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Abstract

Background: Cellular hypoxia is a component of many diseases, but mechanisms of global hypoxic
adaptation and resistance are not completely understood. Previously, a population of Drosophila
flies was experimentally selected over several generations to survive a chronically hypoxic
environment. NMR-based metabolomics, combined with flux-balance simulations of genome-scale
metabolic networks, can generate specific hypotheses for global reaction fluxes within the cell. We
applied these techniques to compare metabolic activity during acute hypoxia in muscle tissue of
adapted versus "naive" control flies.

Results: Metabolic profiles were gathered for adapted and control flies after exposure to acute
hypoxia using 'H NMR spectroscopy. Principal Component Analysis suggested that the adapted
flies are tuned to survive a specific oxygen level. Adapted flies better tolerate acute hypoxic stress,
and we explored the mechanisms of this tolerance using a flux-balance model of central
metabolism. In the model, adapted flies produced more ATP per glucose and created fewer
protons than control flies, had lower pyruvate carboxylase flux, and had greater usage of Complex
| over Complex II.

Conclusion: We suggest a network-level hypothesis of metabolic regulation in hypoxia-adapted
flies, in which lower baseline rates of biosynthesis in adapted flies draws less anaplerotic flux,
resulting in lower rates of glycolysis, less acidosis, and more efficient use of substrate during acute
hypoxic stress. In addition we suggest new specific hypothesis, which were found to be consistent
with existing data.

Background nisms of hypoxic cell death and defense systems is needed
Hypoxia is a component of many diseases and can have  as a prerequisite.

devastating effects on the cell. A major goal of medical

research is to design therapies to enhance cellular defenses ~ Metabolically, the primary effect of reduced oxygen levels
to hypoxic insult, but more basic research on the mecha-  is a dramatic drop in respiratory activity in the mitochon-
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dria. The cell is forced to depend on glycolysis for ATP,
though glycolytic ATP production is only a fraction of
mitochondrial output, and acidosis occurs as mitochon-
drial consumption of protons slows [1]. The loss of ATP
and increased acidosis may cause damage by a number of
mechanisms and imbalances [2-5], but it is not conclu-
sively known which of these is responsible for cell death.

Systems biology seeks to build quantitative computer
models of biological networks, in order to derive testable
hypotheses from large and complex datasets [6]. Recently,
genome sequencing and other high-throughput technol-
ogy has allowed researchers to integrate multiple genome-
wide datasets to build global models of cellular activity
[7]. The cellular response and defenses to hypoxia are far-
reaching and complex [8], therefore our understanding of
these mechanisms may also benefit from a global systems
approach.

Drosophila melanogaster has been a common model organ-
ism both for systems biology approaches and for hypoxia
research because of the well-known genome, useful tools
for genetic manipulation, fecundity and short lifespan of
the fruitfly, as well as for its innate tolerance to extreme
fluctuations in oxygen levels [9]. In addition, many
hypoxia response genes are shared between flies and
humans [10,11]. We previously built a network recon-
struction of central metabolism using the fly genome, and
then integrated microarray and metabolomic data to
refine the network to represent reactions active in hypoxic
muscle tissue. In separate studies we then simulated fluxes
within the network in order to study mechanisms of
hypoxia tolerance in normal [12] and aging [13] flies.

Here we apply a similar technique to a population of flies
that we had previously adapted for enhanced hypoxia tol-
erance using experimental selection [14]. We hypothesize
that this special population of hypoxia-adapted flies regu-
late central metabolism in novel ways, in addition to
other mechanisms for hypoxia tolerance discovered in
past studies [14,15]. However, metabolic adaptations to
hypoxia in adapted flies are completely unknown, and
because of the random nature of directed evolution,
changes that confer improved function can be completely
unexpected. Therefore, new observations are needed to
help generate new hypotheses for possible mechanisms,
and these measurements should be made from a global
perspective. We propose a discovery-based strategy to find
global flux differences in this population versus a control,
in order to find targets for more detailed follow-up using
classical biochemical and molecular biology methods.
Basic science understanding of novel mechanisms for
hypoxia tolerance in this special population of flies may
spur future translational applications, but this is not
directly a disease model.

http://www.biomedcentral.com/1752-0509/3/91

In this study we applied 'H NMR spectroscopy to measure
metabolic profiles for adapted and naive (control) flies,
then examined these profiles by multivariate analysis to
find the main sources of metabolite variation and observe
how the groups clustered and shifted within multidimen-
sional space under hypoxic stress.

Next, we approximated fluxes by the difference between
hypoxia and baseline measurements, fitted the model to
these fluxes as constraints, and compared ATP efficiency
and proton accumulation between adapted and naive
flies. Enzyme-controlled fluxes were compared across
groups, and similarly to our previous work we found dif-
ferences in fluxes of pyruvate metabolism, though the spe-
cific mechanisms were different. Finally, we compared
fluxes in the model to differential expression of genes in
the microarray data, which pointed to enzymes involved
in pyruvate metabolism. Here we have only examined
aspects of adaptation present in central ATP-producing
metabolism. Other studies have examined non-metabolic
aspects [14,15] and research is ongoing in these areas.

