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Abstract

Background: With the accumulation of increasing omics data, a key goal of systems biology is to construct
networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no
satisfactory method to construct an integrated cellular network that combines the gene regulatory network and
the signaling regulatory pathway.

Results: In this study, we integrated different kinds of omics data and developed a systematic method to
construct the integrated cellular network based on coupling dynamic models and statistical assessments. The
proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the
yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which
are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network
under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed,
specifying the significance of some transcription factors to serve as the decision-making devices at the center of
the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the
predictive power of the proposed method was also demonstrated.

Conclusions: We successfully construct the integrated cellular network which is validated by literature evidences.
The integration of transcription regulations and protein-protein interactions gives more insight into the actual
biological network and is more predictive than those without integration. The method is shown to be powerful
and flexible and can be used under different conditions and for different species. The coupling dynamic models of
the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the
fields of network biology and synthetic biology.

Background
With the advance of technologies (whole genome
sequencing, expression profiling, and other high-
throughput experiments), vast amounts of data, which
cover different aspects of cellular physiology, have
emerged [1,2]. These kinds of ‘omics’ data, which
include the genome sequencing data (genomics), micro-
array-based genome-wide expression profiles (transcrip-
tomics), protein abundances data (proteomics), etc.,
provide unprecedented views of cellular components in
the biological systems [1]. However, the challenge for
current researchers lies in how to interpret these large-
scale data sets and extract true information to under-
stand biological systems more thoroughly. With the

amount of data accumulated, it is appropriate to under-
stand living organisms from a system point of view.
Computational techniques, which are able to combine
these large and heterogeneous data sets, will provide us
useful tools to gain more biological insights.
Though many studies have focused on gene regulatory

networks [3-6] and on signaling transduction pathways
[7-9], few works have combined these two kinds of net-
works. Yeger-Lotem and Margalit [10] used classical
graph algorithms to integrate the cellular networks of
protein-protein and protein-DNA interactions. They
successfully identified known simple and complex regu-
latory circuits and discovered many putative circuits.
Yeger-Lotem et al. [11] searched for composite network
motifs consisting of both transcription-regulation and
protein-protein interactions that recur significantly more
often than in random networks. Mazurie et al. [12]
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investigated the integrated network comprising tran-
scriptional and protein-protein interaction data. They
compared network motifs for different species and
showed that the network motifs are not subject to any
particular evolutionary pressure to preserve the corre-
sponding interaction patterns. Recently, researchers also
have integrated protein-protein and protein-DNA inter-
actions to infer signaling-regulatory pathways, but they
focused only on the pathways that explain gene expres-
sion changes in response to the knockout genes [13].
Although these works successfully extracted some char-
acteristics of the integrated cellular network, they did
not propose a method to construct the integrated cellu-
lar network of transcription regulations and protein-pro-
tein interactions under all kinds of conditions.
Many compelling biological questions center on how

interactions among genes and proteins give rise to speci-
fic cellular functions. Genetic and high throughput
methods have successfully identified many circuit com-
ponents and their interactions. However, to explain the
cellular function, there still are deficiencies, such as the
incompleteness of the interactions among genes/proteins
and the lack of consideration of different cellular condi-
tions [14,15]. To address this problem, we here propose
a method to construct an integrated cellular network,

which can be presented under all kinds of cellular con-
ditions, based on coupling dynamic models. A dynamic
model, which is typically represented by difference equa-
tions or differential equations, is often used in many
fields to describe a complex and kinetic system.
Recently, systems biology and computational biology
methods have widely employed the dynamic model to
describe the biological functions from the dynamic sys-
tem point of view [3,16,17]. The advantage of using
dynamic models to construct an integrated cellular net-
work is not only that it can provide quantitative descrip-
tions of the network, but it also can predict the behavior
of the network under different conditions, i.e., gene
knockout, treatment with an external agent, etc [18].
In this article, we integrated omics data, including

gene expression profiles [19], genome-wide location data
[20], protein-protein interactions, and database informa-
tion from SGD http://www.yeastgenome.org/[21], YEAS-
TRACT http://www.yeastract.com/[22], BioGRID
http://www.thebiogrid.org/[23], and Gene Ontology
http://www.geneontology.org/[24] to construct an inte-
grated cellular network of transcription regulations and
protein-protein interactions. The schematic diagram of
the integrated cellular network is shown in Figure 1.
The gene regulatory network (the yellow part in Figure

Figure 1 Schematic diagram of the integrated cellular network. The integrated cellular network consists of two subnetworks. One is the
signaling regulatory pathway (the green part in the figure) in which protein-protein interactions are presented and the other is the gene
regulatory network (the yellow part in the figure) in which transcription regulations exist. The transcription factors serve as the interface between
the signaling regulatory pathway and the gene regulatory network.
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1) and the signaling regulatory pathway (the green part
in Figure 1) were constructed respectively, and then
these two networks were combined by the interface of
transcription factors (the triangles in Figure 1), which
coupled two networks. Like the operating system of a
computer, which is the interface between hardware and
software, transcription factors (TFs) serve as the inter-
face to interconnect gene regulatory network and signal-
ing regulatory pathway. However, since the integrated
cellular network is constructed by omics data, which are
collected under different experimental conditions (some
are gathered in vitro), it is necessary to prune these pos-
sible interactions and regulations of proteins and genes,
some of which may not exist in a real-world biological
organism. In this situation, it is more appealing to evalu-
ate these interactions and regulations for a real organ-
ism under a specific condition by microarray data via
dynamic interaction and regulation model. The signifi-
cant or nonexistent interactions and regulations can be
detected by the time profiles of microarray data through
dynamic interaction and regulation model and can be
pruned to construct the integrated cellular network.
Two coupling dynamic models were given in this

