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Abstract
Background: The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk
between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway
have been studied in detail, the global networks downstream of SMAD remain largely unknown.
The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the
SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present
in specific context.

Results: To address this question and develop a computational model for SMAD modules, we
simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-
chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously
coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene
expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene
sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal
changes in expression after TGF-β activation. We developed a data-mining method driven by the
Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The
predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription
factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1).
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Conclusion: Together, the computational results further the understanding of the interactions
between SMAD and other transcription factors at specific target promoters, and provide the basis
for more targeted experimental verification of the co-regulatory modules.

Background
SMAD transcription factors are the core members of trans-
forming growth factor β (TGF-β) pathway, which has been
implicated in the regulation of cell growth, differentia-
tion, apoptosis and specification of developmental fate
[1]. SMADs transmit signals from cell surface receptors to
the nucleus in response to TGF-β. The general molecular
mechanisms of the TGF-β/SMAD pathway from the cell
membrane to the formation of a SMAD complex in the
nucleus are fairly well established. Briefly, TGF-β elicits its
molecular actions by binding to trans-membrane recep-
tors, TGFBR1 and TGFBR2, which form an oligomeric
complex and then transmit the signal into the cell via
phosphorylation of SMAD2/3 proteins. Phosphorylated
SMAD2/3 forms dimers or trimers with another protein,
SMAD4, and this resultant SMAD complex is then translo-
cated to the nucleus where it interacts with other DNA-
binding co-regulators to modulate the transcription of
TGF-β/SMAD target genes [1-3].

The TGF-β stimulated SMAD3/4 binds to 5'-GTCT-3', or
its complement 5'-AGAC-3', called SMAD-BindingEle-
ment (SBE), with very low affinity [4]. It was initially
thought that the presence of multiple SBEs in the target
promoters likely enables tight binding, since activated
SMAD complexes consist of SMAD oligomers. However,
known SMAD target promoters seldom contain SBE con-
catemers, and those that contain up to four SBEs still
require cooperating factors for effective DNA binding [5].
The list of DNA-binding SMAD partners, such as E2F1 [6],
AP2 [7], PBX1 [8], OCT1 [9] and p300/CBP [10], is rap-
idly growing, and it is now believed that the high-affinity
binding of the SMAD complex occurs through the incor-
poration of one or more different DNA-binding cofactors
into the complex. Hence, the net effect of SMAD complex
likely depends on transcriptional modules, in which the
SBEs and partner transcription factor binding sites
(TFBSs) are present in specific context. This mode of inter-
action provides a basis for high affinity and selectivity of
target gene recognition and allows for the differential
action of TGF-β in different cell types [11]. Thus under-
standing the complex nature of TGF-β/SMAD signaling
requires knowing not only the set of genes bound and reg-
ulated by SMAD, but also its interacting transcription fac-
tors (together referred as SMAD modules) and the
promoter regions where these interactions occur.

Abnormal activation or repression of TGF-β regulated
processes is implicated in many diseases including renal,
hepatic, and neurodegenerative disorders. Epithelial cells

have a high turnover and their progenitor cells divide con-
tinuously, making them prime targets for genetic and epi-
genetic changes that lead to cell transformation and
tumorigenesis [12]. In cancer development and progres-
sion, the TGF-β/SMAD signaling pathway functions as a
double-edged sword, acting as a tumor suppressor in early
tumorigenesis and as a tumor enhancer in late tumorigen-
esis [13]. While regulation of normal epithelial cell
growth and differentiation is contingent upon appropri-
ate up- or down-regulation of TGF-β/SMAD responsive
genes, this homeostasis is disrupted during neoplastic
processes, resulting in outgrowth and invasion of trans-
formed cells. It has been reported that neoplastic cells
become non-responsive to TGF-β/SMAD signaling activa-
tion, despite the fact that upstream regulators, such as
TGFBR2, remain genetically intact [14-17]. It is suggested
that other aberrant events, perhaps affecting co-regulators
of this growth inhibitory pathway, trigger signaling per-
turbations in TGF-β/SMAD downstream targets. Although
a few loci have been described in the literature, compre-
hensive identification of these co-regulator factors has yet
to be performed [4,18-20].