Results

Experimental overview

We gathered metabolic profiles for hypoxia-adapted and
naive control flies under their respective chronic culture
conditions (4% and 20% oxygen, respectively) and under
acute hypoxia (4 hours at 0.5% oxygen). Next, acute
hypoxia stimuli were applied, with the assumption that a
4-hour timescale would long enough for metabolism to
adapt to a new steady state, but short enough to avoid
gene expression changes. We measured naive flies at 4%
(after 4 hours) to compare with adapted flies in their nor-
mal state. Then, adapted flies were measured after cultur-
ing for one generation in room air and then subjected to
acute hypoxia (4 hours at 0.5%), in order to compare
acute stress over a similar step size (from 20% to 0.5%
0,). For simplicity and to differentiate the hypoxic stress
conditions, we labeled the experimental conditions as
"steady state" for chronic culture conditions, "perceived
hyperoxia" for adapted flies cultured in room air, "mild
hypoxia" for smaller steps in oxygen (moving adapted
flies from 4% to 0.5% and naive flies from 20% to 4%
0,), "severe hypoxia" for the large step size (naive flies
from 20% to 0.5% O,), and "severe hypoxia from hyper-
oxia" for the adapted flies cultured in room air and sub-
jected to hypoxia. Males and females were measured
separately for each experiment. The experimental groups
are summarized in Figure 1.

In 0.5% oxygen, the condition for which simulations were
run, both populations were in a stupor and not able to fly.
However, recovery of function from anoxia is indeed
faster in the adapted population [14], and adapted flies
were observed to have more activity in 4% oxygen than
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Metabolomic measurement summary

Naive Adapted
20% O2 Cultured me  Cultured
\L B Hyperoxia
4% O3 4-hour Cultured B Steady state
stimulus M Mild hypoxia
M Severe hypoxia
M Severe hypoxia
0.5% O2 4-hour 4-hour  4-hour from hyperoxia
stimulus stimulus  stimulus

Figure |

Summary of experimental conditions. Summary of the experimental conditions for the 7 metabolic profiles. Measure-
ments were gathered for both males and females in all conditions illustrated, for a total of 14.

controls, though physical activities such as flight have not
been quantified.

Raw concentration profiles

Thirty-five metabolites appeared in 14 different metabolic
profiles (males and females from the 7 experiments listed
in Figure 1), making the data difficult to examine by direct
inspection. One trend, however, is readily apparent in the
raw data. Except for the "severe hypoxia from hyperoxia"
group, which had different behavior than all other groups
as explained in the next section, hypoxic stress tended to
increase the levels of most metabolites including free glu-
cose. This is consistent with previous experiments and
implies that, since not every metabolite can be an anaero-
bic end product, substrates such as starches and proteins
are broken down into monomers for fuel faster than they
can be consumed by catabolic pathways. Raw concentra-
tion profiles for the greatest changing metabolites are pro-
vided [see Additional file 1, Figure S1].

Principal component analysis

Principal component analysis (PCA) is a mathematical
technique that can reduce the dimensionality of the data
and provide an unbiased determination of which metab-
olites vary the most across groups, and by how much.
When the 14 metabolic profiles were decomposed by
PCA, the first three Principal Components (PCs)
accounted for 90% of the variation in the data [see Addi-
tional file 1, Figure S2]. Each PC is composed of several
weighted metabolite contributions. Table 1 lists the top
three PCs and the compounds contributing more than 5%
weight. These are the "basis sets" of metabolites that cause
most of the variation between samples. Each experimental
measurement can be decomposed into a baseline metab-

olite profile plus some linear combination of these princi-
pal components specific to that measurement.

The first Principal Component had a wide, flat distribu-
tion of weights for almost all metabolites, meaning that
most of the variation during hypoxia was due to a global
increase in free compound levels, which is the expected
result as the cells break down macromolecules such as
starches and proteins in order to free stored energy (this
trend is apparent in the raw data). Principal components
2 and 3 account for variation in key metabolites such as
oxalacetate, glucose, lactate, alanine, and acetate, which
are produced in varying amounts in the different groups.

Furthermore, the experimental groups cluster in patterns
in the Principal Component space that can provide inter-
esting biological insight. This technique can be used to
visualize the different experimental groups and their
hypoxic responses in multidimensional space, as shown
in Figure 2, and Table 1 can be used to trace movements
within this space back to specific metabolites. Figure 2
shows that "steady state" profiles - groups measured in
their chronic level of O, - tend to cluster in the same
region in PC space. In contrast, the "perceived hyperoxia"
group (adapted flies cultured at 20% O,) appeared in the
same region of the metabolic space as the groups meas-
ured under hypoxic stress. In other words, adapted flies in
4% oxygen have similar metabolic signatures as normal
flies in normoxia, but when adapted flies are cultured in
normoxia they resemble a stressed state. This result hints
that the metabolic adaptations of the adapted flies are spe-
cifically tailored to their chronic level of oxygen, rather
than to oxygen fluctuations in general (presumably a sta-
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Table I: Principal component weightings for the metabolomic data
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PC 1:61% PC 2: 18% PC3:11%

Metabolite Weight Metabolite Weight Metabolite Weight
Glucose 0.491 alanine 0.458 oxalacetate 0.187
alanine 0.456 glucose 0.370 glucose 0.183
oxalacetate 0.389 lactate -0.128 alanine 0.127
glutamate 0.325 oxalacetate -0.783 acetate -0.952
b-alanine 0.298

acetate 0.228

lactate 0.225

Metabolite weighting in top three Principal Components (contributing at least 5% of PC total).

ble genetic modification since this group was cultured
from embryo in normoxia),

Because the "perceived hyperoxia" group (adapted flies in
normoxia) appeared to be in a stressed state, had more
variable NMR metabolomic data both before and after
hypoxia, and differed widely for males versus females, this
group is excluded in the presentation of flux-balance anal-
ysis in the next section. However, data for all groups,
including "severe hypoxia from hyperoxia," are provided
[see Additional file 2].

For all other experiments, males and females in the same
group tended to cluster together in PC space and their
hypoxic shifts were often similar. The overall similarity of
metabolic signatures between males and females lends
some confidence to the precision of the NMR data for
these groups. Therefore, for simplicity, presentation of
flux-balance analysis in the next section will be limited to
males, though the general conclusions were found to hold
for both sexes. Data for both sexes are made available [see
Additional file 2].