study to describe the interplay of gene regulatory net-
work and signaling regulatory pathway. The Akaike
Information Criterion (AIC) and the p-value statistical
method [25-27] were used to determine the significant
interactions via microarray data. By the interplay of the
transcription regulations and protein-protein interac-
tions, the cellular machinery can be elucidated compre-
hensively. The stress response mechanism is the most
adequate example to demonstrate the integrated cellular
network since signaling regulatory pathway sense and
transmit the stress information quickly to the corre-
sponding TFs to activate gene regulatory network,
encoding protection proteins to respond to the stresses.
Therefore, the proposed method was applied to yeast
Saccharomyces cerevisiae to investigate the integrated
mechanisms of stress responses.
Living organisms have evolved complex mechanisms

to respond to changes in different environmental condi-
tions, even for the unicellular organism yeast Saccharo-
myces cerevisiae [19,28]. Such environmental changes,
commonly termed as “stress”, are harmful or even lethal
to the survival of the cells, especially in microorganisms
whose environment is highly variable. The responses to
these stresses require complex networks of sensing and
signal transduction pathways leading to adaptations of
cell growth and proliferation as well as to adjustments
of the gene expression program, metabolic activities,
and other features of the cell [28]. Several regulatory
systems have been implicated in modulating these
responses, but the complete network of regulators of
stress responses and the details of their actions,

including the signals that activate them and the down-
stream targets they regulated, remain to be elucidated
[19]. Consequently, these regulatory systems in response
to environmental stresses are very suitable for the topic
of integrated cellular network of transcription regula-
tions and protein-protein interactions. In the microarray
contributed by Gasch et al. [19], they identified the
yeast stress responsive genes including stress-specific
scheme and the common response to all of the stress
conditions, termed the “environmental stress response”
(ESR). However, they failed to determine the regulatory
interactions between these genes and the dynamic char-
acteristic of the system. In this paper, from the network
or system point of view, we focused on yeast stress
response and applied the proposed method to different
kinds of stress (hyperosmotic stress, heat shock stress,
oxidative stress), illustrating the integrated cellular net-
work of yeast stress responses in which transcription
regulations (gene regulatory network) and protein-pro-
tein interactions (signaling regulatory pathway) are inte-
grated. Furthermore, the crosstalks of yeast stress
responses were analyzed, specifying the significance of
some transcription factors to serve as the decision-mak-
ing devices at the center of the bow-tie structure and
the crucial role for rapid adaptation scheme to respond
to stress.

Results
Construction of integrated cellular network
Our goal is to construct the integrated cellular networks
in which transcription regulations and protein-protein
interactions are integrated. The flowchart of the pro-
posed method is shown in Figure 2. Several kinds of
omics data and database information were integrated,
including microarray gene expression data, regulatory
associations between TFs and genes, and protein-protein
interaction data, as the input for the proposed method.
From these data, the candidate gene regulatory network
and the candidate signaling regulatory pathway, which
are the rough TF-gene regulation pool and the rough
protein interaction pool under all kinds of conditions,
were retrieved, respectively. In this study, microarray
data with time profiles was used to validate these TF-
gene regulations and protein interactions integrated by
these omics data. Therefore, dynamic models were used
to prune the candidate gene regulatory network and the
candidate signaling regulatory pathway to construct the
integrated cellular network via microarray data under
the specific condition of interest.
In the transcription regulation subnetwork of the inte-

grated cellular network, the candidate gene regulatory
network was depicted as a system in which TFs are
inputs and target genes are outputs (see Figure 1). For a
target gene i in the candidate gene regulatory network,
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Figure 2 Flowchart of the proposed method of integrated cellular network.
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the dynamic model of the gene is described by the fol-
lowing stochastic discrete dynamic equation
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where xi[t] represents the mRNA expression level of
target gene i at time t, aij denotes the regulatory ability
of the j-th TF to the i-th target gene with a positive sign
indicating activation and a negative sign indicating
repression, zj[t] represents the regulation function of j-
th TF binding to the target gene i, li indicates the
degradation effect of the present time t on the next time
t+1, ki represents the basal level, εi[t] denotes the sto-
chastic noise due to the model uncertainty and the fluc-
tuation of the microarray data of the target gene. It has
been shown that TF binding usually affects gene expres-
sion in a nonlinear fashion: below some level it has no
effect, while above a certain level the effect may become
saturated [29,30]. Thus, the regulation function zj[t] was
modeled as the sigmoid function, which is one kind of
Hill function, of yj[t] (the protein activity profiles of
transcription factor j) [3,16,30-33]
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where fj denotes the sigmoid function, μj and sj repre-
sent the mean and deviation of protein activity level of
the TF j. The biological meaning of the equation (1) is
that the mRNA expression xi[t+1] of the target gene i
at the next time t+1 is determined by the present
mRNA expression xi[t] plus the mRNA expression due
to the present transcription regulation of N TFs binding
to the target gene at time t, minus the mRNA due to
the degradation of the present time, plus the basal level
of mRNA expression, and some stochastic noises due to
measurement noises and some random fluctuations.
Because of computational simplicity, the cooperative
interaction between TFs is not included in the model
[16].
In the protein-protein interaction subnetwork, the

candidate signaling regulatory pathway was depicted as
a system in which proteins and TFs are inputs and out-
puts of the system, respectively (see Figure 1). For a tar-
get protein n in the candidate signaling regulatory
pathway, the dynamic model of the protein activity is as
follows
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where yn[t] represents the protein activity level at time
t of the target protein n, bnm denotes the interaction
ability of the m-th interactive protein to n-th target pro-
tein, ym[t] represents the protein activity level of m-th
protein interacting with the target protein n, an denotes
the translation effect from mRNA to protein, xn[t]
represents the mRNA expression level of the corre-
sponding target protein n, bn indicates the degradation
effect of the protein, hn represents the basal activity
level, and ωn[t] is the stochastic noise. The rate of pro-
tein-protein interaction is proportional to the product of
two proteins’ concentrations [30], i.e., proportional to
the probability of molecular collisions between two pro-
teins, thus the interaction was modeled as the nonlinear
multiplication scheme. For example, in the signaling
transduction pathways, the phosphorylation of yn[t] by
kinase ym[t] is proportional to the concentration of
kinase ym[t] times the concentration of its substrate yn[t]
[30]. The biological meaning of the equation (3) is that
the protein activity of the target protein n at the next
time t+1 is contributed by the present protein activity,
plus the regulatory interactions with M interactive pro-
teins, plus the translation effect from mRNA, minus the
protein degradation of the present state, plus basal pro-
tein level from other sources beyond the M interactive
proteins in the cell, and some stochastic noises. Because
of the undirected nature of protein interactions, there is
no direction between interacting proteins in the protein-
protein interaction subnetwork.
The interactions or couplings among genes and pro-

