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Abstract
Background: Over the last few years a number of methods have been proposed for the phenotype simulation of 
microorganisms under different environmental and genetic conditions. These have been used as the basis to support 
the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the 
use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, 
therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.

Results: OptFlux is an open-source and modular software aimed at being the reference computational application in 
the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering 
targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock 
algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and 
mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory 
on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a 
set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.

OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at
reducing the search space for optimization algorithms.

The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard.
OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout
information of Cell Designer, allowing the superimposition of simulation results with the model graph.

Conclusions: The OptFlux software is freely available, together with documentation and other resources, thus bridging 
the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in 
the field that have available a number of useful tools. Its open-source nature invites contributions by all those 
interested in making their methods available for the community.

Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being 
developed, including network topology analysis tools and the integration with Boolean network based regulatory 
models.

Background
Metabolic Engineering (ME) deals with designing organ-
isms with enhanced capabilities regarding the productivi-
ties of desired compounds [1]. This field has received
increasing attention within the last few years, due to the
extraordinary growth in the adoption of white or indus-

trial biotechnological processes for the production of
bulk chemicals, pharmaceuticals, food ingredients and
enzymes, among other products [2,3].

Many different approaches have been used to aid in ME
efforts, taking available models of metabolism together
with mathematical tools and/or experimental data to
identify metabolic bottlenecks or targets for genetic engi-
neering. Some of these techniques, like Metabolic Con-
trol Analysis (MCA), use dynamical representations of
the metabolism, while others like Metabolic Flux Analysis
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(MFA) or Flux Balance Analysis (FBA) apply steady-state
stoichiometric models to study the phenotype of micro-
organisms, under different environmental and genetic
conditions (a thorough description of these techniques
can be found for example in [1]).

Also based on stoichiometric networks, the field of
Pathway Analysis characterizes the complete space of
admissible flux distributions, allowing the analysis of the
meaningful routes by dissecting them into basic func-
tional units named Elementary Flux Modes (EFMs) [4].
Therefore, EFMs analysis is a valuable tool in ME but its
application is limited by two issues: the problem of calcu-
lating EFMs in large networks is computationally very
hard and, even if this process is successful, their analysis
is also difficult, given their high cardinality.

Although many nice examples have been described on
successful modifications of the microbial metabolism
using the above-mentioned techniques (e.g. some of the
examples described in [5]), very few methodologies exist
that effectively aid in the rational design of microbial
strains by, for example, pinpointing the genetic modifica-
tions that can lead to enhanced production capabilities,
by using available genome-scale mathematical models (e.
g. [6]). This limitation is related with the fact that
genome-scale models account for a significant number of
genes and reactions, and therefore any resulting ME
problem will require quite robust optimization tools.

One of the first approaches to tackle this class of prob-
lems was the OptKnock algorithm [7], where Mixed Inte-
ger Linear Programming (MILP) is used to identify an
optimum set of knockouts under a metabolic steady-state
approximation. An alternative solution was proposed by
the OptGene algorithm [8,9], that considers the applica-
tion of Evolutionary Algorithms (EAs) and Simulated
Annealing (SA) in this scenario. These meta-heuristic
methods are capable of providing near-optimal solutions
within a reasonable computation time, being also quite
flexible regarding the objective function that can be opti-
mized (e.g. they are able to deal well with non linear func-
tions).

However, the application of such optimization algo-
rithms and even the use of genome-scale metabolic mod-
els for pure simulation has been limited to the developers
of the techniques or experienced bioinformaticians, since
a platform that provides a user friendly interface to per-
form such tasks is not yet available. The computation of
EFMs is also enabled by some applications, but there is
the need of proper tools to conduct the required analysis
to fully take advantage on the results in an ME perspec-
tive.

Furthermore, the solutions obtained by using those
methods or the strategies inferred by model simulations
need to be validated before the implementation in the
laboratory, because of model uncertainties. This valida-

tion is hampered by the complexity of the model itself
and of the solutions obtained. In fact, if an ME target is
most often not obvious, the analysis of a possible solution
given by an algorithm is definitely difficult to interpret
and validate.

While, in 2001, the need for mathematical and compu-
tational tools to aid in ME efforts was already identified
by James Bailey [10], by the time of writing of this text
very few user-friendly software tools were still available.

