

Stat5
(PY992)

PLCγ1
(PY992)

PLCγ1
(PY1173)

Shc
(PY1148)

Shc
(PY1173)

Grb2
(PY1068)

Stat5 (PY992) + +

+ + +

PLCγ1 (PY992) + + +

PLCγ1 (PY1173) + +

Shc (PY1148) + + +

+ + +

Shc (PY1173) + + +

+ + +

Grb2 (PY1068) + + +

+ + +

+ +

Plus (+) symbols on the same row indicate where docking simulations support the possibility for this combination of adaptors to 
simultaneously bind to phosphorylated tyrosine residues on the same EGFR tail. For example, from the first row, when Stat5 is bound to 
pY992, either one or both of PLCγ1 (pY1173) and Grb2 (pY1068) can bind simultaneously. Or, any or all of Shc (pY1148), Shc (pY1173), and 
Grb2 (pY1068) can bind simultaneously with Stat5 (pY992).
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tyrosine residues 992, 1068, 1148, and 1173 in EGF-
treated A431 cells, for which reliable phospho-specific
commercial antibodies are available. Phosphorylation of
Y992, Y1068 and Y1173 all peaked at 30-60 seconds;
these three residues are grouped into one category that is
considered to have "fast" kinetics (Figure 2F, solid line).

Phosphorylation of Y1148 peaked at much later time (~5
minutes) and is considered to be in a different category
with "slow" kinetics (Figure 2G, solid line). These data
were digitized by densitometric scanning and quantita-
tive results plotted as unitless values below each blot in
the series. Note that resting A431 cells have detectable

Figure 2 Analysis and simulation of EGFR tyrosine residues phosphorylation kinetics. A431 cells were serum-starved and treated with batimas-
tat for "resting" condition shown in (A), or treated thereafter for 2 min with 20 nM EGF (B). "Rip-Flips" were prepared and membranes immunogold-
labeled with anti-EGFR antibodies. Inset in both (A) and (B) confirms EGFR clustering by Hospkins test. Bars, 0.1 μm. Western blotting method was used 
to analyze phosphorylation kinetics of EGFR tyrosine residues (C) Y992, (D) Y1068, (E) Y1173, and (G) Y1148. Bands were quantified by densitometry 
and plotted as density of the bands. (F, H) Results of simulations (dashed lines) agree well with the "fast" kinetics and "slow" kinetics data (solid lines), 
using parameter values estimated by fitting to the data.
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phosphorylation at all 4 sites, that increases by 2 to 4-fold
at the peak values after EGF stimulation.

Phosphorylation and dephosphorylation rate constants
were estimated by fitting to this experimental data, using
the time course of pY992 to represent the "fast" category
and the time course of pY1148 to represent the "slow" cat-
egory. Based upon stochastic simulations, we estimate
that exposure to 20 nM EGF should result in 60% of total
EGFR in A431 cells within ligand-bound dimers at steady
state. We assumed that ligand-bound dimers have 2-fold
higher probability of tyrosine phosphorylation ([39],
Table 2) than do ligand-less dimers. Extending our earlier
work ([33] and that of [49], we assumed that 14% of unoc-
cupied EGFR were in transient dimers and that the
observed receptor phosphorylation at resting state (Fig-
ure 2C,D,E,G, zero time) is contributed by these predim-
ers. Therefore, at t = 0, both categories are assumed to
begin with 14% of receptors phosphorylated (560 000
receptors); at the peaks for both categories, 60% of the
receptors are phosphorylated (2,400 000). The number of
phosphorylated receptors at other time points were
derived based on the density value at these time points
compared to the peak value. Using this method, we arrive
at <560,000 PY992 at time zero, with values of 2,394,240,
2,400,000, 2,215,200, and 2,065,440 PY992 at t = 30, 60,
120, and 180 seconds, respectively.

We used the PottersWheel parameter fitting toolbox
[50] to estimate the "fast" and "slow" kinetics of tyrosine
phosphorylation. Details of this ODE-based approach are
found in Computational Methods. The estimated phos-
phorylation and dephosphorylation rate constants of the
"fast" kinetics category are 0.055 (nM×s)-1 and 0.013/s,
respectively. The rate constant estimated for "slow" kinet-
ics phosphorylation is 0.0063 (nM×s)-1, with a dephos-
phorylation rate 0.0014/s (Table 2).

Stochastic simulations by SPS [33] were used to validate
these estimated parameter values. Based on a value of 4
million receptors per A431 cell, the simulated cell mem-
brane area of 0.49 μm2 contained 1592 EGFR particles. To
set up the initial condition with 14% EGFR predimerized
in resting A431 cells, we used the receptor conforma-
tional flux model from our previous work [33]. In this
model, collision between two transiently "open",
dimerization-competent receptors leads to ligand-inde-
pendent dimerization. We used a simulation time step of
25 μs, a random distribution of EGFR, a diffusion rate of
0.09 μm2/s for receptors, and 20 nM EGF. Ligand binding,
dissociation, and receptor dimerization rate constants
came from Shankaran's model [39] and are found in
Computational Methods. As shown in Figures 2F and 2H,
simulations run with the estimated parameter values for
the "fast" and "slow" kinetics show close agreement with
the experimental data.

Table 2: Estimated rate constants for EGFR 
phosphorylation/dephosphorylation and adaptor 
recruitment

Parameter description Value

Receptor tyrosine 
phosphorylation rates

Residue 992 0.055 (nM × s)-1

Residue 1068 0.055 (nM × s)-1

Residue 1148 0.0063 (nM × s)-1

Residue 1173 0.055 (nM × s)-1

Multiplier when a receptor is 
phosphorylated.

3

Multiplier when a receptor is 
ligand-bound.

2

Receptor tyrosine 
dephosphorylation rates

Residue 992 0.013/s

Residue 1068 0.013/s

Residue 1148 0.0014/s

Residue 1173 0.013/s

Multiplier when ligand is 
removed.