For the three experiments subjecting "steady state" groups
to 4-hour hypoxia (naive flies in 4% and 0.5% oxygen and
adapted flies in 0.5% oxygen), we used flux-balance anal-
ysis to examine network-level features of metabolic
changes.

Overview of simulation conditions

Important metabolites for energy metabolism such as
NADH, ATP, ADP, acetyl-CoA, and creatine were not seen
in sufficient concentrations in the 'H NMR spectra to
quantify, however, they are all present as important varia-
bles within the model. The model links mass substrate
fluxes to all of these metabolites via a stoichiometrically
precise reaction network that includes and therefore bal-
ances NAD+ and NADH. Also important is the timescale
of the experiments. Creatine and phosphocreatine (and
more importantly the analogous arginine and phos-
phoarginine system in flies [16]) are important as a buffer
for short-term fluctuations in ATP/ADP ratios, and ade-

nylate kinase similarly protects ATP/AMP ratios in the
short term. However, we have chosen a 4-hour timescale
to emphasize steady-state fluxes over short-term feedback,
and so even though these reactions exist in the model,
they are not used.

Ten metabolites were chosen for fitting the model, based
on the requirements that they (1) were present in the
NMR spectra in sufficient concentrations for all experi-
mental conditions, (2) were represented in our metabolic
reconstruction, and (3) changed concentration (accumu-
lated or dissipated) in a direction that was feasible with
the model. Fluxes were approximated by dividing differ-
ences in two concentrations by the experiment time (4
hours), and standard errors for fluxes were derived by add-
ing the variances of the two concentration measurements.

Glycogen availability was left unconstrained for all simu-
lations. This assumption was supported by the large
increase in free glucose for most hypoxic measurements,
indicating that glycogen and trehalose breakdown sup-
plied glucose monomers faster than the system could use
them. Reactions for fatty acid catabolism are present in
the model, but literature data has suggested that flight
muscle metabolism in closely related insects (order Dip-
tera) is almost completely based on carbohydrates
[17,18]. The large deposits of glycogen in flight muscle of
flies, the depletion of these reserves after prolonged
flights, and the rapid catabolism by flight muscle in vitro,
indicate that glycogen is the carbohydrate that provides
the major source of energy for meeting the metabolic
requirements of active flight [19]. In hypoxia, we have
seen large depletion of the glycogen reserves as well, sug-
gesting this remains the major source of energy in the face
of oxygen fluctuations [13]. However, since lipids are dif-
ficult to distinguish and quantify using 'H NMR, we have
not measured whether fats or lipids remain unused as an
energy source during hypoxia. Lipids could be measured
in future experiments, for example using gas chromatog-
raphy followed by mass spectrometry (GC-MS), in order
to confirm this.
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Figure 2
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Component 1

Principal component analysis of the metabolic profiles. Average group scores along the first three principal compo-
nents (PCs). Lines represent shifts from 4-hour hypoxia stimulus. Groups are separated by color according to the code in Fig-
ure |. Figure 2 plots average scores for all 14 groups within the first 3 PC dimensions. The top axes display the average scores
along PC | and PC 2, and the bottom axes plot PC | versus PC 3. Lines are drawn to connect steady state profiles for each
group with profiles under acute hypoxia conditions. The direction and magnitude of these lines can be directly mapped to
changes in specific metabolites using Figure S| in the supplementary data.
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We did not have measurements of oxygen consumption,
which presented a modeling challenge. Since our flux-bal-
ance model optimizes for ATP production, the combina-
tion of unconstrained glycogen and unconstrained
oxygen would simply produce infinite fluxes of both.
Instead, for each experiment we swept the oxygen con-
sumption constraint over ranges that encompassed the
qualitative features of the model.

Oxygen consumption requirements in simulation

Every simulation required some minimum level of oxygen
to produce the organic end products observed in the NMR
spectra, below which the model was infeasible. The mini-
mum feasible oxygen uptake was less than 5 nmol O, per
minute per mg protein for all three simulations, much
lower than physiological measurements of normoxic oxy-
gen uptake on the order of 1,000 and 3,000 nmol O, per
minute per mg protein in mitochondria, and per mg dry
weight in whole flies, respectively [20,21]. In hypoxia at
4% O,, oxygen consumption was previously measured
roughly on the order of 2,200 nmol O, per mg [14], devi-
ating only a small amount between naive and adapted
flies, and still two orders of magnitude higher than the
minimum uptake suggested by the model. A trend of
lower minimum oxygen consumption in adapted flies can
be seen [see Additional file 1, Figure S3], possibly suggest-
ing greater flexibility in regulating oxygen demand, but
this trend was not statistically significant for the three
groups tested.

Key hypoxia tolerance indicators

At the physiological ranges of oxygen uptake noted above,
mitochondrial respiration still dominates central metabo-
lism, masking subtler differences in fluxes. Therefore, to
focus on interesting differences between groups and since
we do not have measurements of true oxygen uptake
"operating points" for each group, we compared ATP pro-
duction across models using a common oxygen uptake
that was as low as possible while still producing a feasible
result for all simulations (O, uptake = 4.8 nmol/min/mg
protein). The true flux distributions in the organism are a
superimposition of the hypoxic pathways shown, plus
some large flux through glycolysis and mitochondrial res-
piration. Since respiration is neutral in terms of protons
and produces no end products besides CO,, and also since
small changes in ATP production rates can have major
effects in concentration over the long term, hypoxic flux
patterns shown here are likely to be important for hypoxia
tolerance even though their magnitudes are small relative
to the concurrent high levels of respiration seen in physi-
ological conditions.