teins are described in the following. Some TFs yj[t] at
the end of signaling regulatory pathway regulate their
target genes through the regulation function zj[t] = fj(yj
[t]) in equation (1) and then the regulated genes influ-
ence their corresponding proteins through translation
effect anxn[t] in equation(3). The interplay between
genes and proteins can be seen from their coupling
dynamic equations (1), (3) and Figure 1, in which TFs
serve as the interface between the signaling regulatory
pathway and gene regulatory network. In other words,
the interplay of transcription regulations and protein-
protein interactions constitutes the framework of the
integrated cellular network.
Based on the above dynamic models in (1) and (3), the

candidate gene regulatory network can be linked
through the regulatory parameters aij in (1) between
genes and their possible regulatory TFs, and the candi-
date signaling regulatory pathway can be linked through
the interaction parameters bnm in (3) between possible
interactive proteins. Since the candidate gene regulatory
network and candidate signaling regulatory pathway
only propose possible TF-gene regulations and possible
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protein interactions in omics data, their reality should
be confirmed by microarray data, i.e., the values of aij in
(1) and bnm in (3) should be identified and validated by
microarray data. The regulatory parameters were identi-
fied via microarray data by solving the constrained least
square parameter estimation problem (see Methods).
The strategy was to identify the regulatory parameters
aij gene by gene (interaction parameters bnm protein by
protein), so that the network identification process was
not limited by the number of target genes (proteins). In
other words, when identifying the regulatory parameters
in candidate gene regulatory network, the regulatory
parameters in equation (1) were first identified for target
gene i and then for target genes i+1, i+2, etc. By means
of model selection method such as Akaike Information
Criterion (AIC) and statistical assessment like student’s
t-test [25-27], the significant regulations and interactions
between genes and proteins were detected (see Meth-
ods). In this way, the candidate gene regulatory network
and the candidate signaling regulatory pathway were
pruned by microarray data, leading to construction of
the gene regulatory network and signaling regulatory
pathway, respectively. Based on the interface between
the gene regulatory network and the signaling regulatory
pathway, i.e., the transcription factors, these two net-
works were coupled to become the integrated cellular
network, which is the output of the proposed method
(see Methods). The details of each step of the algorithm
are shown in Methods.

Validation of the feasibility of the proposed method
Before applying the proposed method to construct the
global view of the integrated cellular network under
stress condition, we first validated the feasibility of the
proposed method. While construction of gene regulatory
networks using dynamic model has been successfully
shown to characterize the biological system from a sys-
tem point of view [3,16,17,31,32,34], to the best of our
knowledge, no research has used dynamic model to
infer a signaling regulatory pathway. Thus, we focused
on validating the protein interaction subnetwork of the
integrated cellular network.
We tended to reconstruct the well-studied MAPK

pathway under hyperosmotic stress to validate the feasi-
bility of the proposed method. MAPK (mitogen acti-
vated protein kinase) pathways are highly conserved
eukaryotic signaling modules. The yeast MAPK path-
ways are involved in pheromone response, filamentous
growth, osmotic response, and maintenance of cell wall
integrity [28,35]. These pathways are activated by both
extracellular and intracellular signals and characterized
by a core cascade of MAP kinases that activate each
other through sequential binding and phosphorylation
reactions [28]. The osmotic activated HOG (high

osmolarity glycerol) MAPK pathway, which is used by S.
cerevisiae and other fungi to sense the osmotic pressure
in the environment and maintain water homeostasis, is
among the most thoroughly studied networks in yeast
and is therefore an excellent benchmark against which
to validate the proposed method [36,37]. Consequently,
the core HOG MAPK proteins were selected and the
protein interaction subnetwork among these proteins
was reconstructed, which is shown in Figure 3. The
reconstructed subnetwork was then investigated to see if
it is consistent with the phenomena that are observed
experimentally.
From the constructed subnetwork shown in Figure 3,

we can find that there are two independent branches
originating from Sho1p and Sln1p and converging to
Pbs2p. This conforms to the observation made by
Maeda et al. [38], who demonstrated that Pbs2p is acti-
vated by two independent signals that emanate from dis-
tinct cell-surface osmosensors by mutation analysis. In
the Sln1p branch, Posas et al. showed that HOG MAPK
cascade is regulated by a multistep phosphorelay
mechanism in the Sln1p-Ypd1p-Ssk1p two component
osmosensor [39]. The phosphate group is transferred
sequentially from Sln1p-His576 to Sln1p-Asp1144, then
to Ypd1p-His64, and finally to Ssk1p-Asp554 [39]. Posas
and Saito also indicated that the Ssk2p/Ssk22p
MAPKKKs are activated by the same two component
osmosensor upon hyperosmotic treatment [40]. Phos-
phorylated Ssk2p then activates the MAPKK Pbs2p
[38,40,41]. Activated Pbs2p can phosphorylate and acti-
vate Hog1p [42]. Among all these interactions observed
by experiments, all were uncovered in the constructed
subnetwork except for the Ypd1p-Ssk1p and Ssk1p-
Ssk2p, which can be regarded as false negatives of the
constructed subnetwork.
In the Sho1p branch, under hyperosmotic shock,