4

Adaptor docking rates

For Grb2 0.0072 (nM × s)-1

For Stat5 0.0055 (nM × s)-1

For PLCγ1 0.00216 (nM × s)-1

For Shc docking to pY1148 0.00936 (nM × s)-1

For Shc docking to pY1173 0.0056 (nM × s)-1

Adaptor dissociation rates

For Grb2 9.34/s

For Stat5 11.74/s

For PLCγ1 21.15/s

For Shc dissociation from 
pY1148

13.39/s

For Shc dissociation from 
pY1173

13.39/s

Kd of adaptor recruitment to EGFR

For Grb2 1.3 μM

For Stat5 2.13 μM

For PLCγ1 9.8 μM

For Shc dissociation from 
pY1148

1.43 μM

For Shc dissociation from 
pY1173

2.4 μM
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Simulation of kinetics of EGFR with its adaptor proteins
The next step was to establish reasonable reaction rate
constants for simulating receptor docking and dissocia-
tion for the same four signaling proteins considered in
Table 1 (Shc, PLCγ1, Stat5 and Grb2). Table 3 presents a
summary of affinities reported in the literature for the
binding of SH2 and PTB domains to their targets. Most
studies provide only an equilibrium dissociation con-
stant, Kd, although single particle tracking methods were
recently used to estimate the multi-state reaction rate
constants between Grb2 and EGFR in A431 cell mem-
brane preparations [32]. Our goal was to arrive at rate
constants consistent with the range of reported values,
but derived by parameter fitting to our own experimental
data sets obtained in A431 cells.

In Figure 3, we report results of three complementary
techniques to evaluate the time course and extent of
recruitment of these four proteins to activated EGFR. Fig-
ure 3A-B demonstrate the use of membrane "rip-flips"
and immunoelectron microscopy to document the
recruitment of Shc to plasma membranes of EGF-treated
A431 cells. In this assay, fixed membranes are incubated
with saturating amounts of anti-Shc primary antibodies,
followed by labeling with secondary antibodies conju-
gated to electron-dense 5 nm gold particles. Results of
Shc recruitment over a time course of EGF stimulation
are reported in the plot in Figure 3C (top), providing the
average number of Shc in a 3 μm2 area of membrane
before correction for an estimated labeling efficiency of
70%. With an approximate surface area of 1256 sq
microns for the whole cell, this translates to about 69,000
Shc molecules associated with A431 membranes at 2 min
of EGF treatment after accounting for underlabelling.
The kinetics of Shc recruitment to the membrane com-
pare favorably with the increase in Shc that coprecipi-
tated with EGFR over the same time course (Figure 3G).
Finally, we used cell fractionation methods to estimate
the fraction of Shc molecules in both membrane and
cytoplasmic pools (Figure 3C, bottom). Extrapolating
from the value of 69,000 Shc on A431 cell membranes at 2
min of EGF, with another 50% in the cytosol, we arrive at
an estimate of 138,000 total Shc in A431 cells. This pro-
cess was repeated for the other 3 proteins (Figures 3D-I),
generating estimated values of 141,000 Grb2, 148,000
Stat5 and 387,000 PLCγ1 per cell.

Rate constants were next derived by parameter fitting
using the Potters Wheel toolbox, building on the parame-
ters established for phosphorylation kinetics in Figure 2.
Because this is an ODE-based approach that assumes a
well-mixed chemical system, the docking rate constants
were multiplied by a scaling factor (f in equation 3) prior
to testing for fitness in our agent-based, spatially hetero-
geneous model. In simulations, the extracellular domain
of the model was populated with 20 nM EGF, the simu-

lated membrane expressed 1592 EGFR, and the intracel-
lular domain contained either 56 Grb2, 55 Shc, 59 Stat5
or 154 PLCγ1. Simulations were run for each of the four
adaptors individually and parameters adjusted to match
the experimental data (Figure 3J-M). The docking and
dissociation rate constants arrived at for each protein
using this computational method are reported in Table 2.
Note that these values are similar to those predicted by
single particle methods [32] but that the dissociation rate
constants are significantly faster than previously used in
deterministic models. As discussed in the context of Fig-
ure 5C, this has a large impact on the spatial simulation
outcome and experimental verification is a priority for
our future work.

Effect of receptor clustering on efficiency of signal 
transduction
To this point, simulations were based on randomly dis-
tributed membrane receptors, with a uniform diffusion
rate of 0.09 μm2/s. However, as shown in Figure 2A-B,
EGFRs are highly clustered on the A431 cell surface. In
our prior work, we developed a membrane compartmen-
talization approach (Protein Islands) to simulate receptor
clustering in membranes [33]. The simulated membrane
is populated with subdomains or islands ranging from in
size from 50 nm2 to 300 nm2 (Figure 4A); the area covered
by these subdomains is determined from EM images.
Receptor agents are assigned with a higher probability to
enter (0.9992) than exit (probability = 0.0008) the islands.
Agents also slow down by a third (diffusion coefficient =
0.03 μm2/s) when they diffuse within the islands and
resume fast diffusion (0.09 μm2/s) when they exit the
islands [33]. To confirm that the simulated data produce
non-random distributions, we utilized the Hopkins test
for clustering. Importantly, results show good agreement
between both simulated data (inset of Figure 4B) and real
images (Figure 2, insets).

Using this approach, we compared the efficiency of
adaptors that are retained on EGFR in the randomly dis-
tributed and clustered topography. Under both condi-
tions, simulations included 20nM EGF, 100 EGFR and
280 Grb2 (equivalent to approximately 50,000 EGFR and
141,000 Grb2 per cell). In the clustered condition, we
compared cluster sizes of 6.57 and 100 receptors per clus-
ter. Figure 4C shows histograms plotting the number of
events where Grb2 docked to another receptor within a
50 second interval after dissociating from a previous
binding event, with comparisons in the three spatial envi-
ronments. Receptor clusters of 100 increase the efficiency
of Grb2 rebinding to a second EGFR by 6 fold, compared
to randomly distributed receptors at this normal expres-
sion level. Overall efficiency of receptor coupling during
the first 60 seconds is markedly higher in the clustered
state (Figure 5B). This is consistent with the concept that
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an adaptor dissociating from a receptor has two possible
outcomes: it can diffuse back into the cytosol or collide
with the membrane. According to this scenario, receptor
clustering creates a local density, increasing the likeli-
hood that the adaptor will collide productively with a
nearby membrane receptor.

Results in Figure 4D show that the increased efficiency
of coupling contributed by receptor clustering would be
obscured if overexpression creates a high overall density
in the membrane. When using conditions applicable to
the highly aggressive A431 cancer cell line (4 million
receptors), plots for docking efficiency are essentially
identical in the random and clustered state. This supports
the hypothesis developed from our previous work that
both receptor density and membrane spatial organization

may be important factors in the carcinogenesis process
[33].