In adapted flies ATP production is higher at a common O,
uptake than both groups of naive flies (p < 0.05, see Figure
3), and experiments sweeping the oxygen constraint sug-
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gest that this holds for any given O, uptake rate [see Addi-
tional file 1, Figure S3]. As a corollary, O, consumption is
also lower in adapted flies for any given ATP output.
Therefore, although we did not have measurements of
oxygen consumption for each group, simulations suggest
that the hypoxia-adapted metabolism is more efficient in
terms of ATP/O,, regardless of where the O, "operating
point" may lie.

Key ratios of hypoxia tolerance were compared across
groups at this common oxygen uptake rate. As shown in
Figure 4, proton production per ATP (H+/ATP) was lower
in adapted flies as well as substrate efficiency - adapted
flies consumed less glycogen substrate per ATP (Glycogen/
ATP) than naive flies. These results hold for females, and
when not normalized for ATP production. The differences
are more pronounced at lower oxygen uptake, but hold
true for all O, uptake rates.

Proton production within the model is complex. A recent
review describes well the detailed mechanism for proton
production by ATP hydrolysis during hypoxia [22]. In it
the authors use the stoichiometry of proton handling to
argue that it is the hydrolysis of the two ATP created by
glycolysis that produces a proton each, and the pyruvate
to lactate reaction actually consumes one proton, result-
ing in a net +1 proton for conversion of glucose to lactate.
On the other hand, each pyruvate that is diverted through
PDH for mitochondrial oxidation consumes two net pro-
tons, which balances the protons created by hydrolysis of
ATP produced in forming that pyruvate molecule. There-
fore, each pyruvate diverted out of the mitochondrion for
conversion to lactate (or to any end product, e.g. alanine)
decouples this zero proton balance and accumulates aci-
dosis in the cytoplasm [22]. Our model accounts for the
proton stoichiometries of all of the key transporters and
reactions involved in ATP production and ATP consump-
tion, and shows the behaviour just described. From this
perspective, and within our model, it is the degree of
decoupling of glycolysis from mitochondrial respiration
that produces acidosis, rather than the creation of lactate
as the specific end product.

Comparison of active pathways

We inspected differences in enzyme fluxes at this simu-
lated oxygen uptake. Each experimental group likely oper-
ated at a different O, uptake, but for the reasons argued
above, simulations were again compared at minimum
feasible O, for all groups. As with the previous two figures,
Figure 5A depicts flux simulations generated from NMR
data in males for the three experimental groups that
started at steady state culture conditions. All reactions
with nonzero fluxes that were not transport or exchange
reactions (i.e. enzyme-linked transformation reactions)
were ranked for the largest differences across experimental
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30 ATP production at equivalent oxygen uptake

25

HH

H

20

ATP production (nmol/min/mg prot)

20% ->4% 20% ->0.5% 4% ->0.5%
(mild) (severe) (mild)
Naive controls Hypoxia adapted

Figure 3

ATP production in simulations. Simulations of ATP pro-
duction at a common O, uptake rate (4.8 nmol/min/mg pro-
tein) for groups starting from their steady state
concentrations (20% for naive controls and 4% for adapted
flies). For equivalent oxygen uptake, adapted flies are able to
produce more ATP than naive controls (p < 0.05 for all com-
parisons of the three groups). The O, uptake rate was set
near the minimum allowed uptake for all three simulations to
produce feasible results. Error bars indicate standard devia-
tion of 100 simulations incorporating the variances of NMR
measurements, as detailed in the text. For simplicity, data are
shown for males only.

groups. Fluxes with the largest difference across these
groups are shown.

The values presented in Figure 5A are fluxes rather than
concentrations. Hypoxic production of metabolites in
insect flight muscle is not well documented in the litera-
ture for comparison, although whole alder leaf beetles
produced just over 4 pmol/g lactate after 10 hours, which
is approximately 6 pmol/min/mg [22]. These were calcu-
lated from wet weight rather than dry weight, which might
partially account for the discrepancy with our measure-
ments. Also, when compared with mammals, insects
often produce much less lactate. In locust brain, 10
umoles/g lactate were measured after 4 hours without
oxygen, which is about what an ischemic mouse brain
produces in 2 minutes [23].

Figure 5B shows the pathway interpretation of the com-
parison of simulated hypoxic fluxes. These fluxes are com-
parisons between adapted and naive flies during hypoxia,
and do not represent regulation from normoxia to
hypoxia. Pyruvate kinase (PYK), the last step in glycolytic
formation of pyruvate, is representative of the lower glyc-

http://www.biomedcentral.com/1752-0509/3/91

olytic flux in adapted flies. Pyruvate fermentation to
alanine by alanine transaminase (ALAT) is active in con-
trols but shut down almost completely in adapted flies,
but lactate production from lactate dehydrogenase
(LDH), shown for comparison, is similar among the
groups. Pyruvate carboxylase (PC), an anaplerotic reac-
tion producing oxalacetate from pyruvate, is less by nearly
half in adapted flies, while pyruvate dehydrogenase
(PDH) and acetate production from acetyl-CoA synthase
(ACS) are greater in the adapted population.

The electron transport chain also shows important differ-
ences among the groups. During hypoxia, adapted flies
utilize Complex I (NADH dehydrogenase) at a higher rate,
while naive flies rely more on Complex II (succinate dehy-
drogenase) activity. The Complex II flux in naive flies is
driven by the glycerol phosphate shuttle (GPDH), which
transports accumulated cytosolic reducing equivalents in
the form of NADH to the mitochondria in the form of
FADH,. A reducing equivalent entering the electron trans-
port chain via Complex I generates more ATP and con-
sumes an additional proton, compared with one entering
via Complex II. Experiments in isolated mitochondria
have also demonstrated that activation of Complex II pro-
duced a lower P/O ratio (ATP produced per oxygen con-
sumed) than Complex I [20].