Besides some tools developed a few years ago, such as
FluxAnalyzer [11] and MetaFluxNet [12], recently the
CellNetAnalyzer [13] (the successor of FluxAnalyzer), the
COBRA toolbox [14] and the Systems Biology Research
Tool (SBRT) [15] have been launched. COBRA and Cell-
NetAnalyzer are software packages running over the
MATLAB environment. Both allow performing many
tasks useful in ME like FBA, flux variability analysis and
the simulation of gene deletion mutants. CellNetAnalyzer
is, however, a more comprehensive software tool that
allows to analyse metabolic, regulatory and signalling
networks. COBRA was built mainly to perform flux and
pathway analysis, either with or without experimental
data. The SBRT consists of an open-source platform
implemented in the Java language and allows performing
most of these operations, and also includes other capabil-
ities such as data analysis tools. However, the SBRT and
COBRA present an important limitation, since they do
not provide a user-friendly interface.

Two other applications have been recently proposed:
YANAsquare [16] and SNA [17]. The first is an applica-
tion developed in Java with a user interface, while the lat-
ter is a Mathematica package. Both these tools are
essentially focused in calculating the EFMs of a network
and using those to perform the analysis of its metabolic
capabilities. However, they are quite limited from a ME
perspective (although SNA also allows calculating FBA).

Furthermore, none of the aforementioned tools allows
to perform strain optimization functions, i.e. they do not
per se include algorithms for the identification of poten-
tial ME targets. Additionally, there is also a need for
appropriate model visualization tools associated with
simulation software.

Given the huge potential impact of the growing number
of genome-scale metabolic models [18], the availability of
open source simulation and strain optimization software
would be a key to their further development and exploita-
tion. At present, experimenters from both academia and
industry find it very difficult to use genome-scale stoi-
chiometric models for simulation and optimization pur-
poses.

Towards the purpose of changing this scenario, we
hereby introduce OptFlux, a software tool that aims to be
the reference platform for the ME community. The main
features of this tool are the following:
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- Open-source - it allows all users to use the tool freely
and invites the contribution of other researchers;

- User-friendly - facilitates its use by users with no/little
background in modelling/informatics;

- Modular - facilitates the addition of specific features
by computer scientists, given its plug-in based architec-
ture;

- Compatible with standards -compatibility with the
Systems Biology Markup Language (SBML) [19] and the
layout information of Cell Designer [20].

At the current version (2.0), the software accommo-
dates several tools and algorithms that have been devel-
oped for the manipulation of metabolic models:

• methods for phenotype simulation, such as FBA,
Minimization of Metabolic Adjustment (MOMA)
[21] and Regulatory on/off minimization of metabolic
flux changes (ROOM) [22];
• methods for MFA, allowing the introduction by the
user of values for experimentally measured fluxes and
calculating the effects on the flux space;
• Elementary modes analysis, allowing the calculation
of the set of EFMs for the network and its visualiza-
tion and further analysis;
• strain optimization algorithms: OptKnock, EAs and
SA.
• a suitable model visualization tool to facilitate the
interpretation of results.

To the best of our knowledge, this is the first tool that
allows performing strain optimization in a user-friendly
interface and the first effort to create a community-based
and community-oriented software for ME with such
characteristics.

The main concepts used in the development of OptFlux
and its main functionalities are presented in the next sec-
tions.

Implementation
OptFlux is fully implemented in the Java language, which
is being increasingly used by the scientific community.
BioVisualizer is based on the Jung Java library [23]. The
only non-Java parts consisted on the GNU Linear Pro-
gramming Kit (GLPK) [24] used to execute all linear pro-
gramming and MILP computations and the LibSBML
[25] used to handle files in the SBML format.

To ensure modularity, OptFlux is implemented in such
a way that new features and services are easily plugged in.
It is entirely built on top of AIBench [26], a software
development framework that was born as a collaborative
project between the authors and researchers from the
University of Vigo in Spain.

Building applications over AIBench brings important
advantages to both the developers and the users, given its
design principles and architecture. The applications

incorporate the three types of well defined objects
described before: operations, datatypes and datatype
views, following the MVC (model-view-controller) design
pattern. This leads to units of work with high coherence
that can easily be combined and reused. Furthermore, it
is plug-in based: applications are developed adding com-
ponents, called plug-ins, each containing a set of AIBench
objects. This allows reusing and integrating functionality
of past and future developments based on AIBench.