Sho1p binds to Pbs2p and thereby recruits it to the cell
surface [43]. This event may mark the generation of the
protein signaling complex that recruits the MAPKKK
Ste11p together with proteins required for Ste11p acti-
vation such as Cdc42p [43,44], Ste20p [44], Ste50p [45].
The interaction of Sho1p and Pbs2p and the interactions
among the protein complex were identified in the con-
structed subnetwork. The assembly of the appropriate
protein signaling complex then leads to activation of
Ste20p, phosphorylation of Ste11p and subsequently
phosphorylation of Pbs2p [28]. The interactions Ste20p-
Ste11p, Ste11p-Pbs2p were also recognized. In yeast, the
GTPase Cdc42p, together with its GTP exchange factor
Cdc24p and its target Ste20p, is required to establish
cell polarity during the cell cycle and is involved in cel-
lular responses to mating pheromone and to nutritional
limitation [44]. The interactions between Cdc24p,
Cdc42p, and Ste20p were uncovered in the constructed
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subnetwork, indicating that these proteins may also be
required under hyperosmotic stress.
In addition to the well-described HOG MAPK path-

way osmosensors Sho1p and Sln1p, the existence of
other inputs into the HOG pathway has been suggested.
O’Rourke and Herskowitz identified the Msb2p protein
as a weak but physiologically relevant osmosensing com-
ponents in S. cerevisiae which functions in parallel with
the Shop1 branch and activate Ste11p [46]. Recently,
Tatebayashi et al. showed that the mucin-like trans-
membrane proteins Msb2p and Hkr1p are the potential
osmosensors for the Shop1 branch [47]. They demon-
strated that hyperactive forms of Msb2p and Hkr1p can
activate the HOG pathway only in the presence of
Sho1p, whereas a hyperactive Sho1p mutant activates
the HOG pathway in the absence of both Msb2p and
Hkr1p, indicating that Msb2p and Hkr1p are the most
upstream elements in the Sho1p branch [47]. Although
the interaction between Hkr1p and Sho1p was not
uncovered, Msb2p was identified to interact with Sho1p
in the constructed subnetwork. Besides, Msb2p can
affect MAPKKK Ste11p by the interactions with
Cdc42p, Ste20p, and Ste50p without the involvement of
Sho1p, which is consistent with the experimental obser-
vation that Msb2p, but not Hkr1p can generate an intra-
cellular signal in a Sho1p-independent manner [47].

Pbs2p is activated by phosphorylation by any of the
three MAPKKKs Ssk2p, Ssk22p, and Ste11p and then
phosphorylates the MAPK Hog1p. Phosphorylation pro-
motes a rapid nuclear concentration of Hog1p, indicat-
ing that Hog1p is the factor that establishes the
connection between the cytoplasmic part of signal path-
way and its nuclear response system [48,49]. In addition
to nuclear translocation of the activated Hog1p, it also
mediates regulatory effects outside the nucleus. For
example, Hog1p regulates the activation of protein
kinase Rck2p, which controls the translational efficiency.
These two proteins are necessary for attenuation of pro-
tein synthesis in response to osmotic stress [50], and the
interaction among them was observed in the con-
structed subnetwork. Several proteins influence nuclear
residence of Hog1p, such as the tyrosine phosphatases
Ptp2p and Ptp3p [28]. Mattison and Ota showed that
Ptp2p is a nuclear tether for Hog1p and Ptp3p is a cyto-
plasmic anchor, thus modulating the subcellular locali-
zation of Hog1p [51]. The Hog1p-Ptp3p interaction was
indicated in the constructed subnetwork whereas
Hog1p-Ptp2p was absent. Besides the absence of
Hog1p-Ptp2p interaction, Ste20p-Ptp2p interaction was
recognized. Although Ptp2p has been shown to be a
substrate of kinase Ste20p [52], no literature evidence
correlates the interaction with HOG MAPK pathway

Figure 3 The constructed subnetwork of HOG MAPK signaling regulatory pathway.
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until now. Thus, further investigation is needed to clar-
ify the Ste20p-Ptp2p interaction. Three protein phos-
phatases Ptc1p, Ptc2p, and Ptc3p, inactivate the HOG
MAPK pathway by acting on Hog1p [53,54], however,
only Ptc2p was detected to interact with Hog1p.
In summary, the constructed protein-protein interac-

tion subnetwork was compared with the well-studied
HOG MAPK pathway under osmotic stress to validate
the feasibility of the proposed method. The comparison
demonstrated that the well-studied MAPK pathway was
mostly uncovered by the proposed method. However,
there still were some interactions validated by literature
evidences absent in the constructed subnetwork. The
misidentification of the interaction may be because the
protein activity levels were substituted by the gene
expression levels (see Methods). The sensitivity of the
HOG MAPK pathway is 78.57%, which shows that the
signaling regulatory pathway can be successfully recon-
structed by the proposed method, thus validating the
feasibility of the proposed method. From the feasibility
of the protein interaction network reconstruction along
with the previous success of gene regulatory network
characterization, we believe that the proposed method
can be used to construct the integrated cellular network
from the network or system point of view.

Global view of the yeast integrated cellular network
under hyperosmotic stress
The proposed method was applied to yeast Saccharo-
myces cerevisiae hyperosmotic stress, illustrating the glo-
bal view of yeast integrated cellular network under
hyperosmotic stress in which transcription regulations
(gene regulatory network) and protein-protein interac-
tions (signaling regulatory pathway) are integrated.
Based on the microarray data from Gasch et al. [19],
331 hyperosmotic stress responsive genes whose tran-
scription levels change by threefold in at least one of
the time courses were identified. Among the documen-
ted TFs obtained from the YEASTRACT database and
ChIP-chip data from Harbison et al. [20], we identified
195 TFs which have expression profiles under hyperos-
motic condition. The 195 TFs, 331 genes and 4333 TF-
gene regulations retrieved were regarded as candidate
gene network from which we constructed the gene regu-
latory network of the integrated cellular network. For
the protein interaction subnetwork, 102 hyperosmotic
stress-related proteins were selected from GO and SGD
databases. We also retrieved 714 protein-protein interac-
tions among the 102 proteins and 195 TFs from Bio-
GRID database to be the candidate signaling pathway to
construct the signaling regulatory pathway.
After network construction by the dynamic modeling

and identification of the significant regulations/interac-
tions, 2836 TF-gene regulations (65.45%) and 301