Discussion

Previously, Zhou et. al. used experimental selection over
several generations to adapt a Drosophila population to be
able survive chronic hypoxia. These flies are also able to
recover more quickly after acute hypoxia than "naive"
control flies. Adaptation to hypoxia is a remarkable feat
for directed evolution over a relatively small number of
generations, considering the complexity and scale of cel-
lular mechanisms involved in oxygen regulation.

We studied metabolic aspects of this adaptation, first
measuring metabolic concentration profiles using 'H
NMR spectroscopy. Principle Component Analysis (PCA)
of concentration profiles suggested that these genetic
adaptations are optimized for a single oxygen concentra-
tion, since metabolic profiles of adapted flies raised in
normoxia closely resemble the metabolic signatures of
acute hypoxic stress, rather than resembling the signatures
of either group in their normal steady state (i.e. adapted
flies in chronic hypoxia or control flies in normoxia). In
other words, moving hypoxia-adapted flies to normoxia
causes a "perceived hyperoxia" that induces metabolic
stress. As these flies grew under normoxia through their
entire life cycle, the stress-like behavior in metabolism
may reflect the genetic differences rather than post-trans-
lational adaptation, although the gene(s)/mechanism(s)
remain to be determined.
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Key ratios for hypoxia tolerance (equal O2 uptake)
0.6

——

0.5 [ Naive 20% -> 4%
[ INaive 20% -> 0.5%

0.4 [ TAdapted 4% -> 0.5%
0.3 [

H

0.2

0.1

Metabolite flux per ATP produced

H

H+/ATP Glycogen/ATP

Figure 4

Key measures of hypoxia tolerance in simulations.
Production of key ratios for hypoxia tolerance at a common
O, uptake rate (4.8 nmol/min/mg protein). Naive flies have
lower proton/ATP and substrate/ATP ratios than adapted
flies at any given oxygen supply (p < 0.05 for all comparisons
of adapted versus the two naive control groups, and p < 0.05
for differences in H+/ATP ratio between the two controls).
Error bars indicate standard deviation of 100 simulations
incorporating the variances of NMR measurements. H+
stands for proton accumulation. For simplicity, data are
shown for males only.

Although multivariate analysis has little to say about
detailed molecular mechanisms of hypoxia tolerance, the
results from PCA extracted a list of metabolites that may
play an important role in these tolerance mechanisms.
Statistical correlations between specific metabolites and
experimental groups cannot be interpreted as causation,
since these changes can be indirect effects of upstream reg-
ulation. However, the fact that the metabolic profiles
showed consistent patterns across gender and experimen-
tal conditions suggests that there are general properties to
be discovered in metabolic regulation of adapted flies. To
investigate differences at the level of pathway activity, we
fitted a network model of fly metabolism to fluxes esti-
mated from the time course of metabolite profiles.

Model-generated hypotheses for improved hypoxia
tolerance

When we fitted a flux-balance model to metabolic pro-
files, simulations of hypoxic metabolism in adapted flies
performed better than the control population by specific
measures of hypoxia tolerance relating ATP production,
oxygen and substrate uptake, and proton production.
When the simulations were compared at the network
level, the differences in these measures could be traced to
increased use of Complex I over Complex II in the mito-

http://www.biomedcentral.com/1752-0509/3/91

chondria of adapted flies. Complex I is more efficient by
these measures, since P/O ratio and proton uptake are bet-
ter via this entry point in the electron transport chain [20].
These fluxes co-occur with the uncoupling of glycolysis
from mitochondrial pathways during hypoxia in naive
flies, with glycolysis and pyruvate carboxylation to oxala-
cetate higher and pyruvate dehydrogenase lower as com-
pared to adapted flies.

The summary of pathway differences during simulations
of hypoxia are that adapted flies have lower glycolytic flux,
greater use of PDH over PC to metabolize glycolytic pyru-
vate, decreased shuttling of reducing equivalents from gly-
colysis to the mitochondria, and greater flux through
Complex I as compared to the naive control population.
Figure 5B is a cartoon depiction of these pathways.

Additionally, two mechanisms in the model add to the
improved ATP generation of adapted flies under acute
hypoxia. First, the excess glycolytic activity in naive flies is
diverted through pyruvate carboxylase and into oxalace-
tate, at a cost of one additional ATP for the conversion
plus a pyruvate that would be used more efficiently in
another pathway. Second, the use of the acetate pathway
results in an additional generation of ATP for each pyru-
vate consumed.

These conclusions were robust with respect to the choice
of oxygen uptake at which we ran the model. Regardless
of whether the groups are compared at a common level of
ATP production, at a common O, consumption, or
whether each group is simulated at its own minimum fea-
sible oxygen uptake, there were clear differences in glyco-
lytic flux and pyruvate carboxylase activity, resulting in
heavier use of Complex I and increased ATP generating
efficiency in the adapted flies.

In normal conditions, pyruvate carboxylase is an ana-
plerotic reaction used to replenish oxalacetate, "priming"
the TCA cycle after other pathways extract intermediates
for biosynthesis. The decreased use of this enzyme during
hypoxia in adapted flies might be a result of global sup-
pression of biosynthetic activity.

