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Abstract
Background: Identifying effective drug combinations that significantly improve over single agents
is a challenging problem. Pairwise combinations already represent a huge screening effort. Beyond
two drug combinations the task seems unfeasible.

Results: In this work we introduce a method to uncover drug combinations with a putative
effective response when presented to a heterogeneous population of malignant agents (strains),
such as cancer cell lines or viruses. Using data quantifying the effect of single drugs over several
individual strains, we search for minimal drug combinations that successfully target all strains. We
show that the latter problem can be mapped to a minimal hitting set problem in mathematics. We
illustrate this approach using data for the NCI60 panel of tumor derived cell lines, uncovering 14
anticancer drug combinations.

Conclusion: The drug-response graph and the associated minimal hitting set method can be used
to uncover effective drug combinations in anticancer drug screens and drug development programs
targeting heterogeneous populations of infectious agents such as HIV.

Background
The main stream in drug discovery has focused on identi-
fying compounds targeting specific malignant agents,
such as cancer subtypes or virus strains. In many cases,
however, the target of drug therapy is a heterogeneous
population of malignant agents, each characterized by a
different degree of aggressiveness and response to therapy.
Drug resistance is a clear example, whereby an induced or
preexisting subpopulation of malignant agents is not
responsive to a drug, escaping treatment.

Drug combinations can improve over single therapeuthic
agents in two ways. Synergy between two drugs may result
in a better response than the two drugs independently. A
drug combination may also be more effective when target-

ing heterogeneous populations of malignant agents. In
the latter case, although each single drug may be only
effective for a subset of the malignant agents, the drug set
as a whole may cover all malignant agents.

Uncovering drug combinations by direct screening is
quite challenging due to the large number of potential
combinations. A recent high-throughput screen was able
to systematically test about 120,000 different two-drugs
combinations [1]. Yet, programs like the NCI60 antican-
cer drug screen count with a stock of above 100,000
potential therapeuthic agents [2], resulting in more than 5
× 109 two-drugs combinations. The situation becomes
even worse when addressing combinations of more than
two drugs. More important, assuming that most drug
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combinations will not improve significantly over single
drugs, attempting such high-throughput screens is highly
inefficient.

Some interesting techniques are starting to emerge to
tackle the potential scarcity of good combinations. The
discovery process can be accelerated and the screening
costs reduced using stochastic search algorithms and
close-loop optimization [3]. Modeling and network
approaches can help us to anticipate synergistic effects [4-
6]. Yet, there is no general method to identify effective
drug combinations from a very large drug stock.

In this work we introduce a systematic framework to
uncover effective drug combinations. Our approach is
based on the existence of a population of malignant
agents (strains), a stock of drugs to target them and certain
measure quantifying the response of each strain to each
single drug. Starting from this data we construct a strain-
drug response graph. Using this graph we show that the
problem of finding the minimal number of drugs with a
putative effective response over all strains is equivalent to
the minimal hitting set problem in mathematics. We illus-
trate the applicability of this framework using data from
the NCI60 anticancer drug screen as a case study. We
report 14 drug combinations with a putative effective
response over cancer types represented by the NCI60
panel of tumor derived cell lines.

Results
Mapping to a minimal hitting set problem
To start addressing the drug combination problem, let us
assume we count with a stock of drugs to target different
strains that can be found in the patient population. The
strains are characterized, in principle, by a different
response to the drugs in our stock. Our goal is to find a
minimal set of drugs, taken from the available stock, such
that each of the strains will respond well to at least one
drug in our set.

This problem is better understood using the graph repre-
sentation in Fig. 1. We use one class of vertices (squares)
to represent the strains and another class (circles) to rep-
resent the drugs. Whenever a strain responds well to a
drug we draw an edge between the vertices representing
them. In the following we refer to this as the strain-drug
response graph. The drug vertices are further divided into
covered (filled circles), meaning that they form part of the
drug cocktail under consideration, and uncovered (empty
circles) otherwise. Now our problem can be rephrased as:
determine the minimal number of covered circles (drugs)
such that each square (strain) is connected to at least one
covered circle, and find such a set (or sets) with a minimal
number of drugs. The latter problem is known in the
mathematical literature as the minimal hitting set problem

[7], with strains representing sets and drugs representing
set elements.

Let us show how this work in a specific example. The
NCI60 is a program developed by the NCI/NIH aiming
the discovery of new chemotherapeutical agents to treat
cancer [2]. Their drug stock is made of above 100,000
compounds and response data for 40,000 compounds is
publicly available. Their population of cancer cell lines
(the strains in this context) is made of 60 tumor derived
cell lines, representing nine tissues of origin. The cell lines
response to the chemical agents is quantified by the IC50,
the drug concentration necessary to inhibit the growth of
a exposed cell line culture to 50% relative to the untreated
control.