Results
OptFlux's main capabilities can be grouped into distinct
functional areas that will be described in detail below.
Figure 1 shows the high-level organization of OptFlux,
including the main operations that can be performed
within the software. In Figure 2, a schematic representa-
tion of the main functionalities of OptFlux is given, show-
ing the typical fluxes of information. Starting with a
stoichiometric metabolic model that can be loaded in dif-
ferent formats (SBML, Metatool or flat files), the user can
perform simulations under different environmental and
genetic conditions (using either FBA, MOMA or
ROOM), investigate ME targets for improving the pro-
duction of desired compounds, analyze the flux space
given a set of measured fluxes with MFA methods or per-
form the computation and further analysis of the EFMs.

The full description of the currently implemented fea-
tures is provided in the application's set of How To's avail-
able at the project's website. Furthermore, a Beginner's
tutorial is available for helping first-time users.

Model handling
Regarding model handling, OptFlux makes available a
number of operations to visualize, import and export sto-
ichiometric metabolic models, including reactions,
metabolites, equations and, if available, gene-reaction
associations. It allows the loading of models either from
flat text files (containing the lists of reactions, metabo-
lites, the stoichiometric matrix and gene-reaction associ-
ations), from text files following the Metatool [27] format
or from files complying with the SBML standard. The
compatibility with SBML allows the use of models stored
in public databases, e. g. BioModels [28] or the BiGG
database [29] or built using other software tools, e.g. Cell
Designer [20]. The process of loading a model is facili-
tated by the development of a wizard that encompasses
several steps, where the user can choose from a number
of options related to the format of the input files.

External metabolites and biomass formation reactions
are automatically identified from the input files based on
an explicit definition, compartment information or by
patterns in the names. This information can then be vali-
dated or edited by the user.
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Simulation
The Simulation area encompasses the metabolic pheno-
type simulation methods implemented in OptFlux, i.e.
the algorithms that calculate the values for the fluxes over
the whole set of reactions in the model. It is possible to
perform simulations of the wild-type (see note 1) and
mutant strains. In the first case, the original model is con-
sidered with no additional constraints, while in the latter
a number of user selected reactions (or genes if the model
includes gene-reaction associations) are removed from
the original model before simulation. The simulation
results include, besides the flux values, net conversions
and shadow price information and are placed in Opt-
Flux's clipboard area, becoming easily accessible for fur-
ther analysis or future operations.

One other feature available is the ability to define spe-
cific Environmental Conditions. These are created by
selecting a set of drain reactions (reactions that stand for
the intake and secretion of external metabolites) and,
then, imposing constraints over the values of their fluxes.
As an illustrative example, this allows the definition of
aerobic or anaerobic conditions by changing the limits in
the oxygen uptake reaction. Environmental conditions
can be used in both wild-type and mutant simulations.

OptFlux has three available methods for conducting the
simulations: FBA (see for example [30]), MOMA [21] or
ROOM [22]. The first method uses a Linear Program-
ming (LP) formulation to calculate the values of all the
fluxes over the reactions and can be used to simulate

either wild-type or mutant strains. To reach the FBA
solution, by default the flux over the reaction that repre-
sents biomass formation is the one being maximized,
since this has proven to be a good representation of the
natural behaviour of microorganisms in many circum-
stances [31], but it is possible to perform simulations by
maximizing or minimizing any flux of the model.

MOMA and ROOM are appropriate only for the simu-
lation of mutants, since they calculate the minimum dis-
tance solution or the solution with minimum number of
changes, respectively, for the mutant strain relative to the
original "wild-type" solution (i. e. obtained with FBA).
MOMA uses a Quadratic Programming formulation
while ROOM is implemented based both on the original
MILP formulation and an LP relaxation of the original
MILP problem (proposed by the original authors) [22].

OptFlux also includes some features for Flux Variability
Analysis (FVA). Currently, there are two tools available,
allowing to:

• Calculate the maximum possible value of a selected
flux, for a range of fixed values for the biomass flux
(typically varying from 0 to 100% of its value in the
wild-type strain);
• Calculate the maximum and minimum limits for all
fluxes in the model, given a constraint imposed by a
user-defined minimum biomass value. If this value is
zero, this is equivalent to compute the tight bounds of
the fluxes for all reactions.