Sharing docking model may suggest more efficient and 
diverse signaling output
In Figure 5A-B, we conclude by examining the frequency
of simultaneous adaptor recruitment to activated EGFR
under conditions of normal (50,000) and high (4,000,000)
levels of receptor expression. Rules for permitted combi-
nations of adaptors and signaling molecules on a single
phosphorylated receptor tail were based upon our
coarse-grained docking approach (Figure 1, Table 1). This
work builds on that described in previous figures, includ-
ing rate constants for docking and dissociation, as well as
phosphorylation/dephosphorylation. The cytosolic simu-
lation space was populated with identical numbers of the

Table 3: Binding constants reported in literature

Binding domain Target Kd Kon Koff Method Reference

SHC PTB EGFR (32 PY peptides) <2 μM Protein microarray & SPRa [26]

EGFR PY1148 peptide 28 nM ITCb [71]

TRK PY490 peptide 42 nM

SHC SH2 EGFR PY1148 peptide NBc SPR [27]

EGFR PY1173 peptide 65 nM

PLCγ1 SH2 EGFR PY peptides <2 μM Protein microarray [26]

PLCγ1 N+C SH2 EGFR PY992 200 nM SPR [28]

EGFR PY1173 740 nM

STAT1,3 SH2 EGFR PY peptides >2 μM Protein microarray [26]

Grb2 SH2 EGFR PY1068 peptide 30 nM SPR [27]

EGFR PY1086 peptide 60 nM

EGFRPY1148 peptide NB

EGFR PY1173-7Y4 NB

EGFR PY992-8Y4 NB

EGFR phosphopeptides <2 μM Protein microarray [26]

Grb2 protein EGFR PY1068 peptide 380 nM ITC, SPR [31]

EGFR PY1068 peptide 713 nM SPR [29]

Activated EGFR in A431 
membranes (fractional)

97-650 nM 0.016/nM/s (78%) 7.5-8.1/s (89%) Single molecule analysis [32]

0.005/nM/s (21%) 1.6-2.6/s (<11%)

0.0022/nM/s (1%) 0.07-0.4/s (<5%)

p85 N-SH2 PDGFR PY315 peptide 300 nM ITC, SPR [72]

p85 2 SH2 IRS-1 PY 0.3-3.0 nM 0.03-0.4/nM/s 0.11-0.19/s SPR [73]

Src SH2 (YMXM) peptides 
polyoma middle tumor 
antigen

600 nM ITC [74]

Lck SH2 Lck Y505 peptide 4 μM ITC, SPR [72]

EGFR C-terminus 5 μM ITC [74]

aSPR = Surface Plasmon Resonance, bITC = Isothermal Titration Calorimetry, cNB = No binding
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four signaling proteins (56 Grb2, 55 Shc, 59 Stat5, and
154 PLCγ1), while receptors varied from 20 (representing
50,000 receptors in the whole cell) to 1592 (4 million
receptors/cell, as in A431 cells) for the case of random

topography. To simulate clustered topography for the
normal case of 50,000 receptors/cell, the simulation space
was expanded 5-fold, with a corresponding increase in
receptors and adaptors to match the new cellular volume

Figure 3 Analysis and simulation of the reaction kinetics between the four adaptors and EGFR. (A-B) Membrane sheets were prepared from 
serum-starved, batimastat-treated A431 cells without (A) or with EGF stimulation (B). Sheets were labeled with 5 nm gold reagents recognizing Shc. 
Circles in (A, B) highlight Shc label on these membranes. Bars, 0.1 μm. (C-F) Quantitative values of Shc, Stat5, PLCγ1, and Grb2 immunogold labeling 
on 3 μm2 area of membrane, reported as an average of at least 10 membranes. Blots in C-F show results of fractionation experiments, where crude 
cytosol and membrane fractions were prepared, proteins separated by SDS-PAGE and membranes blotted for Shc, Stat5, PLCγ1 and Grb2. In (G-I), 
blots report co-precipitation of Shc, Stat5 and PLCγ1 with EGFR over a time course of EGF stimulation. Bands were quantified by densitometry and 
plotted as density of the bands. In (J-M), simulations of reaction kinetics between the four adaptors and EGFR using experiment-fitted values produce 
results (black solid line) similar to experimental data (grey dashed line).
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representation. For each level of receptor, we compared
results based upon the "sharing" docking model with
results generated using a "competing" docking model. In
the latter case, occupancy of a receptor tail at any given
time step excluded another signaling protein or adaptor
from binding to the same tail.

Simulation results in Figure 5A-B are intriguing in that
they predict that the capability for "shared" docking does
not significantly affect overall recruitment of adaptors,
even in simulations using high density of receptors (either
through clustering or overexpression). This result is intu-
itive in the case of EGFR overexpression, where the num-
ber of receptors is five times that the total number of the

Figure 5 Comparison of the sharing and competing docking models. Simulations in (A-B) used the parameter values fitted to A431 cells data, 
while simulations in (C) used Kholodenko's parameter values [36]. (A) Results of simulations show similar number of adaptors docked to EGFR at steady 
state, when receptors are overexpressed and clustered. (B) Results of simulations for sharing and competing models at steady state, when receptors 
are at normal expression levels (50,000 receptors/cell) and either clustered or random. Receptor clustering increases the efficiency of adaptor retain-
ment to EGFR, but sharing does not contribute further efficiency. (C) Results show that use of slow dissociation rates produces a dramatic increase in 
the shared docking of adaptors on EGFR tails, simulated for 50,000 clustered receptors in the spatial-stochastic model.
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four adaptors (Figure 5A). This result was initially unex-
pected in the case where receptors fall well below the
level of adaptors (50,000 receptors/cell, Figure 5B). How-
ever, this is explained by the prediction that the shared
docking model should be profoundly dependent upon the
rate constants applied in the simulation for dissociation of
proteins from EGFR. This is illustrated in Figure 5C,
where we substituted our docking and dissociation rate
constants for Grb2, Shc and PLCγ1 with those of
Kholodenko's model [36]. For Stat5, we substituted the Kd
estimated by Shao et al for docking of Stat3 to the phos-
phododecapeptide Y1068 [51]. The simulations had 20
receptors in clustered topography in the simulated space
(50,000 receptors per cell), 20nM EGF and the same

numbers of the four adaptors as before. Figure 5C shows
that use of these slower dissociation rate constants results
in very large differences in total numbers of adaptors
recruited using the two docking models. There are up to
7.5-fold increases in adaptors docked to EGFR at steady
state using the sharing model, compared to the competi-
tive model. If the dissociation rate of proteins bound to
EGFR is slow, the formation of large complexes on the
EGFR tail is likely to be a frequent event.