To determine what constitutes a good response we use as
a reference the IC50 distribution over all pairs (cell line,
drug), after performing a z-transformation of the IC50s in
a logarithmic scale (Fig. 1a, solid line). This reference dis-
tribution peaks at zero and decays very fast beyond two
standard deviations. Values to the left denote small sensi-
tivity – bad response – and values to the right denote high
sensitivity -good response. In the following we assume as
a good response positive values above two standard devi-
ations (Fig. 1a, dashed line). Applying this criteria to each
pair of (cell line, drug) we obtain a graph equivalent to
that in Fig. 1 for the NCI60 system.

Strain-drug response graph and the hitting set problemFigure 1
Strain-drug response graph and the hitting set prob-
lem. A strain-drug response graph with squares representing 
strains, circles representing drugs, and edges representing a 
good response of the strain at one end to the drug at the 
other end. Covered circles represent drugs that are in our 
cocktail and empty those that are not.
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Finding minimal hitting sets
Having constructed the strain-drug response graph we
proceed to identify minimal hitting sets. The hitting set is
a computationally hard problem [7]. There is no efficient
algorithm to solve it in all possible instances. Yet, using
current heuristic algorithms we can estimate the size of
the minimal hitting set [8]. In the NCI60 case study, we
observe there are some drugs connected to 30 or more cell
lines (Fig. 2b).

Covering any of these drugs will automatically reduce to
half the size of our computational problem. Thus, we first

use a greedy algorithm, first reported in [9], that recur-
sively covers and removes a drug randomly selected
among those drugs with the current highest number of
connections, until there are no more samples connected
to drugs (Methods, highest-degree-first).

Using the greedy algorithm we obtain a hitting set with
three drugs. Now three is a sufficiently small number to
attempt an exhaustive test of all combinations of one, two
and three drugs. In this way we found no hitting sets with
one or two drugs, and a total of 14 minimal hitting sets
with three drugs (Table 1). The 14 minimal hitting sets

NCI60 case studyFigure 2
NCI60 case study. a) Distribution of the normalized IC50 for three different chemical agents (bars) and the same distribution 
for all (cell line, drug) pairs (solid line). Δlog10IC50 denotes the log10IC50 change relative to the drug dependent mean over all 
cell lines. s denotes the standard deviation of Δlog10IC50 over all (cell line, drug) pairs. The dashed line marks the threshold at 
two standard deviations above the mean. b) The fraction pk of drugs connected to k strains in the NCI60 strain-drug response 
graph (symbols). The solid line represents the best fit to an exponential decay. c) Graphical representation of the minimal hit-
ting set number 1 in Table 1.
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were also found using a simulated annealing algorithm
(Methods, simulated annealing). The simulated anneal-
ing algorithm results in a significant reduction in running
time of the NCI60 analysis, from several days to one day
in a Desktop computer. It may be used to uncover mini-
mal hitting sets in more computationally demanding
problems, where exhaustive test is unfeasible. Fig. 2c
shows the graph associated with one of the solutions. It is
made of an antimetabolite (NSC174121, methotrexate
derivative), a mTOR inhibitor (NSC606698, rapamycin)
and a compound of unknown mechanism of action
(NSC671526), where NSC stands for cancer chemother-
apy National Service Center number. Among the cell

lines, 37 out of 60 are covered by more than one drug.
Furthermore, the methotrexate derivative is the drug cov-
ering more cell lines. This three drug combination looks
promising since mTOR inhibitors have been recently
shown to work synergistically with methotrexate in the
treatment of lymphoblastic leukemia [10]. Further work is
required, however, to determine the contribution of the
third drug (NSC671526), with currently unknown mech-
anism of action. Most of the components of the other hit-
ting sets have unknown mechanisms of action as well
(Table 2). This is the case for the most recurrent com-
pounds NSC676495 and NSC692745, appearing together
in 9 out of the 14 hitting sets. While waiting for further
study, our analysis suggests that these are putative effec-
tive drug cocktails for anticancer therapy.

Discussion and conclusion
Exhaustive screening of all possible drug combinations is
an ineffective strategy to identify good drug combina-
tions. Current screens for single drugs should help to
anticipate potentially effective drug combinations, allow-
ing us to narrow down from a see of drug combinations
to a short list. The latter can be subject to direct testing, but
now with a dramatic decrease of the screening costs.