Figure 1 Functional modules of the OptFlux application.
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The calculation of the fluxes can also be performed
adding experimental data, used to constrain the original
metabolic model, using MFA methods. Depending on the
number of measured fluxes, the resulting system can be
classified as underdetermined, determined or over-deter-
mined. Determined and over-determined systems are
solved using the methods described in [1]. Concerning
underdetermined systems, there are no unique solutions
for the unknown flux set. Thus, an FBA problem is for-
mulated and solved as described previously. Furthermore,
it is possible to compute the tight bounds respecting the
measured constraints.

Optimization
The strain optimization area provides the users with
interfaces to identify sets of reaction deletions (or gene
deletions if gene-reaction associations are available) that
maximize a given objective function related with a
desired industrial objective. The ultimate purpose of the
implemented algorithms is to identify genetic modifica-
tions that force the microorganism to produce a particu-

lar metabolite, while still obeying the physiological aim of
maximizing biomass production.

The OptKnock algorithm [7] and two meta-heuristic
optimization methods, EAs and SA [8], are currently
available. The first was implemented following the origi-
nal formulation [7] and also the methods described in
[32]. It should be noted that in our implementation only
freely available solvers can be used, while in previous
work the commercial CPLEX solver has been used. Also,
from our experiments, running OptKnock in genome-
scale models (such as the one from our case study) is
quite demanding and can lead to situations of numerical
instability in the solver.

On the other hand, the metaheuristics are configured
with some default parameters, using set-based represen-
tations that can search through fixed-size or variable-size
solutions. In the first case, the user specifies the number
of allowed reaction/gene deletions, while in the latter the
optimization algorithm also performs the automatic dis-
covery of the optimum value for that variable. Both meth-

Figure 2 Main functionalities and fluxes of information in the OptFlux application.
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ods were implemented by the authors and the results in
several case studies have been previously presented [8].

At present, OptFlux allows to maximize two different
objective functions: Yield and Biomass-Product Coupled
Yield. In the first case, the yield on the desired compound
is targeted but a minimum biomass level is imposed,
while the second searches for mutants that are likely to
exhibit higher productivities, since biomass production is
also included in the objective [8].

The high number of variables typically involved in a
genome-scale metabolic model makes the optimization
task computationally hard. Thus, it is important to be
able to simplify the models without compromising their
accuracy and information content. In this context, two
alternatives are available: to simplify the model in terms
of its structure (these operations are valid in every sce-
nario, i.e. considering all environmental conditions) and
also to simplify the model using simulation, calculating
the limits of the reaction fluxes using a simulation
method such as FBA.

In the structural simplification context, two operations
are available: finding zero valued reactions, i.e. reactions
that are mathematically constrained to have the value of
zero for the corresponding flux and, also, finding equiva-
lent reactions, i.e. reactions that are constrained to have
the same flux value and, therefore, can be replaced by a
single reaction.

Regarding the simulation-based simplification opera-
tions, the original bounds can be replaced by the calcu-
lated limits. Also, this method can be used to identify
zero valued fluxes (reactions for which both new lower
and upper limits of the fluxes are zero). It is important to
notice that this method is dependent on the environmen-
tal conditions defined.

Another feature provided is an automatic method for
the discovery of essential reactions, i.e. reactions that
when disabled, make the organism non-viable. If gene-
reaction associations are included in the model, a similar
operation can be defined for the discovery of essential
genes. In both cases, an organism is found to be viable if
the value for the biomass flux is significantly larger than 0
(i.e. larger than 5% of the wild type value). The essential
genes or reactions are not used as targets for optimiza-
tion, since they would unnecessarily increase the number
of decision variables and therefore the size of the search
space.

Elementary flux modes analysis
Optflux also allows state-of-the-art EFM calculation pro-
vided by the EFMTool [33] that implements one of the
most efficient algorithms available. Moreover, it provides
a simple user interface that allows an intuitive filtering of
the results that match given patterns.

After the computation of the EFMs, the net conversion
associated with each EFM is calculated (only unique con-
versions are maintained). Furthermore, for each net con-
version, the greatest common divisor is calculated to
improve the reading of the conversion equation. To do so,
all the coefficients have to be integers and, therefore, the
EFM calculation is limited to using big integer arithmetic.