protein-protein interactions (42.16%) among genes, TFs
and proteins were preserved, forming the integrated cel-
lular network under hyperosmotic stress, which is
shown in Figure 4. The total preserved percentage of
nodes, including all genes, TFs, and proteins, is 88.06%
and the total preserved percentage of both TF-gene reg-
ulations and protein-protein interactions is 62.16%. The
topology of the integrated network shows that it is a
scale-free network rather than a random network. In a
scale-free network, the probability that a node is highly
connected is statistically more significant than in a ran-
dom network, and the network’s properties are often
determined by a relatively small number of highly con-
nected nodes that are known as hubs [55]. The scale-
free networks are particularly resistant to random node
removal but extremely sensitive to the targeted removal
of hubs [56]. Therefore, the hubs are believed to be
essential to improve the information transmission for
network robustness and to respond quickly to protect
cell function under stress [57]. In the integrated cellular
network under hyperosmotic stress, in addition to the
typical transcription factors such as Msn2p, Msn4p,
Yap1p, Hsf1p, which regulate stress response genes, one
highly connected protein, Hsp82p, and two highly con-
nected genes, HSP12 and CTT1, were identified.
Hsp82p, which belongs to Hsp90 protein family in S.
cerevisiae, is highly conserved among eukaryotes. Experi-
mental evidences showed that the molecular chaperone
Hsp82p is required for high osmotic stress response in
S. cerevisiae and its mutation results in osmosensitive
phenotype [58]. Human Hsp90, Hsp90p, is involved in
the activation of an important set of cell regulatory pro-
teins, including many whose disregulation drives cancer.
As a result, Hsp90p has been identified as important
targets for anti-cancer drug development [59]. The S.
cerevisiae gene HSP12 has been shown to be upregu-
lated by a variety of stresses including increased tem-
perature, osmotic stress, and glucose depletion. Under
hyperosmotic stress, HSP12 is activated by the HOG
pathway and is under control of Ras-PKA pathway [60].
The HSP12 encoding protein, Hsp12p, is present in the
cell wall and is responsible for the flexibility of the cell
wall, contributing to the resistance to osmotic stress
[61]. CTT1 has been shown to be regulated by HOG
pathway under osmotic induction via stress response
element (STRE) and its coding protein, cytosolic catalase
T, is important for survival under extreme osmotic
stress [62]. Since STRE mediates the stress response not
only for osmotic stress but also for heat shock, nitrogen
starvation, and oxidative stress [63], CTT1 may be
essential for the crosstalk of different stress responses.
These results suggest that highly connected hubs, as
determined by the proposed method, provide attractive
targets for understanding cellular functions, performing
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further experiments, and even developing disease thera-
pies [64].

Expression profile reconstruction and prediction
The method proposed to construct the integrated cellu-
lar network is to use expression profiles of microarray
data via a dynamic model, which can provide a qualita-
tive description of the network as well as quantitative
dynamics of the network. Since Gasch et al. [19] pre-
viously explored genomic expression patterns in the
yeast S. cerevisiae responding to diverse environmental
transitions for almost every yeast gene, the proposed
method can also be applied to other stress conditions in
addition to hyperosmotic stress. Under heat shock
stress, Gasch et al. not only determined the response of
the WT strain, but also of the yap1 mutant strain [19],
which facilitates the predictive power verification of the
proposed method. By the same procedure, we first con-
structed the integrated cellular network under heat

shock stress for the WT strain yeast. Then with the
trained dynamic models for the WT strain (training
data), we tended to predict the gene expression for the
yap1 mutant strain (testing data). The testing result of
gene HXT5 is shown in Figure 5. The data shown in the
figure verifies that the dynamic model is useful for mod-
eling the integrated network provided that the expres-
sion profile reconstructed by dynamic model is very
similar to the original WT strain data from Gasch et al.
[19] (correlation coefficient = 0.9949). Furthermore,
comparison of the experimental data with the predicted
expression profile of the yap1 mutant strain for HXT5
under heat shock reveals the predictive power of the
proposed method. The predicted HXT5 expression from
the trained dynamic model for training data is approxi-
mately the same as the experimental data (an external
testing data). It can be found that predicted HXT5
expression of the yap1 mutant strain is more than its
expression of the WT strain. This predicted result is

Figure 4 The S. cerevisiae integrated cellular network under hyperosmotic stress. The network consists of 309 genes, 162 TFs and 82
proteins, in which 2836 protein-DNA regulations and 301 protein-protein interactions are presented. The drawing is created using Cytoscape
plugin Cerebral [86,87] and the subcellular compartment data is from the GO database. The directions of the regulations are omitted for
simplicity.
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quite reasonable since HXT5, which encodes a func-
tional hexose transporter, is expressed during conditions
of relatively slow growth rates and the expression is
regulated by growth rates of cells [65,66]. Yap1p is a
basic leucine zipper transcription factor that is required
for many kinds of stress response mechanisms including
heat shock stress. Once mutated, the heat sensitivity
would be increased, causing the growth rate of the cell
to decrease, thus increasing the expression of HXT5
gene. Because of the lack of more time points of muta-
tion expression profile from Gasch et al. [19], we can
only compare the predicted expression profile of HXT5
with the single expression data by experiment. However,
the predictive power of the proposed method can be
verified.