The strain-drug response graph and the associated mini-
mal hitting set problem provides a systematic framework
to tackle this problem. The single agent screen data is rep-
resented by a bipartite graph, with a class of vertices repre-
senting drugs and another representing malignant agents/
strains. Furthermore, the good response of a strain to a
drug is represented by a connection between the corre-
sponding vertices in the graph. Using this construction as

Table 1: Minimal hitting sets

1 NSC174121 NSC606698 NSC671526
2 NSC174121 NSC606698 NSC689535
3 NSC174121 NSC147340 NSC689535
4 NSC174121 NSC676495 NSC692745
5 NSC21206 NSC676495 NSC692745
6 NSC623794 NSC676495 NSC692745
7 NSC646846 NSC676495 NSC692745
8 NSC656238 NSC676495 NSC692745
9 NSC656240 NSC676495 NSC692745
10 NSC674092 NSC676495 NSC692745
11 NSC682449 NSC676495 NSC692745
12 NSC725983 NSC676495 NSC692745
13 NSC725983 NSC671526 NSC692745
14 NSC606699 NSC689535 NSC691039

All minimal hitting sets for the NCI60 system. NSC stands for cancer 
chemotherapy National Service Center number. The names and 
mechanism of action (when available) of these drugs are reported in 
Table 2.

Table 2: Drugs in the minimal hitting sets

NSC Name Mechanism of action

21206 6-aminonicotinamide Antimetabolite
174121 methotrexate derivative Antimetabolite
606698 Rapamycin prodrug mTOR inhibitor
606699 Rapamycin prodrug mTOR inhibitor
147340 Anisomycin hydrochloride NA
646846 bengamide B NA
656238 2-Methyl-4,8-dihydrobenzo [1,2-b:5,4-b']dithiophene-4,8-dione NA
656240 2-Hydroxymethyl-4,8-dihydrobenzo [1,2-b:5,4-b']dithiophene-4,8-dione NA
671526 Toxin.delta.53L NA
674092 Quinoline-4-carboxamide, N, N'-[(1,4-piperazinediyl) bis(3,1-propanediyl)]bis(2-phenyl-, dihydrochloride NA
676495 NA NA
689535 1-methyl-3-(1-pyrazin-2-ylethylideneamino)-1-(2-pyridin-2-ylethyl) thiourea NA
692745 1H-Inden-1-one, 2,3-dihydro-2-[(4-hydroxy-3,5-dimethylphenyl) methylene]-5,6-dimethoxy-, (2E)- NA
623794 1,4-Benzodioxin-2-carboxamide, 6-(4-oxo-4-H-1-benzopyran-2-yl)-N-(3-pyridinylmethyl)- NA
682449 Benzo [1,2-b:4,5-b']dithiophene-4,8-dione, 2-(1-hydroxyethyl)- NA
691039 (7S)-7-hydroxy-1,2,3-trimethoxy-10-methylsulfanyl-6,7-dihydro-5H-benzo [a]heptalen-9-one NA
725983 7-methoxy-5-oxo-8-[3-(9-oxo-9,10-dihydro-4-acridinylcarboxam ido)propoxyl]-(11aS)-1H,2H,3H,5H-bezo 

[e]pyrrolo [1,2-a][1,4]d iazepine
NA

The list of drugs in the minimal hitting sets reported in Table 1. NSC stands for cancer chemotherapy National Service Center number. NA stands 
for Not Available.
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input, we can search for effective drug combinations,
defined as minimal set of drugs such that each strain
responds well to at least one drug. The latter problem is
mapped to the minimal hitting set problem in mathemat-
ics.

The analysis of the NCI60 anticancer drug screen shows
how these ideas can be implemented in practice. In this
specific example it was possible to identify all minimal
hitting sets by exhaustive evaluation of all combinations
up to three drug cocktails. An approximate algorithm
based on simulated annealing was able to identify all
minimal hitting sets as well. The latter algorithm is far
more efficient and could be used in problems that are
more computationally demanding, with a larger drug
stuck or a potentially larger number of drugs in the mini-
mal hitting sets.

The strain-drug response graph and the associated hitting
set problem have some caveats. From the technical point
of view, we may encounter situations where not all drug-
strain pairs have been tested, resulting in an incomplete
drug response graph. In this scenario the minimal hitting
set size estimated from the incomplete drug-response
graph represents and upper bound. This is illustrated in
Fig. 3 for the NCI60 analysis. As anticipated above, the
estimated minimal hitting set size increases with decreas-
ing the percent of strain-drug pairs tested.

The exhaustive search is not a feasible strategy for very
large datasets. Therefore, even when the strain-drug
response graph is complete, we would rely on approxi-
mate algorithms to obtain an upper bound to the mini-
mal hitting set size. Besides the highest-degree-first and
simulated annealing algorithms discussed here, there are
other heuristic algorithms [8,11] that in some specific
problems may result in better estimates.