Discussion
In this work, we apply agent-based, stochastic model to
investigate mechanisms of adaptor proteins recruitment
to EGFR as functions of time, receptor conformation,

Figure 4 Effect of receptor clustering and density on efficiency of adaptor containment near the membrane. (A) Illustration of particles diffus-
ing in and out of preferred domains or islands. Colored traces show 10 second trajectories of 3 diffusing EGFR particles. Receptors have greater prob-
ability to enter preferred domains, where they diffuse 3x slower. When outside of domains, particle diffusion is unconstrained. (B) Particles are 
clustered at every time step when diffusion is governed in silico by the domain approach. Inset shows results of Hopkins test, confirming clustering is 
significant. Plots in (C) show that receptor clustering increases the efficiency of Grb2 retainment to EGFR at normal levels of expression (50,000/cell). 
The frequency of Grb2 docking to another receptor after dissociating from a previous binding event is low when receptors are in the randomly dis-
tributed (black line). Increasing receptor cluster size increases the efficiency of adaptor containment near the membrane (grey solid line, 6.57 recep-
tors/cluster; grey dashed line, 100 receptors/cluster). In contrast, if EGFR is overexpressed the plots (D) show no difference in Grb2 rebinding.

Random

Clustered
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density and spatial distribution. Unique features include
the inclusion of docking rules to consider the problem of
combinatorial complexity and the consideration of cell
membrane heterogeneity. Parameter values used in the
model were estimated by fitting to our own western blot-
ting and immunoelectron microscopy data from A431
cells, which provide evidence of distinct phosphorylation
kinetics for different EGFR tyrosine residues and distinct
behavior for adaptors recruited to phosphorylated recep-
tors. Previous models for studying ErbB receptor signal-
ing represented all tyrosine residues as a single 'virtual
phosphorylation site' and assumed competition among
cytoplasmic adaptors for receptor binding [34,36-39].
The rule-based model of Blinov et al [35] can account
more fully for potential molecular diversity; however, like
others it is a differential equation model that cannot well
describe cell surface heterogeneities, such as microdo-
mains [52] or anomalous diffusion of surface receptors
[53].

Our experimental data for resting cells were derived
from serum-starved and batimastat-treated A431 cells,
conditions that control for serum factors or autocrine
stimulation (by shedding of EGFR ligands). It is notable
that, at t = 0, there are already detectable levels of EGFR
tyrosine phosphorylation and adaptors docked to EGFR
(Figure 2). We hypothesize that these are contributed
from the ligand-independent EGFR dimers as observed
by many groups [33,40,49,54-57]. Therefore, we made
some assumptions when quantifying the western blotting
data of receptor tyrosine residues phosphorylation: First,
the observed phosphorylation at resting is entirely con-
tributed from transient dimers formed by encounters
between conformationally fluxing receptors. This process
is density dependent and estimates of these "constitutive"
and unstable dimers in A431 cells range from 5% [58] to
14% [49]; we use the latter value for our simulations. Sec-
ond, we assume that the rise in tyrosine phosphorylation
is equivalent in both receptors within the dimers that
form (60% participation at peak values after treatment
with 20 nM EGF). This may be an overestimate, since it is
unknown whether both tails in the asymmetric dimer
[45] are equally capable of phosphorylation. Indeed, there
is evidence that receptor phosphorylation achieves values
of only 10-35% in mammary epithelial cells [59], which
would be consistent with unequal transphosphorylation
by the two kinases in an EGFR homodimer. We also
ignored internalization of receptors in the present work,
although we acknowledge that this may be a component
of the "fast" and "slow" kinetics for the four tyrosine resi-
dues whose phosphorylation kinetics we studied. The
deterministic models of Wiley [38,60] and Kholodenko
[34] have considered the importance of EGFR endocyto-
sis, particularly in the contexts of dimer composition and
EGFR mutations, and we anticipate adding this feature to

the SPS simulation model as we learn additional molecu-
lar details about the kinetics and docking characteristics
of AP2 and clathrin recruitment.

Based upon parameter fitting, we estimated that the
association (kon) and dissociation (koff) rate constants
between Grb2 and EGFR are 0.0072 (nM × s)-1 and 9.34/s,
respectively. Remarkably, these values are very close to
the reported rate constants measured by single-molecule
analysis (kon = 0.0022-0.016 (nM × s)-1; koff = 7.5-8.1/s) in
the same cell line [32]. We assumed that Shc PDB domain
is the predominant means for recruitment to the EGFR,
with pY1148 as a preferred site and pY1173 as the second-
ary binding site [61,62]. We arrived at estimated parame-
ter values for Shc to these two sites, with a higher kon for
pY1148 (= 0.00936 (nM × s)-1) than pY1173 (= 0.0056
(nM × s)-1) and the same koff (13.39/s) for both. The esti-
mated Kd values of adaptor interactions with EGFR in our
studies are of the order of 1 μM (Table 2), and these val-
ues are close to those in recent reports [26,32]. This rela-
tively low affinity is consistent with the estimates that koff
is large, and kon is small, such that adaptors can form
complexes with EGFR and still can rapidly dissociate to
limit signaling duration (Grb2/Shc) or propagate signals
(Stat5, PLCγ). In this context, receptor clustering would
promote rebinding to another active EGFR and provide a
mechanism to enhance signaling efficiency despite high
dissociation rates (Figure 4 and 5) A high overall density
of receptors, typical of cancer cells that overexpress
EGFR, also creates conditions of enhanced signaling effi-
ciency.

It is important to note that, although simulations with
these values agree well with the experimental observa-
tions, they are up to 100 fold higher (ie., lower affinity)
than Kd estimates based upon the binding properties of
recombinant SH2 domain and PDB domain to target
phosphopeptides (see Table 3 and references therein).
This is potentially due to "multi-state" interactions
between intact receptors and adaptors, as suggested for
EGFR-Grb2 interactions measured by single-molecule
analysis [32]. Thus, we caution that the estimated reac-
tion rate constants in this work served solely as references
for stochastic modeling. More precise rate constants
need to be determined based upon novel experimental
techniques for measuring binding between intact mole-
cules in a biological context. As shown in Figure 5, the
reaction rates have a large impact on the potential for
assembly of large complexes on the EGFR tail. If dissocia-
tion rates are fast, combinatorial complexity will be low. If
dissociation rates are slow, there is much greater chance
for a single EGFR tail to recruit multiple signaling com-
ponents where permitted by the constraints of steric hin-
drance.
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To our knowledge, this is the first attempt to try to
establish rules for simultaneous or competitive docking
of adaptors to phosphorylated receptor tails, followed by
application of these rules in simulations of single mole-
cule behavior. To accomplish this, we relied upon coarse-
grained docking predictions. These methods incorporate
information about known or predicted structural
domains, using homology and protein structure predic-
tion methods. Domains were linked together by an
approach previously applied to modeling of large RNA
[63]. Each coarse-grained protein structure was then
docked, alone or in combination with the other adaptors,
to a flexible C-terminus tail of EGFR based upon their
shape complementary using PatchDock. The predicted
rules are summarized in Table 1. This inexact approach
provided several useful exclusionary rules for testing by
simulation. For example, PLCγ1 appears to be sufficiently
large that two cannot dock to a single receptor tail,
despite the availability of 2 distinct binding sites. PLCγ1
docked at pY1173 likely also prevents Shc docking on the
same receptor. We emphasize that the limitations of the
coarse grain approach raise many uncertainties about
these rules. In addition, there are many unknowns related
to the asymmetric model of EGFR dimer, particularly the
assumption that both kinases in the dimer become acti-
vated by conformational switching [45]. All of these
assumptions point to the need for additional experimen-
tal validation in order to develop more accurate models.