Crosstalks of the yeast stress responses
Because of the convenience of integrated cellular network
construction we proposed, it is appropriate to investigate
the crosstalks of the yeast stress responses from the global
network point of view. Genes/proteins responsible for
hyperosmotic stress, heat shock, and oxidative stress were
selected, which resulted in 1260 genes, 190 TFs, 348 pro-
teins, 11262 TF-gene regulations, and 2276 protein-

protein interactions in the candidate integrated cellular
network. Then the integrated cellular networks under
these stresses were constructed, respectively. Comparison
of the three yeast integrated cellular networks is shown in
Table 1. From the data shown in Table 1, four observa-
tions were made. (1) Protein-protein interactions are more
conserved than TF-gene regulations. Comparing all three
integrated cellular networks under different stresses, we
can find that protein-protein interactions are more con-
served than TF-gene regulations (27.11% vs. 6.51%). The
observation implicates that under different stresses, the
signaling regulatory pathways are more similar than the
gene regulatory networks are. In other words, yeast use
similar signaling regulatory pathway to sense and transmit
the environmental changes but use distinct gene regula-
tory network to adapt themselves to different environmen-
tal conditions. (2) The crosstalks of the three integrated
cellular networks could be interpreted as the core stress
responses. Since under different stresses, yeast use the
same subnetwork of signaling regulatory pathway/gene
regulatory network, this subnetwork may be essential for
the yeast stress response mechanisms and therefore can be
interpreted as the core stress responses. In the core stress
responses, there are some important proteins/TFs/genes

Figure 5 Comparison between experimental data and reconstructed/predicted expression profile of HXT5 under heat shock. The
reconstructed expression profile for the WT strain (training data) and the predicted yap1 mutant profile (testing data) are computed by the
dynamic model. The WT strain data and the yap1 mutant data under heat shock are from Gasch et al. [19]. The correlation coefficient between
the WT strain experimental data and the reconstructed expression profile is 0.9949.
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which are highly connected. For example, Hsp82p and
Hsc82p are two hub proteins in the signaling regulatory
pathway. Hsp82p and Hsc82p, which are redundant in
function and nearly identical with each other, are essential
for osmotic and heat shock stresses [58,67]. They are also
required for the activation of many key cellular regulatory
and signaling proteins like kinases and transcription fac-
tors [68]. Consequently, it is reasonable to recognize these
proteins in the crosstalks of signaling regulatory pathway.
The TFs Msn2p, Yap1p, Sfp1p, which have been shown to
regulate stress responsive genes, were also identified in the
core stress responses. The genes SGA1, YGP1, and RPS3
are highly connected in the crosstalks of gene regulatory
network, but the mechanisms in which the genes involved
to adapt to environmental stresses require further investi-
gation. (3) The TFs serve as the ‘knots’ in the bow-tie
structure and can be viewed as the decision-making
devices of the stress response mechanism. Along with the
observation that protein-protein interactions are more
conserved than TF-gene regulations and the fact that the
gene expression program is controlled by a portion of pro-
teins, TFs, that is smaller than that of the whole genome,
the TFs can be viewed as the ‘knots’ in the bow-tie struc-
ture and the decision-making devices of the stress
response mechanism. Sensing of stress is the first step for
stress response mechanisms, activating different signaling
regulatory pathways under different stress conditions. The
signals transmitted into the cell will converge on the TFs
to adapt different gene programs in order to respond to
the environmental stresses. Our results demonstrated that
136 out of 190 TFs are conserved under all three stresses,
indicating that different stress mechanisms make use of
the same set of TFs. Thus, the interface between gene reg-
ulatory network and signaling regulatory pathway, TFs,
serve as the ‘knots’ in the bow-tie structure of the stress
response mechanism [69]. Because they are knots of the
bow-tie structure of the stress response mechanisms,
the TFs are also highly connected hubs, which improve
the efficiency of information exchange, in the complex

networks. Rapid information exchange has been shown to
be very important for cells to survive under stress. Besides,
when the cell suffers from different types of stress, the TFs
receive different signals from the signaling regulatory
pathway and then make decisions for condition-specific
program of adaptation to respond to these stresses. Conse-
quently, they are also viewed as the decision-making
device [30]. (4) There may be cross-protection between
hyperosmotic stress response and heat shock response.
The crosstalks between these three stress responses were
further distinguished, showing that the crosstalks between
hyperosmotic stress response and heat shock response are
much more than each one with oxidative stress response.
The result can be attributed to the situation where hyper-
osmotic stress and heat shock stress frequently happen
simultaneously, thus sharing part of response mechanism.
This circumstance can also be observed in other organ-
isms. For example, intertidal organisms exposed to heat
shock normally also experience hyperosmotic stress at the
same time [70]; plants suffering osmotic stress caused by
drought in the summer often also have high-temperature
stress [71]. Consequently, there may be cross-protection
between hyperosmotic stress response and heat shock
response, which protect the cell from the harm of these
two stresses simultaneously. From the crosstalks and the
network comparison of different stress responses, we can
investigate the differences and the similarities of different
stress response mechanisms in order to understand the
cellular machinery more thoroughly [72].

Discussion
Since the network reconstruction process is organism
specific and is based on different datasets such as anno-
tated genome sequence, high-throughput network-wide
datasets and bibliomic data on the detailed properties of
individual network components [15], it is not easy for
biologists to efficiently construct the integrated cellular
network by traditional genetic/molecular manipulation.
By integrating different kinds of omics data including

Table 1 Comparison of the three yeast integrated cellular networks under hyperosmotic stress, heat shock, and
oxidative stress.

# Genes # TFs # Proteins # TF-gene interactions # Protein-protein interactions

Candidate network 1260 190 348 11262 2276

Osmotic 1043 176 260 6931 959

Heat 1161 179 280 8330 1186

Oxidative 884 171 250 5556 858

Osmotic & Heat 804 164 252 2615 873

Heat & Oxidative 659 161 242 2175 794

Osmotic & Oxidative 609 159 227 1775 658

All three 388 136 220 733 617

The first row indicates the statistics of the candidate integrated network, which are extracted from omics data and database information. The second to fourth
rows represent the statistics for integrated network identified under each stress conditions. The fifth to seventh rows reveal the crosstalks among each two of
three stress conditions and the last row shows the crosstalks among all three stress conditions.
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microarray gene expression data, regulatory associations
between TFs and genes, and protein-protein interaction
data, we have provided an efficient method based on
coupling dynamic models and statistical assessments to
construct an integrated cellular network in which tran-
scription regulations (gene regulatory network) and pro-
tein-protein interactions (signaling regulatory pathway)
are integrated. The stress response mechanism is the
most adequate example to demonstrate the integrated
cellular network because the signaling regulatory path-
way is highly expressed to sense and transmit the stress
information and the gene regulatory network is
expressed to encode protection proteins to respond to
the stress. Therefore the proposed method was applied
to construct the integrated cellular network of S. cerevi-
siae under different stress conditions. Our results
showed that the constructed integrated network can be
validated by literature evidences, indicating the feasibility
of the proposed method. The highly connected hubs
which are functionally relevant to the hyperosmotic
stress response were also identified and the predictive
power of the proposed method was also demonstrated.
Beyond hyperosmotic stress, the integrated network
under heat shock and oxidative stress were constructed
and the crosstalks of these networks were analyzed,
which is not easily accomplished by traditional biological
experiments.
In this work, a coupling dynamic model was used to