In the filtering step, EFMs can be selected based on the
presence/absence of external metabolites in the net con-
versions. Moreover, they can also be sorted by yield,
assuming that an input and an output metabolite are pro-
vided.

The user can browse through the filtered conversions in
a table that presents the conversion equation, yields and
provides access to the set of related EFMs. This viewer
also allows row sorting based on any column criteria. The
visualization of the EFMs is presented in a column-wise
table, where each column corresponds to an EFM and
each line to a reaction of the model. Each EFM, i.e. its flux
values, can be exported to Cell Designer, if the model was
created from a Cell Designer SBML file. For each reaction
in the EFM, the line in the Cell Designer layout is repre-
sented with a thickness that is proportional to the value
of the flux.

Visualization
OptFlux allows the graphical visualization of the path-
ways through BioVisualizer, a visualization plug-in that
was developed to represent metabolic networks as
graphs, with a number of distinct node types (e.g. metab-
olites, enzymes, reactions) and connections.

If a Cell Designer SBML file is loaded as the model
source, automatically it will be used by BioVisualizer in
the visualization operations, using the layout built previ-
ously in Cell Designer. Also, if the original model is
loaded from flat files or normal SBML, BioVisualizer can
work if a Cell Designer SBML file is available, typically
representing only a subset of the whole model (e.g. a
pathway) with compatible names for the reactions.

One of the major features of this tool is the ability to
associate numerical values to the different types of nodes
and edges. This allows the visualization of the metabolic
network overlapped by the values of the fluxes obtained
in a given simulation. Moreover, the flux values can be
exported to Cell Designer if the model was created from a
Cell Designer SBML file.

User interaction
OptFlux development has taken as a first premise to build
a tool aimed at biotechnology researchers and not at
computational or bioinformatics experts. Thus, the pri-
mary goal in the development process was to provide
good usability, valuing the simplicity and intuitiveness of
the tool.
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The user interaction is based on three main concepts,
used throughout the application:

• Datatypes: represent the distinct types of objects
holding the relevant data to the application (such as
models, simulation or optimization results, etc). Each
type can have multiple instances (objects) within the
application.
• Views: represent different ways to visualize the con-
tents of data objects. Each datatype can have one or
more methods to visualize its instances.
• Operations: represent the software functionalities or
available actions. When an operation is called, its
interface is launched and the input data objects are
selected. After being triggered, an operation typically
changes or creates an instance of the output datatype.

Based on these concepts, a user-friendly Graphical User
Interface (GUI) was developed. The original layout of the
components can be observed in the screenshots pre-
sented in Figure 3.

The clipboard on the left (Figure 3a) keeps all data
objects created within the application, in a logical hierar-
chy, grouped by their datatypes. The root of this tree is

the Project datatype that keeps all objects related to a
given metabolic model and the analysis performed with
it.

The components of a project are graphically shown in
the form of explicit hierarchical containers, namely:

• The metabolic model, including the sets of metabo-
lites (internal and external), the set of reactions with
their flux bounds and stoichiometry, the steady state
equations and, when available, the encoding genes
and the gene-reaction association rules;

• A set of simplified models that are the result of model
simplification operations;

• Sets of simulation and optimization results, including
also MFA and flux variability analysis results;

• Other optional objects grouped in the project ele-
ments list, including: a model graph for visualization to
be used by BioVisualizer, environmental conditions, lists
of essential genes/reactions, results from EFMs computa-
tion, among others.

When an object in the clipboard is double-clicked, the
views corresponding to its datatype will be launched on
the right side of the working area (if more than one view

Figure 3 Screenshots of OptFlux: a) Clipboard containing the main datatypes; b) view of model graphical representation; c) one of the available 
views of the stoichiometric model; d) mutant simulation operation; e) Optimization with EA's; f) wizard for starting a new project.
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is available, those are accessible in different tabs). Exam-
ples of two views of a metabolic model are shown in Fig-
ures 3b and 3c.

All the available operations are easily accessible, either
through the menu in the top or by right clicking the item
in the clipboard area, an action that displays all opera-
tions that work over that type of argument. Snapshots of
simulation and optimization operations are shown in Fig-
ures 3d and 3e.