Conclusions
Mathematical modeling is most useful when it suggests
new priorities for coupling of experimentation and simu-
lation. From this work, we identify several areas for future
development. First, we seek new insight into the mecha-
nisms that drive receptor clustering and microdomain
formation. Our simulation results suggest that, when
clustering is introduced, adaptors are retained more read-
ily at the plasma membrane. We predict that this effi-
ciency would increase as the receptor cluster size
increases (Figure 4C and 5B). At "normal" receptor
expression levels, receptor clustering should create high
local density and enhance the probability that dissociated
adaptor proteins collide quickly with another receptor.
However, simulations also suggest that overexpression of
receptors have the same effect as receptor clustering, pre-
sumably because an overall high density of receptors
improves the chances for dissociating adaptors to rebind.
This supports the prediction from our previous work that
both receptor density and membrane spatial organization
contribute to the carcinogenesis process [33]. Second, the
coarse-grained docking results suggest that simultaneous
adaptor docking to a single receptor should be possible
but that the significance of this possibility is highly
dependent upon the stability of receptor-adaptor com-

plexes. Related to this is the need for accurate rate con-
stants for receptor-adaptor complexes. We propose that
this effort should take precedence over attempts to con-
firm the coarse grain docking results, since the problem
of combinatorial complexity appears to be minimized if
the lifetime of receptor-adaptor binding is short. The SPS
platform is applicable to modeling these early signaling
events and offers capabilities for extending cascades
through the cytoplasm and nucleus. It should also be
readily adaptable to other protein assembly problems in
cells that rely on diffusion and conformational switches.
It can explicitly consider aspects of membrane heteroge-
neity, combinatorial complexity and hierarchy of adaptor
binding.

Methods
Computational Methods
Coarse-grained Protein Modeling
Our primary goal was to 1) approximate the size and gen-
eral shape of the EGFR tail and four of its docking part-
ners and 2) use this information to arrive at reasonable
predictions of combinations that might be accommo-
dated on the EGFR tail simultaneously. The first step was
to account for known domain structures within each pro-
tein, using SWISS-MODEL for automated homology-
based modeling. This approach relies on sequence rela-
tionships of protein domains with one or more of known
structure. Core models for individual domains (SH2,
PTB, PH, etc) were based upon structural templates [64].
Next, protein prediction methods were used to build
regions of the structure not available from the templates.
These methods combine machine learning methods, evo-
lutionary information in the form of profiles, fragment
libraries extracted from the Protein Data Bank (PDB)
[65], and energy functions to predict protein structural
features. The protein structure predictors used in this
work were 3Dpro from Scratch [66], MaxSprout [67] and
I-TASSER [68]. 3Dpro predicts protein tertiary structure
and outputs PDB files as a Carbon Alpha trace. Max-
sprout was used to add backbone and side chain coordi-
nates to obtain an all-atom model. I-TASSER combines
both template-based and template-free modeling
approaches. All the servers used in this work have been
evaluated by the CASP (Critical Assessment of Structure
Prediction) experiment [69]. The overall protein struc-
ture was then generated by linking these models of sub-
domains together by the software, Insight II http://accel-
rys.com/products/insight/, using an approach similar to
that of [63] for modeling large RNA 3D structure. Patch-
Dock [44] was then used to simulate docking of two or
more structures. No claim is made regarding the accu-
racy of these predicted structures.

The PDB files of all the predicted protein structures are
available upon request. Brief strategies for each structure

http://accelrys.com/products/insight/
http://accelrys.com/products/insight/
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follow: 1) For the EGFR tail, the target sequence (L1001
to A1210) was imported into SWISS-MODEL and the
First Approach Mode was performed without preselected
template files. The resulting 3D model structure contains
one domain (A1118 to F1176) built with 1F4H as tem-
plate structure (37% identities) and has missing
sequences from L1001 to P1117 and from F1177 to
A1210. These two sequences, with additional amino acids
for linking (L1001 to V1133 and L1167 to A1210), were
then modeled by 3Dpro and MaxSprout and were linked
to the domain obtained from SWISS-MODEL by Insight
II. The full-length c-terminal of EGFR was then linked to
the asymmetric model of the kinase domains of EGFR
dimer by Insight II. 2) Shc is a 583-amino acid protein,
and the crystal structure of two domains of Shc (M111 to
R317 and Q482 to L583) has been solved (1MIL and
1N3H). The protein structure prediction of the two miss-
ing sequences was performed with 3Dpro and Max-
sprout. Insight II was then used to link these two models
with 1MIL and 1N3H together. 3) Stat5 is 794 amino acid
residues long and majority of its crystal structure has
been solved (1Y1U: S138 to A690). The missing
sequences with additional amino acids for linking, from
M1 to E150 and from K681 to S794, were modeled by the
protein structure predictor, 3Dpro and MaxSprout. The
resulting model structures were then linked to 1Y1U by
Insight II. 4) PLCγ1 is composed of 1290 amino acids and
the crystal structure of its SH3 domain has been solved
(1HSQ: 790 to 851). I-TASSER was used to model the two
missing sequences (M1 to F800 and F841 to L1290), and
the resulting model structures were linked to 1HSQ by
Insight II. Grb2 has most of its crystal structure solved
with one small missing sequence from L28 to D33. The
full Grb2 was modeled by the first approach mode of
SWISS-MODEL and the template was the known struc-
ture of Grb2 itself (1GRI).
Parameter-fitting
We used a Matlab parameter-fitting toolbox, Potters-
Wheel [50], which provides interactive modeling includ-
ing multi-experiment fitting with highly optimized model
integration. An ODE (ordinary differential equations)
model was first derived to represent features of the EGFR
network. Experimental data was then imported and fit to
the data by automatically or manually adjusting model
parameters to optimize matching between model trajec-
tory and experimental data points [50]. This strategy was
used to determine the phosphorylation rate constant and
the dephosphorylation rate constant for tyrosine residues
992, 1068, 1148 and 1173), using the following ODE
series:

d(L)/dt = -1*k1*R*L + k2*RL;
d(R)/dt = -1*k1*R*L + k2*RL -2*k3*R*R + 2*5*k4*RR -

k3*RL*R + k4*RLR;

d(RL)/dt = -1*k3*RL*R + k4*RLR - 2*k3*RL*RL +
2*k4*RLRL + k1*R*L - k2*RL;

d(RR)/dt = k3*R*R - 5*k4*RR - k1*RR*L + k2*RLR -
k5*RR + 4*k6*pRR;

d(RLR)/dt = k3*RL*R - k4*RLR - k1*RLR*L + k2*RLRL -
2*k5*RLR + k6*pRLR;

d(RLRL)/dt = k3*RL*RL - k4*RLRL + k1*RLR*L -
k2*RLRL -2*k5*RLRL + k6*pRLRL;

d(pRR)/dt = k5*RR - 4*k6*pRR - 3*k5*pRR + 4*k6*pRpR;
d(pRLR)/dt = k5*RLR - k6*pRLR - 2*3*k5*pRLR +

k6*pRLpR;
d(pRLRL)/dt = 2*k5*RLRL - k6*pRLRL - 3*2*k5*pRLRL

+ k6*pRLpRL;
d(pRpR)/dt = 3*k5*pRR - 4*k6*pRpR;
d(pRLpR)/dt = 2*3*k5*pRLR - k6*pRLpR;
d(pRLpRL)/dt = 3*2*k5*pRLRL - k6*pRLpRL;
where k1 is the ligand binding rate constant (=

0.00000331 (# × sec/simspace)-1, fixed), k2 is the ligand
dissociation rate constant (= 0.004/s, fixed), k3 is the
dimerization rate constant (= 0.014 (# × sec/simspace)-1,
fixed), k4 is the dimer dissociation rate constant (= 0.01/s,
fixed), k5 is the phosphorylation rate constant (= 0.01 (# ×
sec/simspace)-1 initially), and k6 is the dephosphorylation
rate constant (= 0.005/s initially). L is the number of
ligands in the simulated system (= 780, fixed), and R is the
number of receptors in the simulated system (= 1592,
fixed). LR is the number of ligand-bound monomer, RR is
the number of ligand-free dimer, pRR is the number of
dimers that have only one phosphorylated receptor, pRpR
is the number of dimers of which both receptors are
phosphorylated, and so on. The initial number of these
complexes is set to be zero in the model. The rate con-
stants of ligand binding, dissociation and receptor
dimerization as well as the reaction rate multiplier came
from Shankaran's model [39](Table 2). The simulated
space, simspace, represents ~1/2512 of a typical epithelial
cell. In the model, 1 (# × sec/simspace)-1 equals to 0.72
(nM × s) -1 based on the assumption that the cytoplasmic
water volume of a cell is 3 × 10-12 l [36]. The ODE model
was loaded into PottersWheel, and k5 and k6 of each
tyrosine residue are estimated by fitting to the corre-
sponding western blotting data (Figure 2F and 2H) both
automatically and manually to avoid being trapped in the
local optimum.

We also used this approach to estimate the parameters
for binding of the four adaptor proteins (Shc, Grb2, Stat5,
and PLCγ1) to target tyrosine residues. The ODE series
for parameter-fitting was:

d(L)/dt = -1*k1*R*L + k2*RL;
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d(R)/dt = -1*k1*R*L + k2*RL -2*k3*R*R + 2*5*k4*RR -
k3*RL*R + k4*RLR;

d(RL)/dt = -1*k3*RL*R + k4*RLR - 2*k3*RL*RL +
2*k4*RLRL + k1*R*L - k2*RL;

d(RR)/dt = k3*R*R - 5*k4*RR - k1*RR*L + k2*RLR -
k5*RR + 4*k6*pRR;

d(RLR)/dt = k3*RL*R - k4*RLR - k1*RLR*L + k2*RLRL -
2*k5*RLR + k6*pRLR;

d(RLRL)/dt = k3*RL*RL - k4*RLRL + k1*RLR*L -
k2*RLRL -2*k5*RLRL + k6*pRLRL;

d(pRR)/dt = k5*RR - 4*k6*pRR - 3*k5*pRR + 4*k6*pRpR -
1*k7*pRR*AP + k8*pRRAP;

d(pRLR)/dt = k5*RLR - k6*pRLR - 2*3*k5*pRLR +
k6*pRLpR - 1*k7*pRLR*AP + k8*pRLRAP;

d(pRLRL)/dt = 2*k5*RLRL - k6*pRLRL - 3*2*k5*pRLRL
+ k6*pRLpRL - 1*k7*pRLRL*AP + k8*pRLRLAP;

d(pRpR)/dt = 3*k5*pRR - 4*k6*pRpR - 1*k7*pRpR*AP +
k8*pRpRAP;

d(pRLpR)/dt = 2*3*k5*pRLR - k6*pRLpR -
1*k7*pRLpR*AP + k8*pRLpRAP;

d(pRLpRL)/dt = 3*2*k5*pRLRL - k6*pRLpRL -
1*k7*pRLpRL*AP + k8*pRLpRLAP;

d(AP)/dt = -1*k7*pRR*AP + k8*pRRAP - 1*k7*pRLR*AP
+ k8*pRLRAP - 1*k7*pRLRL*AP + k8*pRLRLAP -
1*k7*pRpR*AP + k8*pRpRAP - 1*k7*pRLpR*AP + k8*pRL-
pRAP - 1*k7*pRLpRL*AP + k8*pRLpRLAP;

d(pRRAP)/dt = -1*k8*pRRAP + k7*pRR*AP;
d(pRLRAP)/dt = -1*k8*pRLRAP + k7*pRLR*AP;
d(pRLRLAP)/dt = -1*k8*pRLRLAP + k7*pRLRL*AP;
d(pRpRAP)/dt = -1*k8*pRpRAP + k7*pRpR*AP;
d(pRLpRAP)/dt = -1*k8*pRLpRAP + k7*pRLpR*AP;
d(pRLpRLAP)/dt = -1*k8*pRLpRLAP + k7*pRLpRL*AP;
where k7 is the docking rate constant (= 0.01 (# × sec/