characterize the yeast stress response mechanism from
the network or system point of view. We provide a sys-
tematic and efficient way to move forwards studying the
stress response networks rather than the stress response
genes, which can be done by performing microarray
experiments. However, one inconvenience of using this
method is the lack of protein activity profiles. Thus
there may be some inaccuracies when modeling the
integrated cellular network with the substitution of gene
expression levels. Even so, the well-studied HOG MAPK
pathway was mostly uncovered by the proposed method
and the results were validated by literature evidences.
Once the genome-wide protein activity levels have been
obtained, the accuracy can be improved. The advantage
of the proposed method over others is its flexibility. It
can be employed under all kinds of experimental condi-
tions such as cell cycle or different kinds of diseases and
for all kinds of organisms. Also, our method can be
applied to identify and integrate the cellular networks of
all sizes (see Results and Methods). In other words, the
use of the proposed method is not limited by the num-
ber of genes/proteins. This benefit allows us to explore
both a global view of the integrated network and a more
detailed local view of the gene/protein regulation of
interest. Since the global view of the integrated cellular
network is not easily obtained by time- and labor-

consuming biological experiments, the proposed method
can be used by biologists to extract some useful infor-
mation such as highly connected hubs which is possibly
for further investigation. With slight modification, for
example, by adding one clustering step before dynamic
modeling, the proposed method can also be used to
construct the module networks, in which sets of genes
are co-regulated to respond to different conditions [73].
The major advantage of dynamic modeling is the supply
of quantitative dynamics of the network rather than
qualitative descriptions. Because of the gene/protein
dynamic system we constructed, computational methods
can easily be employed to investigate the integrated
gene/protein network. For example, we can make use of
the dynamic systems to simulate any kind of perturba-
tion such as gene knockout or the interference of exter-
nal disturbances to see the system response for the
perturbation. This can be very useful since the inte-
grated gene/protein system can be modified arbitrarily
to see the predicted consequences. In addition, the
dynamics of the system can be used for theoretical ana-
lysis of the network such as robustness analysis and the
signal transduction ability analysis. The system analysis
and the computational simulation can be served as the
pre-screen and the guidance for further experiments in
the field of synthetic biology [74]. Furthermore, the inte-
grated cellular network can be mapped to the metabolic
network to see how the cells make use of the metabo-
lism to respond to different stresses and to unravel
where and when certain parts of the network are active,
elucidating the cellular machinery from a more compre-
hensive perspective [75,76].

Conclusions
At present, there is no satisfactory method to construct
the integrated cellular network, combining a gene regu-
latory network and a signaling regulatory pathway. We
here provide a systematic and efficient method to inte-
grate different kinds of omics data to construct the inte-
grated cellular network via microarray data based on
coupling dynamic models and statistical assessments.
The integration of transcription regulations and pro-
tein-protein interactions gives more insight into actual
biological networks and it is more predictive than those
without integration [77]. The integrated network con-
struction represents an initial step for further network
comparison and analysis. In our analyses of the S. cere-
visiae stress response mechanism, the significance of
some transcription factors to serve as the decision-mak-
ing devices at the center of the bow-tie structure and
the crucial role for rapid adaptation scheme to respond
to stress are indicated. Furthermore, we also identify
some genes/proteins which are relevant to the stress
responses or are attractive targets for potential disease
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therapies [64]. The method is shown to be powerful and
flexible and can be used under different conditions and
for different species. The dynamic models of the overall
integrated cellular network provide a very useful tool
for theoretical analyses and for further experiments in
the fields of network biology and synthetic biology.

Methods
Data selection and preprocessing
There are three kinds of data used in the method–micro-
array gene expression data, regulatory associations
between TFs and genes, and protein-protein interaction
data. We used the genome-wide microarray data from
Gasch et al. [19] as the stress responses data. They
explored genomic expression patterns in the yeast Sac-
charomyces cerevisiae responding to diverse environmen-
tal transitions for almost every yeast gene, including
temperature shocks, hyper- and hypo-osmotic shock,
amino acid starvation, hydrogen peroxide shock, etc [19].
The genes whose mRNA levels changed by threefold in
at least one of the time courses were chosen as the signif-
icantly responsive genes. The responsive genes with more
than 30% of the time points missing, which were
regarded as unreliable experimental data, were excluded
from further analyses. The transcription factors and the
regulatory associations between TFs and target genes
were obtained from YEASRTACT database http://www.
yeastract.com/ and genome-wide location (ChIP-chip)
data from Harbison et al. [20], in which the genomic
occupancy of 203 DNA-binding TFs was determined in
yeast. YEASTRACT (Yeast Search for Transcriptional
Regulators And Consensus Tracking) is a curated reposi-
tory of more than 34469 regulatory associations between
TFs and target genes in Saccharomyces cerevisiae, based
on more than 1000 bibliographic references [22]. The sig-
nificant binding of Harbison et al. [20] was selected as p
< 0.001, as indicated in their paper. By the stress-respon-
sive genes and the TF-gene regulatory associations
obtained, we have the candidate gene regulatory network,
which is the rough TF-gene regulation pool for building
the gene regulatory network. The last dataset, protein-
protein interaction data, were extracted from BioGRID
database http://www.thebiogrid.org/. The Biological Gen-
eral Repository for Interaction Datasets (BioGRID) data-
base was developed to house and distribute collections of
protein and genetic interactions from major model
organism species. BioGRID currently contains over
198000 interactions from six different species, as derived
from both high-throughput studies and conventional
focused studies [23]. The stress-related proteins of the
candidate integrated cellular network were selected from
Gene Ontology (GO) http://www.geneontology.org/ and
Saccharomyces Genome Database (SGD) http://www.
yeastgenome.org/. Again, based on the stress-related

proteins and the protein-protein interactions extracted,
we have the candidate signaling regulatory pathway,
which provides the rough protein interaction pool for
constructing the signaling regulatory pathway.
In the microarray data from Gasch et al. [19], there

are some missing values. The cubic spline interpolation
method, which employs piecewise third-order polyno-
mials to fit data points, was used to complement the
missing values [78-80]. In order to fit the dynamic
model, the microarray gene expression data was trans-
formed from log2 scale to linear scale.