To make the usage of the software easier, a wizard was
developed for creating a new model (Figure 3f). This wiz-
ard is visible in the toolbar and is also available in the
menu. It encompasses a number of steps that allow the
user to define the setup for each operation in a straight-
forward way.

All operations are, at the maximum possible level,
default-oriented, thus hiding behind scenes their com-
plexity (e.g. definition of non-obvious parameters). Nev-
ertheless, they allow more advanced users to fine-tune
the parameters available to a given operation.

Usage example: succinate production with E. coli
To illustrate the main features of the application, a case
study is shown here that considers the microorganism
Escherichia coli and where the aim is to produce succinic
acid, with glucose as the carbon source. The genome-
scale model used in the simulations was developed by
[34], considering the whole E. coli metabolic network
with a total of 1075 fluxes and 761 metabolites. A simpler
example is given in the Tutorial (available at the website)
where a small model of Sacharomyces cerevisiae is used.

Succinic acid is one of the key intermediates in cellular
metabolism and therefore an important case study for
ME strategies [35]. In fact, knockout solutions that lead
to improved phenotypes regarding the production of suc-
cinic acid are not straightforward to identify since they
involve a considerable number of interacting reactions.
Additionally, it is a chemical used as feedstock for the
synthesis of a wide range of other chemicals with several
industrial applications (e.g. food industry). Currently, it is
mainly produced through petrochemical processes that
can be expensive and have significant environmental
impacts. E. coli has many advantageous characteristics as
a production host, such as rapid growth under aerobic
and anaerobic conditions and simple nutritional require-
ments.

In this case study, the main steps depicted in Figure 4
were followed and are described next (all the referred files
are available at the project's web site):

- The model was created using the fluxes, metabo-
lites, stoichiometric matrix and gene-reaction rules
flat files. A Cell Designer SBML file is loaded after-
wards, for visualization purposes, representing the
Pyruvate metabolism pathway.

- A simulation of the wild type strain is performed,
using FBA and maximizing biomass (the vgrowth
flux). This results in a flux of 0.92 gDW/gDW/hr (or
simply hr-1) for the biomass (glucose uptake rate fixed
at 10 mmol/gDW/hr) (Figure 4b). The wild-type
strain exhibited no production of succinate, as
expected.
- A simulation of a mutant strain with four knockouts
known to produce succinate [36] was performed and
the excretion of 0.37 mmol/gDW/hr of succinate was
obtained (Figure 4c). The mutant strain exhibits a
growth rate that is 94% of the wild-type. This strain
was simulated constraining the oxygen uptake flux to
20 mmol/gDW/hr.
- A Simulated Annealing algorithm was used for iden-
tifying additional mutants with succinate production
capabilities, with BPCY as the objective function. The
best results obtained are shown in Figure 4d, where it
is clear the great improvement in the secretion of suc-
cinate for all the solutions found, as compared with
the published strain. The best succinate yield
obtained was 0.593 mol succinate/mol glucose, for a
strain that exhibits a growth rate that is around 68% of
the wild-type and with 8 reactions removed. How-
ever, additional solutions have been found showing
the ability of the selected optimization algorithms and
the chosen objective function to provide a family of
near-optimal solutions.

In a real case, the following steps would be the exami-
nation and comparison of the mutant strains obtained in
silico before the laboratory implementation of the pin-
pointed knockouts.

Other distinct examples can be used to illustrate the
implementations of the features of MFA, EFMs and Opt-
Knock. Those are all available in the project's web site (in
the How To's sections).

Conclusions
The OptFlux software is, to the best of the authors'
knowledge, the first freely available computational tool
for in silico ME that supports the set of described meth-
ods. Still, there are some tools available that are able to
perform some of the tasks mentioned above. From all the
surveyed software tools, the CellNetAnalyzer [13], the
COBRA toolbox [14] and the Systems Biology Research
Tool (SBRT) [15] are the most similar to OptFlux, in
terms of the available features. In Table 1, a comparison
of the four tools (including OpfFlux) is performed, listing
the features available in each application. In all cases,
simulation with FBA and support to basic standards is
included. However, only OptFlux is able to perform strain
optimization, being the first ME computational tool to
provide algorithms to reach ME targets given a user-
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defined objective function and working with genome-
scale models.