simspace)-1 initially), k8 is the rate constant of adaptor
proteins dissociated from a receptor (= 0.005/s initially),
and the values of k5 and k6 of a tyrosine residue are deter-
mined from the previous fitting and are fixed here. AP is
the number of adaptor proteins in the simulated space
which is determined from experimental data and was
estimated to be 56 for Grb2, 55 for Shc, 59 for Stat5 and
154 for PLCγ1. pRLRAP is the number of adaptor pro-
tein-bound dimer of which one receptor is ligand-bound
and the other receptor is phosphorylated, and so on. The
experimental data points used for parameter fitting were
derived by converting the values obtained by immuno-
electron microscopy for a 3 μm2 area, as shown in Figure
3C-F, to corresponding values in our 0.49 μm2 simulated
space. The rate constants of adaptor proteins docking and
dissociation are estimated by adjusting k7 and k8 to mini-

mize the distance between the model trajectory (sum of
the adaptor protein-bound dimer; i.e. 'pRRAP + pRLRAP
+ pRLRLAP + pRpRAP +pRLpRAP + pRLpRLAP') and
the experimental data points. Rate constants derived by
this method are reported in Table 2.
The Signaling Pathways Simulator
The agent-based, stochastic simulator was previously
described [33]. In brief, the 3D simulation space is com-
posed of an extracellular domain, plasma membrane and
cytosol. In this work, ligands were simulated as a single
concentration; however SPS can also treat ligands as indi-
vidual species. Proteins in the 2D membrane and 3D
cytosolic space are represented by sphere-like particles
with a radius determined from experimental data and
their coarse-grained molecular models. At each time step
(typically 25 μs), these particles diffuse and have the
potential to react with neighbors. SPS is designed for
flexible model development and deployment by a modu-
larized and rule-based approach. It tracks the individual
reactions of multistate molecules and accommodates
complex situations.
Modeling bio-reactions between EGFR and its adaptor 
proteins
Dimerization of receptors leads to kinase activation and
transphosphorylation of the tyrosine residues on the
cytoplasmic tails of the receptors. These phosphotyrosine
resides then provide scaffold for various signaling mole-
cules. In the model, the probabilities of phosphorylation
and dephosphorylation of a tyrosine residue of EGFR are
computed by the following two equations, respectively,

and

where kon is the phosphorylation rate constant, koff is the
dephosphorylation rate constant (different tyrosine resi-
dues have different phosphorylation and dephosphoryla-
tion rates) and Δt is the time step.

To model the biochemical interactions between EGFR
and its adaptor proteins, the first step was to derive the
probability, p(*,Δt | r), that two particles that are r dis-
tance from each other in three dimension, become a
complex after time step, Δt, given that they can react with
reaction rate constant, ka, and their diffusion coefficients
are D. A similar scheme to that in our previous work [33]
was used to derive this probability function of 3D reac-
tions as shown below,

P k tphosphorylation on= −1 exp( )Δ (1)

P k tdephosphorylation off= −1 exp( )Δ (2)
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where ka in this case is a diffusion-limited reaction rate
constant, V is the volume of the spatially homogeneous
chemical system of interest, and f is a scaling factor used
to match the well-mixed chemical system to our agent-
based spatially heterogeneous model. Its values are
approximated by matching the simulation results with
the western blotting and EM experimental data (Figure 3J
to 3M) and are approximated to be in the range of 10,000
to 30,000 for our modeling of EGFR-adaptor protein bio-
reactions.

The distance factor, DistFac3D(r), is the probability of
collision of two particles during time step,, given that
they start a distance r apart in three dimensions. It is
introduced to account for membrane heterogeneities and
was derived by simulations by SPS. In the simulation, two
sphere-like particles whose diameter is 10 nm are placed
in three dimensions at a distance r apart initially. One
particle is set to be stationary while the other one under-
goes Brownian motion in three dimensions with D = 100
μm2/s. The value of r is ranged from 10 nm to 100 nm.
The time step is set to be 5 ns, and the simulation is 25 μs
long. For a given r, the simulation was run for 100 times.
Another set of simulations was run with the same settings
as described above except that the freely diffusing particle
diffuses at D = 50 μm2/s instead. For a given r, the simula-
tion was run for 100 times. If out of 100 simulations,
there are p instances where the two particles collide, then
the probability of two particles collide within 25 μs given
that they start a distance r apart is p/100. Supplemental
Figure 1 (see Figure S1 in Additional file 1) shows the
relation of the probability of collision with the distance
between the two particles at different D (circles: D = 50
μm2/s; stars: D = 100 μm2/s). The 3D distance factor is
derived by fitting an equation to the data shown in sup-
plemental Figure S1 (Additional file 1). A modified and
normalized Popov and Agmon's function (equation (4)
and (5)) fits the data well and is determined to be the 3D
distance factor. Supplemental Figure S1 (Additional file 1)
shows that the function fits to the probabilities of colli-
sion for 50 μm2/s ≤ D ≤ 100 μm2/s (solid line: D = 50 μm2/
s; dashed line: D = 100 μm2/s) and is good for modeling
bio-reactions in the cytosol where particles usually dif-
fuse at a diffusion coefficient within this range.

where r is the distance between the two particles, D is
the diffusion coefficient, a is the particle's diameter, is the
time step, i, j, and k are different numbers from the set {1,
2, 3},

and the's are the roots of the cubic equation

where ka is the association rate constant and kd is the
dissociation rate constant, neither of which plays a role in
DistFac(r) after normalization in equation (5).