Dynamic model of the integrated cellular network
The candidate gene regulatory network and the candi-
date signaling regulatory pathway were constructed
respectively (see Figure 2), and the stochastic discrete
coupling dynamic models of these candidate networks
are shown in equation (1) and equation (3). The inter-
play of the transcription regulations and protein-protein
interactions constitutes the framework of the candidate
integrated cellular network.

Identification of the regulatory parameters aij and
interaction parameters bnm
After constructing the coupling dynamic models of the
candidate integrated cellular network, the regulatory/
interaction parameters in the models have to be identi-
fied using the microarray data we have. The strategy is
to identify the integrated cellular work gene by gene
(protein by protein). Before determining the identifica-
tion method, we first examine the dynamic models care-
fully. In equation (1), the basal expression level ki
should be always non-negative, since the microarray
expression of the genes are always non-negative.
Because the parameters in equation (1) have certain
constraints, the regulatory parameters were identified by
solving the constrained least square problems.
Equation (1) can be rewritten as the following regres-

sion form.
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where �i[t] denotes the regression vector which can be
obtained from the processing above. θi is the parameter
vector of the target gene i which is to be estimated. In
order to avoid overfitting when identifying the regula-
tory parameters, the cubic spline method [78-80] was
also used to interpolate extra time points for the gene
expression data. By the cubic spline method, we can
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easily get the values of {zj[tl] xi[tl]} for l Î {1, 2, ···, L}
and j Î {1, 2, ···, N}, where L is the number of expres-
sion time points of a target gene i, and N is the number
of TFs binding to the target gene i. Equation (4) at dif-
ferent time points can be arranged as follows
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For simplicity, we define the notations Xi, Fi, and Ei
to represent equation (5) as follows

X Ei i i i    (6)

The constrained least square parameter estimation
problem is formulated as follows

min
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where A = [0 ··· 0 0 -1], b = 0 give the constraints to
force the basal level ki in equation (1) to be always non-
negative, i.e., ki ≥ 0. The constrained least square pro-
blem can be solved using the active set method for
quadratic programming [81,82].
Again, equation (3) can be rewritten in the following

regression form.
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where ψn[t] indicates the regression vector and hn is
the parameter vector to be estimated. By cubic spline
method, at different time points, equation (8) can be
presented as the following equation.

Yn n n n    (9)

The identification problem is then formulated as fol-
lows

min

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n

n n n nY C d
1
2 2
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where C = diag [0 ··· 0 -1 0 -1] and d = [0 ··· 0]T, indi-
cating that the translation effect an and the basal activ-
ity level hn are non-negative. Since large-scale
measurement of protein activities has yet to be realized
and it was demonstrated that 73% of the variance in

yeast protein abundance can be explained by mRNA
abundance [83], mRNA expression profiles were used to
substitute for the protein activity levels when identifying
the interaction parameters. Due to the lack of protein
activity data and the undirected nature of the protein
interactions in the candidate signaling regulatory path-
way, the sign of the regulatory parameters bnm’s does
not imply activation or repression and there is no direc-
tion between interacting proteins.

Determination of significant interaction pairs
When the regulatory parameters were identified, Akaike
Information Criterion (AIC) [25,26] and student’s t-test
[27], which is used to calculate the p-values of the regu-
latory/interaction abilities, were employed for both
model selection and determination of significant interac-
tions in the integrated network. The AIC, which
attempts to include both the estimated residual variance
and model complexity in one statistics, decreases as the
residual variance decreases and increases as the number
of parameters increases. As the expected residual var-
iance decreases with increasing parameter numbers for
non-adequate model complexities, there should be a
minimum around the correct parameter number [25,26].
Therefore, AIC can be used to select model structure
based on the regulatory abilities and the interaction abil-
ities (aij’s, bnm’s) identified above. Due to computational
efficiency, it is impractical to compute the AIC statistics
for all possible regression models. Stepwise methods
such as forward selection method and backward elimi-
nation method are developed to avoid the complexity of
exhaustive search [84,85]. However, in the case of back-
ward selection method, a variable once eliminated can
never be reintroduced into the model, and in the case of
forward selection, once included can never be removed
[85]. Thus, the stepwise regression method which com-
bines forward selection method and backward elimina-
tion method was applied to compute the AIC statistics.
Once the estimated regulatory/interaction parameters
were examined using the AIC model selection criteria,
student’s t-test was employed to calculate the p-values
[27] to determine the significant regulations/interac-
tions. The p-values computed were then adjusted by
Bonferroni correction to avoid a lot of spurious positives
[27]. The regulations/interactions which adjusted p-
value ≦ 0.05 were determined as significant regulations/
interactions and preserved in the integrated cellular
network.

Combination of gene regulatory network with signaling
regulatory pathway
Once the gene regulatory network and signaling regula-
tory pathway were modeled and identified separately,
there were two sets of dynamic equations comprising
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respective networks. Since there are common compo-
nents to couple these two networks - transcription fac-
tors, these equations can simply be merged to become
one system, the integrated cellular network. In the sche-
matic diagram of the integrated cellular network in Fig-
ure 1, for example, Gene13 was modeled as

x t x t a f y t
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when the gene regulatory network was identified. Also,
TF10 was modeled as
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when constructing the signaling regulatory pathway. In
these dynamic equations, since there are common com-
ponents yTF10[t] coupling these two networks, these two
equations were simply merged to become one system
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which described one part of the integrated cellular
network in Figure 1.
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