Furthermore, CellNetAnalyzer and COBRA are based
on a commercial platform (MATLAB) and the latter does
not supply any kind of user-friendly interface. The SBRT
consists on an open-source platform implemented in the
Java language, but it provides only a basic GUI, merely to
launch the execution of its processes. We can, therefore,
conclude that OptFlux provides the first freely available
ME workbench that addresses the needs of biotechnolo-
gists, providing a user-friendly environment.

The remaining efforts in this field are quite distinct
from OptFlux so we will not refer to their features in
detail. It should be mentioned that efforts such as
Cytoscape [37], Cell Designer [20] and Systems Biology
Workbench [38] are considered by the authors as very
important projects, although orthogonal to our work, and
ways to integrate OptFlux with those tools are being con-
sidered.

Since OptFlux aims at being the reference software tool
for the ME community, there are some near-future plans

for the implementation of additional features useful for
the analysis and manipulation of metabolic models.
These are being developed as new plug-ins, to facilitate
their integration as modules that users can optionally
install to enlarge the functionalities of the workbench.
The main current efforts are focused on the development
of the following plug-ins:

• Topological analysis of metabolic networks;
• Integration of Boolean network-based regulatory
models with the existing metabolic models, allowing
for phenotype simulation and strain optimization;
• Strain optimization approaches based on multi-
objective EAs.

Also, the connection to relevant databases such as
KEGG [39] or BioCyc [40] is a path worth exploring. Cur-
rently, OptFlux has a plug-in that supports link-outs, i.e.
it allows users to automatically launch searches over rele-
vant databases from the names of entities (reactions,
metabolites, genes) present within the viewers of the
metabolic models. The databases used in each case can
be configured in the setup of the plug-in.

Figure 4 Screenshots of the E. coli case-study: a) clipboard containing the original metabolic model, simplified model, simulation results and op-
timization results; b) view of the simulation results (objective function and net conversions) obtained for the wild-type strain; c) view of the simulation 
results (FBA) obtained for a mutant with enhanced capabilities regarding succinate production; d) view of the results obtained for the optimization 
using EAs and knockout list for the best solution found;
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Table 1: Feature comparison of several tools for metabolic network analysis.

Other tools

OptFlux CellNetAnalyzer COBRA SBRT

File formats/
standards

- SBML • • • •

- Metatool format • •

- Flat files • • • •

Phenotype 
simulation

- FBA: wild type, 
environmental 
conditions, gene 
deletion mutants

• • • •

- Dynamic FBA •

- ROOM •

- MOMA • (1)

- MFA basic methods • •

- Gene-reaction 
associations

• •

- Regulatory network 
simulation

(2) •

Strain optimization

- OptKnock algorithm •

- Metaheuristics: 
OptGene

•

Metabolic Network 
Analysis

- Elementary Flux 
Modes

• •

- Minimal cut sets •
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Availability and Requirements
The software is made available, together with other
resources, in the home page given below.

More details:
- Software name: OptFlux - software for metabolic

engineering
- Project home page: http://www.optflux.org
- Operating system(s): Platform independent
- Programming languages: Java
- Other requirements: Java JRE 1.6.x, GLPK
- License: GNU-GPL, version 3
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Note 1: Definition of "Wild-type" strains in the context of OptFlux simulations
We use the term wild-type strain/organism in this study meaning strains that
have a (approximately) known pre-definable steady-state flux objective func-
tion (e.g. biomass formation rate as in case of FBA). This terminology is used
solely for the purpose of intuitive understanding of the methods and tools and

- Flux Variability 
Analysis (FVA)

• • • •

- Topological network 
analysis

(2) • (3)

Visualization

- Built-in visualization • •

- Interaction with 
CellDesigner

•

- Interaction with 
Cytoscape

•

Other features

- Graphical user 
interface

• •

- Does not depend on 
commercial software

• •

- User documentation • • • •

Notes
(1) Implementation based on linear programming formulation (linear MOMA)
(2) Plug-ins under development
(3) Includes some basic graph analysis methods
The table provides a comparison of the main features of OptFlux with the major alternatives in metabolic network analysis. Features have 
divided into six groups: file formats and standards, phenotype simulation, strain optimization, network analysis, visualization and other 
features.

Table 1: Feature comparison of several tools for metabolic network analysis. (Continued)

http://www.optflux.org
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therefore it should not be interpreted in the biological sense of wild-type
strains/organisms.
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