The probability of docking is then computed by the
equation (3) to (9) where the docking rate constant, ka,
was determined by parameter fitting to the experimental
data (Figure 3J to 3M). Different adaptor proteins dock to
tyrosine residues (binding sites) of a EGFR tail with dif-
ferent docking rate constants, they also dissociate from
the EGFR tail with different exclusion rate constants. The
probability of exclusion is converted from the exclusion
rate constant, ke, by the equation as followed,

The diameters and the diffusion coefficients of the four
adaptor proteins of EGFR (parameter a and D in equa-
tions (4) to (9)) are determined as follows: the diameters
of the four adaptor proteins, Grb2, Shc, PLCγ1, and Stat5,
are determined from their protein modeling and are
determined to be 6 nm, 11 nm, 11.5 nm, and 15.5 nm,
respectively. It has been suggested that the diffusion coef-
ficient of molecules, D, is related to the molecular weight,
M, by the relation, [70]. The molecular weight of Grb2,
Shc, PLCγ1, and Stat5 are 25 kDa, 50 kDa, 145 kDa, and
80 kDa, respectively http://www.ncbi.nlm.nih.gov/.
Assuming the diffusion coefficient of Grb2 to be 100
μm2/s [32], the diffusion coefficients of Shc, PLCγ1, and

p t r DistFac D r f k t Va(*, | ) ( ) /Δ Δ= × ×3 (3)

PA r
r

i
j i k i

W D tD

i

i3

1

3
1

( )
( )( )

( , ),=
− −

× −
=
∑ g

g g g g
r g Δ

(4)

DistFac D r
PA D r
PA D a

3 3
3

( )
( )
( )

= (5)

W x y xy y erfc x y( , ) exp( ) ( ),≡ + +2 2 (6)

r = −( ) / ,r a D t4 Δ (7)

Da D k k ak ka D d dg g g3 21 0+ + + + =( / ) , (8)

k DaD ≡ 4p (9)

P k texclude e= − −1 exp( )Δ (10)

http://www.ncbi.nlm.nih.gov/
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Stat5 can then be derived and are approximated to be 80,
56, and 68 μm2/s, respectively.

Diffusion
Diffusion of cytoplasmic proteins is simulated by Brown-
ian motion while diffusion of receptor agents in the mem-
brane is based upon the Constrained Brownian Motion
Algorithm [33]. In CBM, overlap between two molecules
is not permitted; this is the basis for modeling ligand-
receptor, receptor-receptor, and receptor-adaptor protein
bio-reactions. The algorithm is a modification of the Gil-
liespie's approach and is summarized as follows:

Assume a receptor agent (which could be in a dimer)
has m neighbors, n of which are its binding partners (i.e.
m ≥ n ≥ 0), and the probabilities of the reactions between
the agent and these binding partners are P1, P2... and Pn,
respectively. Also assume that the receptor agent has p
binding sites for adaptor proteins, and the probabilities of
phosphorylation of each of these sites are prob_phos1,
prob_phos2...and prob_phosp, respectively. Similarly, the
probabilities of dephosphorylation of these sites are
prob_dephos1, prob_dephos2...and prob_dephosp, respec-
tively. If the binding site, j, has an adaptor proteins
docked to it already, the adaptor protein can be excluded
from the site with a probability, prob_excludej (1 ≤ j ≤ p).
The functions in the simulator used to calculate these
probabilities are defined such that prob_phos1,
prob_phos2 to prob_phosp = 0 if the receptor agent is a
monomer. Besides, prob_dephosj = 0 if the binding site, j,
is not phosphorylated yet or if the site has an adaptor
protein docked to it already. Moreover, Pi = 0 for the
receptor agent's neighboring adaptor protein, i, to dock to
a binding site that is not phosphorylated or to a phospho-
rylated site that is already occupied. In addition,
prob_excludej = 0 if the site, j, has no adaptor protein
docked to it yet. The receptor agent (which could be in a
dimer) also has probabilities to bind ligands (Pbinding) or to
dissociate (Pdissociation). Thus, the probability of no reac-
tion occurring at a time step equals to,

The probabilities of reactions are then scaled by

, denoted as S. S is defined such that the sum of all proba-

bilities of reactions scaled by S equals to (1- PNR), which is

the probability of one reaction occurring. A random

number, X, between 0 and 1 is generated to select an

event for the receptor agent during the time step, permit-

ting a specific bio-reaction to occur or else the agent

undergoes constrained Brownian motion.

Experimental Methods
Cell treatments and western blotting analysis
A431 cells were obtained from ATCC and cultured
according to ATCC recommendations. Epidermal growth
factor (EGF) was from Biomedical Technologies (Stough-
ton, MA). Prior to experimentation, cells were incubated
for 3 hrs in serum-free medium with or without batimas-
tat (a gift of P. McGuire, UNM), followed by lysis in ice
cold 1% NP-40 buffer (150 mM NaCl, 50 mM Tris/HCl
pH 7.2 with protease inhibitors). Protein concentrations
in clarified lysates were measured using the BCA protein
assay (Pierce, Rockford, IL). Supernatants were mixed
with 6x sample buffer. Proteins were separated by SDS-
PAGE and transferred to nitrocellulose. Membranes were
blocked and sequentially probed with primary and HRP-
conjugated secondary antibodies. EGFR antibodies were
from Santa Cruz (La Jolla, CA) and phosphotyrosine-spe-
cific EGFR antibodies were from Cell Signaling (Beverly,
MA). Shc antibodies were from BD Bioscience (Los
Angeles, CA), PLCγ1 antibodies were from Millopore
(Bedford, MA), and Stat5 and Grb2 antibodies were from
Santa Cruz (Santa Cruz, CA). Immuno-reactive bands
were detected by enhanced chemiluminescence (Pierce)
and their intensity digitally analyzed following densitom-
etry using MultiGauge software.
Preparation of plasma membrane sheets and gold labeling 
for TEM
Methods for labeling proteins membrane sheets are
described in Yang et al [41]. Cells were grown on glass
coverslips, treated as described in legends, then fixed in
0.5% PFA for 10 min. Coverslips were inverted onto EM
grids (glow discharged, formvar and poly-L-lysine
coated) and ripped to leave plasma membranes on the
grid, cytoplasmic face up. After fixation (2% PFA, 20
min), grids were incubated sequentially with primary
antibodies and gold-conjugated secondary antibodies.
Samples were post-fixed with 2% glutaraldehyde, stained
with tannic acid and examined using a Hitachi H-7500
transmission electron microscope (TEM) equipped with
a 6.8 megapixel digital camera. A customized plugin for
ImageJ was used to acquire positions of gold particles and
clustering was analyzed using the Hopkins spatial statistic
[48].
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Cytosol/membrane fractionation
Cells were serum starved for 3 hours in the presence of
batimastat, followed by EGF stimulation as indicated in
legends. Reactions were halted by transfer to 4°C and
rinsing with cold PBS. Cells were scraped off and briefly
sonicated; intact cells and debris were sedimented by
microcentrifugation (10 minutes). Supernatants were
subjected to ultracentrifugation (100,000 g, 1 hr, 4°C) to
yield membrane and cytosol fractions. Membrane pellets
were dissolved in cold NP-40 lysis buffer. Protein concen-
trations in fractions were determined by BCA assay
(Pierce) to normalize samples prepared for SDS-PAGE.
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