Experimental support for the generated hypotheses

The model predictions presented here offer precise mech-
anistic hypotheses, some of which can be tested experi-
mentally. Specifically, it can be tested whether Complex I
activity in the electron transport chain is greater than that
of Complex II in adapted flies. In fact, experiments in iso-
lated mitochondria do show downregulation of Complex
IT in adapted flies [24]. This study also showed decreased
oxygen consumption in the mitochondria of adapted
flies, which supports the trend of lower minimum oxygen
uptake in adapted flies [see Additional file 1, Figure S3].
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In simulations, the effects on the electron transport chain
were linked to regulation of pyruvate metabolism. The
pyruvate branch point was also implicated as the main
nexus of hypoxic metabolic regulation in our previous
work [12], and in a separate study measuring flux distribu-
tions during acute hypoxia in yeast [25]. Low correlation
between the global flux response and transcriptional
response to acute hypoxia suggested post-transcriptional
mechanisms of regulation [25].

Transcriptional data are available for adapted versus naive
flies as well. The microarray data of adapted flies obtained
previously [14] showed many changes in gene expression
after adaptation to chronic hypoxia, but no individual
genes coding for enzymes in our model exceeded their sig-
nificance threshold. However, connected modules of reg-
ulated genes are less likely than individual genes to be
significant by chance and thus the same significance
threshold is not applicable. Therefore, we mapped the
gene expression measurements to our data and explored
the effect of a slightly reduced significance threshold (Fig-
ure 6). After adjusting the threshold to 10% changes in
expression, a cluster of enzymes near the pyruvate branch-
point reaches the threshold. Pyruvate carboxylase is
slightly downregulated and pyruvate dehydrogenase is
upregulated. In addition, malate dehydrogenase expres-
sion is upregulated, which could cause additional inhibi-
tion of pyruvate carboxylase by dominating the
production of their shared product. Metabolic Control
Theory [26] has demonstrated that tighter control of path-
way fluxes can be maintained by regulation of demand
than supply, i.e. near the end of a pathway. Therefore, this
differential control of the fate of pyruvate may be enough
to drive the increase in glycolysis, and may also be a target
for enhancing hypoxia tolerance.

The effect of hypoxic stress depends on a critical mito-
chondrial PO, at which, in its simplest form, cellular ATP
demand outweighs ATP production by respiratory path-
ways. Hypoxia-adapted flies are likely to have many
changes in oxygen handling and transfer, as well as regu-
lation of ATP-consuming pathways, but together these
may have the combined effect of adjusting this critical
point in which respiration slows and anaerobic pathways
begin to take over. Our analysis of the minimal oxygen
required to produce the observed metabolite fluxes pro-
vides a hint that this critical PO, may be lower in adapted
flies. The fact that physical activity is higher in adapted
flies than naive flies at 4% O, also supports this hypothe-
sis, but ongoing experiments in isolated mitochondria
will provide more direct evidence.

Conclusion
Using a flux-balance model driven by NMR-based metab-
olomic data, we compared metabolic pathway activity

http://www.biomedcentral.com/1752-0509/3/91

during acute hypoxia between populations of hypoxia-
adapted and naive control flies. Simulations showed
higher ATP production, lower proton production, and
reduced substrate uptake in hypoxia-adapted flies for
equivalent uptake of oxygen.

Our results suggest a systems-level framework for meta-
bolic improvements in adapted flies, which we summa-
rize as follows. Since both populations of flies are in a
stupor at 0.5% oxygen, consumption from muscle activity
is assumed to be relatively small and we assume that most
ATP consumption is from cellular maintenance and bio-
synthetic processes. Complex I in the electron transport
chain produces more ATP and consumes more protons
per oxygen and per glucose substrate than Complex II.
Also, since Complex I uses mitochondrial NADH and
Complex II uses reducing equivalents shuttled from the
cytosol, the ratio of I/II is an indicator of the coupling
between glycolysis and the TCA cycle. In normoxia, glyco-
lysis and TCA activity are highly coupled, and most pyru-
vate from glycolysis goes into the TCA cycle. This is the
most efficient for the organism in terms of oxygen, ATP,
carbohydrate substrate, and protons. These measures of
metabolism are important for long-term survival under
hypoxia, since [ATP] and pH must be maintained and
energy supply should be conserved in any hypoxia toler-
ant organism. However, biosynthesis and other metabolic
demands require carbon intermediates to be taken out of
the TCA cycle. To make up for this, glycolysis is increased
and pyruvate carboxylase replenishes the carbon at the
start of the cycle. The increase in glycolysis is an uncou-
pling from the TCA cycle that causes greater use of Com-
plex II, and less efficient ATP production (by the above
measures).

The model suggests that adapted flies, for each O2 con-
sumed, tend to have decreased glycolysis and pyruvate
carboxylase fluxes, and produce acetate rather than oxala-
cetate. These difference in fluxes are linked to tighter cou-
pling of glycolysis with the TCA cycle, less anaplerotic flux
(suggesting less biosynthesis) and more efficient ATP pro-
duction. Although we present the case of acute hypoxia, it
seems probable that similar patterns are present in
chronic conditions, since the comparatively small size of
adapted flies indicates downregulated anabolic activity
[14]. Indeed, suppression of biosynthesis is a common
mechanism for surviving hypoxic conditions [8]. The ben-
efits of this overall strategy are reinforced by the recent dis-
covery that hypoxia tolerance in C. elegans is improved
when protein translation is suppressed [27].

In flux-balance analysis, simulations are parameter free
and adhere only to the stoichiometry of the reactions and
the law of conservation of mass. Therefore, sources of lim-
itations in these analyses are (1) completeness of the
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model, e.g. if reactions are improperly compartmental-
ized, stoichiometrically inaccurate, or omitted from the
model altogether; (2) steady state approximation, which
assumes that over the time course of the experiment the
there is no change in reaction fluxes or metabolite concen-
trations with the system, and therefore a change in system
state happens instantaneously at time zero; (3) the meta-
bolic objective function used to optimize the fluxes; and
(4) the quality of the experimental data used to constrain
the model.