From the biological point of view, the identified drug
combinations are minimal hitting sets for the NCI60
panel of cell lines. A cell line not included in this panel
may not respond well to any of these combinations. Fur-
thermore, using the single drug response data we cannot
anticipate potential interactions between the drugs in a
given minimal set. Finally, we have not addressed other
important issues such as toxicity which may exclude a
drug combination for clinical use.

In spite of these caveats, the strain-drug response graph
and the associated minimal hitting set problem provide a
solid mathematical foundation to the drug combination
problem. When information is incomplete and the esti-
mates are approximate, it provides an upper bound to the
actual minimal hitting set size. It can be applied to larger
panels of cancer cell lines to increase the coverage over the
population of cancer cell lines. It narrows down to a short

Minimal hitting sets for incomplete drug-response graphsFigure 3
Minimal hitting sets for incomplete drug-response graphs. When information about the response of some strains to 
some drugs is unavailable the strain-drug response graph is incomplete. This could result in an overestimate of the size of the 
minimal hitting set. a) For example, if the response of strain 3 to drug 1 has not been tested, and the corresponding edge is 
missing (dashed line), we will be force to cover drug 2. This will increase the minimal hitting set size from 2 to 3 drugs. b) Esti-
mated minimal hitting set size of the NCI60 strain-drug response graph, after assuming that only a certain fraction of the inter-
actions were tested. Note that data for 10% of the strain-drug pairs was already missing from the original dataset and, 
therefore, we cannot go beyond 90%. The dashed-dotted, solid and dashed line represent the minimum, average and maximum 
minimal hitting set sizes over 100 incomplete strain-drug response graphs. For each graph the minimal hitting set was estimated 
using 100 runs of the highest-degree-first algorithm.
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list of drug combinations which can be subject to valida-
tion, testing combinatorial effects and toxicity.

In a more general perspective, our formulation can also
find applications in drug discovery programs targeting
viruses with high mutation rates such as HIV. In this con-
text we would require a collection of virus strains found in
the patient population, a stuck of antiviral drugs, and a
quantitative measure of how well each virus strain
responds to each antiviral drug.

Methods
NCI60 data
The IC50 data for the NCI60 panel of tumor derived cell
lines was obtained from the Developmental Therapeutics
Program of NCI/NIH. It consists of IC50 values for 45,344
compounds against the 60 cancer cell lines.

Highest-degree-first algorithm
Given a strain-drug response graph, start setting all drugs
uncovered. Then recursively transform the drugs state and
the drug-response graph as follows: (i) Identify the set of
drugs having the largest number of connections in the cur-
rent drug-response graph. If the latter set is made of one
drug select that drug. Otherwise, randomly select one of
the drugs in the set. (ii) Set that drug covered, remove the
drug, all the samples connected to that drug and the edges
connecting the drug and the samples. (iii) Stop if the
drug-response graph does not contain any samples con-
nected to at least one drug. Otherwise go to step (i). Note:
the application of rule (i) introduces randomness in the
algorithm and, as a consequence, different runs may result
in different outcomes. Specifically, we may obtain differ-
ent minimal estimated hitting set sizes and/or different
hitting sets with the same size. This fact can be exploited
by running the algorithm several times and retaining
those solutions having the minimum reported hitting set
size.

Simulating annealing algorithm
Given a strain-drug response graph, introduce the state
variable xi, taking the value xi = 1 when element (drug) i is
covered and 0 otherwise, and the energy or cost function
E = ∑i xi counting the number of covered elements. Pro-
ceed as follows: (i) Generate a random set cover and set an
initial inverse temperature β = β0. The random set cover
does not need to be of minimal size. We generate it by
covering one element (drug) selected at random from
each set (strain) with at least one element. (ii) Perform Teq
equilibration steps. At each step randomly select an ele-
ment. If it is covered, and uncovering it does not leave
uncover any set, then cover it. If it is uncovered, then cover
it with probability e-β, where β is the equivalent of the
inverse temperature in physics. (iii) Increase β, β → β +
Δβ, and return to step (ii). Stop the loop when some con-

vergence criteria is satisfied or β = βmax. Note: the genera-
tion of the initial state and the application of rule (ii)
introduces randomness in the algorithm and, as a conse-
quence, different runs may result in different outcomes.
Specifically, we may obtain different estimated minimal
hitting set sizes and/or different hitting sets with the same
size. This fact can be exploited by running the algorithm
several times and retaining those solutions having the
minimum reported hitting set size. In the NCI60 study we
identified all minimal hitting sets using β0 = 0, Δβ = 0.1,
βmax = 20, Teq = 10 × number of drugs and 1,000 random
random covering seeds. A run for each seed took 92 sec-
onds in a 1.86 GHz Desktop computer, 1,000 seeds took
25 and a half hours.
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