Our results have significant limitations in all categories.
Certain aspects of metabolic control are not able to be
modelled, for example the important effects of membrane
potential and dynamic control of mitochondrial transport
(e.g. proton leak and adenine nucleotide transposase -
ANT). However, since the model is compartmentalized,
transporters such as ANT are explicitly represented; how-
ever, their expression levels are not modeled and therefore
fluxes through them are unconstrained. Additionally,
concentration levels are not present in the flux model and
so concentration-based feedback loops are not consid-
ered. As for completeness of model reactions, this was the
third iteration of the model and the likelihood that active
reactions are included is increasing. Previous time course
measurement of metabolic end product concentrations in
flies showed a roughly linear increase in during 4 hours
hypoxia [12]. The metabolic objective of ATP production
is likely to be accurate for such an energy intensive tissue
as flight muscle, even though the flies are in a motionless
stupor during the experiment. Further, we have focused
on differences between two populations, therefore limita-
tions in experimental data and the application of steady
state are shared by the control and test populations.

In light of these limitations, this approach is most useful
as a platform for discovery, generating a system-level
hypothesis for metabolic adaptation to hypoxia, which
must be followed up by detailed experiments. The net-
work perspective provides stoichiometrically precise links
that connect metabolites, reactions, and cofactors. There-
fore, the multiple effects presented are actually a single
network-level hypothesis, and a supporting experimental
result in one part of the system provides evidence for this
overall network activity. In this case, the experimental
finding that in adapted flies Complex I activity is greater
than Complex II activity during hypoxia [28] supports the
network-based hypothesis presented, which is highly
interconnected and cannot easily be separated into its
components. Gene expression data in Figure 6 provide
some additional support. However, it is necessary to per-
form more detailed experimentation on other compo-
nents in the system. For example, it would be reasonable
to hypothesize that the simulated differences in fluxes of
the PDH and PC enzymes between adapted and control

http://www.biomedcentral.com/1752-0509/3/91

populations during acute hypoxia would manifest as dif-
ferential enzyme activity in vitro. Additionally, the ratio of
PDH to anaplerotic activity can be adjusted pharmacolog-
ically. For example, the PDH kinase inhibitor dichloroac-
etate has been used to increase PDH flux relative to
anaplerosis (via malic enzyme), resulting in improved
bioenergetics and contractile function in a mouse model
of cardiac hypertrophy [29,30]. This compound could be
a candidate for improving in-vivo hypoxic recovery in nor-
mal flies by slowing anaplerosis through PC, thereby tun-
ing the metabolic network toward the adapted state.
Detailed follow-up of these specific hypotheses may lead
toward new avenues of investigation.

Methods

Three separate populations of adapted flies were cultured
in hypoxic conditions as described in [14], in parallel with
three normoxic control populations. At 3-7 days old, 1-2
groups each of 25 males and 25 females were extracted
from each population culture (total of 5 groups male and
5 groups female), subjected to one of the several experi-
mental oxygen conditions described in the text, and snap
frozen at the end of the timepoint. For each group of 25
flies, 20 thoraxes were separated from head and abdomen
with microforceps on dry ice under a dissecting micro-
scope and stored at -80°C until measurement.

NMR spectra were gathered for each group as follows.
Thoraxes were homogenized in an ice bath for 3 minutes
in 300 pL of cold 1:1 acetonitrile:water buffer, using an
OMNI TH homogenizer. Homogenates were centrifuged
in an ice bath (4°C) for 10 minutes at 12,000 RPM. 10 pL
of the supernatant was used to determine the total protein
concentration by the Bradford methods. For the Bradford
assays, samples were diluted 10 times with extraction
buffer. The supernatant was ultracentrifuged for 30 min-
utes at 8,500 RPM using Nanosep centrifugal devices (Pall
Life Sciences, Ann Arbor, MI) with a 3 kDa molecular
weight cutoff. To reduce the contamination by glycerol, a
membrane wetting agent, to below 80 uM, all Nanosep
devices were washed 4 times (by 5 minutes centrifugation
at 13,000 RPM) with 500 pL deionized water. Filtrate was
lyophilized using a vacuum centrifuge for 2 hours at
45°C. Samples were stored at -80° C until measured.

Dried samples were dissolved in 500 uL D,O buffered at
pH 7.4 with monobasic/dibasic sodium phosphate. The
NMR standard TSP (3-trimethylsilyl-2H,-propionic acid)
was added to the samples at a ratio of 1:100 by volume,
resulting in a concentration of 0.488 mM. Analyses of
samples were carried out by 'H NMR spectroscopy on a
Bruker Avance 500 operating at 500.13 MHz 1H reso-
nance frequency. The NMR probe used was the 5 mm TXI
1H/2H-13C/15N Z GRD. All NMR spectra were recorded
at 25°C. Typically 'H were measured with 512 scans into
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Mapping adapted fly gene expression to Drosophila muscle metabolic network
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Figure 6

Gene expression differences between adapted and naive flies. Microarray data mapped to the metabolic reconstruc-
tion with a threshold of 10% change in expression. At the pyruvate branchpoint, pyruvate carboxylase is downregulated and
pyruvate dehydrogenase upregulated in adapted flies, which matches the regulation of fluxes seen in simulation.
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16384 data points, resulting in an acquisition time of 1.36
seconds. A relaxation delay of 2 seconds additionally
ensured T1 relaxation between successive scans. Solvent
suppression was achieved via the Noesypresat pulse
sequence (Bruker Spectrospin Ltd.) in which the residual
water peak is irradiated during the relaxation and mixing
time of 80 ps. All 'H spectra were manually corrected for
phase and baseline distortions within XWINNMR™ (ver-
sion 2.6, Bruker Spectrospin, Ltd.). Two-dimensional
NMR methods including homonuclear correlation spec-
troscopy (TOCSY) and heteronuclear single quantum cor-
relation spectroscopy (HSQC) were carried out in order to
identify and subsequently confirm the assessment of
metabolites. Peaks in the 1D spectra were identified,
aligned, and quantified by "targeted profiling" algorithms
(Weljie et al., 2006) within the software Chenomix NMR
Suite 4.5 (Chenomix, Inc.). The list of metabolites discov-
ered in the 2D spectra was used to guide quantification in
one dimension.

Standards

In NMR spectra, absolute concentrations can be obtained
from peak integrals if the sample contains an added inter-
nal standard of known concentration, or if the concentra-
tion of a substance is known by independent means (e.g.,
glucose determination by biochemical assay) [31]. Scaling
factors obtained previously [13] were used to determine
absolute concentration of the 10 metabolites included in
the model (alanine, lactate, acetate, glutamine, glutamate,
glucose, pyruvate, proline, oxaloacetate and 4-aminobu-
tyrate).

Normalization and scaling

Individual samples within groups were normalized by the
sum of all metabolite concentrations in the sample, and
then re-scaled by the group average of these concentration
totals. Normalization between groups was performed
using Bradford assays of the soluble protein content. To
minimize the effect of high variability in the Bradford
assays, metabolite concentrations for each group of 5
samples were divided by their median protein content.
Selected metabolites were scaled empirically using stand-
ards (described above) in order to account for small vari-
ations in the scaling relationships between peak area in
the spectrum and metabolite concentration.

Principal Component Analysis

For the Principal Component Analysis, all metabolites
with at least one measurement above 0.01 mM were
included in the dataset. Data from all samples (young and
old; control, hypoxia and recovery) were combined into
one matrix and principal components were computed
using the princomp function in Matlab (Mathworks, Inc.,
Cambridge, MA). Principal component scores for the
samples were plotted and visualized within Matlab. The
weights of each PC were calculated as the percent each

http://www.biomedcentral.com/1752-0509/3/91

eigenvalue contributes to the sum of all eigenvalues (N =
35).

Flux-balance analysis

Metabolic fluxes in control and adapted flies were mod-
eled using flux-balance analysis within a genome-wide
reconstruction, as described previously [12,13]. Metabo-
lite concentrations for the short term hypoxic conditions
(4-hour acute hypoxia) were converted into sets of fluxes
by dividing the differences in mean concentrations by the
time period, resulting in units of nmol*mg prot!*min-!.
Standard errors (SE) of the metabolite fluxes were calcu-
lated from SE of the concentrations (using the formula
SEcy-c1 = V[SE¢,2 + SE,?] for subtracting random varia-
bles for concentration C; and C,) and converted to the
same units. A list of 10 "NMR fluxes" was chosen for con-
straining the flux-balance simulations, based on magni-
tude of the fluxes and presence of a feasible pathway
within the metabolic reconstruction. Virtual "sinks" with
unlimited capacity were created for each of these com-
pounds in order to represent metabolite pools, allowing
intracellular accumulation and depletion in case sub-
strates and end products did not perfectly balance. The
rates of exchange from these "sinks" into/out of the sys-
tem of reactions were forced to the flux rates calculated
from the data. The models with flux constraints are pro-
vided [see Additional file 3].

Flux-balance analysis was used to simulate system flux
distributions during acute (4-hour) hypoxia for each
group. The objective function for the system in all simula-
tions was the reaction representing utilization of ATP via
hydrolysis.

Statistics

Flux constraints from the NMR data were applied to the
model with their respective error distributions. Pseudo-
random sets of fluxes were created by sampling from nor-
mal distributions with mean and standard errors equal to
those of each NMR flux applied to the model. A set of 100
different pseudo-random flux constraints were generated
and simulated for each experiment. Simulating each of
the 100 constraint conditions generated a statistical distri-
bution for each reaction flux output, from which p-values
were calculated. Comparisons of individual fluxes across
groups were by one-way ANOVA followed by Tukey's
multiple comparison test.

Software

The SimPheny software platform (Genomatica, Inc., San
Diego) was used for building the model, visualizing fluxes
superimposed on the metabolic network, and mapping
the network to microarray data. The model was exported
to Matlab (Mathworks, Inc., Cambridge MA) for more
detailed flux analysis and statistical testing.
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We used Matlab to analyze the sensitivity of flux distribu-
tions to variance in the data. The publicly available
COBRA toolbox for constraint-based analysis [32], run-
ning the freely distributed GNU Linear Programming Kit
(GLPK) as a back end solver, was used to import the Sim-
Pheny simulations and perform flux-balance analysis
within Matlab. M-files for processing NMR data, perform-
ing simulations, analyzing flux distributions, and plotting
the results have been provided [see Additional file 4].

List of abbreviations used

NMR: nuclear magnetic resonance; PCA: principal com-
ponent analysis; PC: principal component; TCA: tricarbo-
xylic acid (cycle); ATP: adenosine triphosphate; O,:
molecular oxygen; CO,: carbon dioxide; PYK: pyruvate
kinase; ACS: acetyl-CoA synthase; ALAT: alanine transam-
inase (cytosolic); LDH: lactate dehydrogenase; PC: pyru-
vate carboxylase; PDH: pyruvate dehydrogenase; PDHK:
pyruvate dehydrogenase kinase; MDH: malate dehydroge-
nase (mitochondrial); GPDH: glycerol-3-phosphate dehy-
drogenase shuttle; Complex II: succinyl CoA
dehydrogenase (electron transport chain); Complex I:
NADH dehydrogenase.
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