In this study, we systematically identified TGF-β/SMAD
regulated and synchronously coexpressed gene sets
(defined as "synexpression" groups in [1]) on genome-
scale by simultaneously conducting ChIP-chip (genome-
wide location analysis of the chromatin) and mRNA
expression profiling in an immortalized ovarian surface
epithelial (IOSE) cell line. The identified target genes were
classified into synexpression groups based on their tem-
poral changes in expression after the TGF-β/SMAD signal-
ing activation. Sequence analyses of target regions in each
synexpression group revealed conserved SBEs and partner
TFBSs. We applied the Random Forest (RF) [21] algorithm
followed by Classification And Regression Tree (CART)
[22] analysis to classify different synexpression target
groups based on the presence of SBEs and binding sites of
probable co-regulatory transcription factors. Several tran-
scription factor modules were derived from this combined
classification analysis, providing for the first time a com-
prehensive modeling of TGF-β/SMAD-co-regulator inter-
actions in ovarian surface epithelial cells and important
hypotheses for further experimental work.

Results
Identification of TGF-β/SMAD direct target promoters by 
ChIP-chip
Genome-wide discovery of TGF-β/SMAD targets was con-
ducted by ChIP-chip using a promoter microarray of
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~17,000 annotated promoter regions in the human
genome. To probe the arrays, we performed different ChIP
assays by using an antibody against SMAD4 in immortal-
ized ovarian surface epithelial (IOSE) cells treated with
TGF-β 1 for 0 and 3 hrs. The immunoprecipitated DNA
was hybridized to an Agilent 44K promoter array (see
Methods), and the experiments were repeated once [23].
We observed high positive correlation between the nor-
malized log ratios (immonuprecipated DNA over total
input DNA) of the biological replicate experiments, which
demonstrates the reproducibility of the experiments (See
Additional File 1 – Figure S1). A probe with weighted
binding ratio at the 3-hr time point above 2 (p-value <
0.01) and having at least a 30% increase in relative bind-
ing compared to the 0 hr time point was considered as
bound (see Methods).

Identification of TGF-β/SMAD responsive genes by 
geneexpression profiling
In order to identify TGF-β transcriptionally responsive
genes, we have used an Affymetrix U133 Plus 2 microarray
to globally assess the gene expression in IOSE cells treated
with TGF-β1 at 0, 3, 6, and 12 hrs. The experiments at each
time point were repeated once, as described in Methods,
and the gene expression estimates from the replicate
experiments were remarkably similar (see Additional Files
2 and 3 – Figures S2 and S3 for reproducibility and clus-
tering analyses of expression microarray). We performed
Analysis of Variance to study the effect of time on gene
expression and identify those genes that are differentially
expressed in at least one time point (treated samples) as
compared to the 0 hr control (untreated sample).

Identification of synexpression groups of TGF-β/SMAD 
direct targets by intersection of ChIP-chip and gene 
expression data
This analysis of ChIP-chip experiments identified 2,096
SMAD4-bound genes in IOSE cells, while expression
microarrays identified 1,519 genes having expression
changes following TGF-β treatment. By combining the
results from the two microarray platforms, we identified
150 differentially expressed genes that were bound by
SMAD4 in their promoter regions upon activation by
TGF-β (See Additional File 4 – Table S1). One of the main
goals of our study was to identify transcriptional modules
containing SBE within the SMAD target promoters. Previ-
ous studies have demonstrated the utility of TFBS analyses
of co-expressed gene sets to reveal cis-regulatory mecha-
nisms in the target promoters [24,25]. We, therefore, per-
formed hierarchical clustering of the expression data of
the 150 genes (Figure 1) to determine different synexpres-
sion groups of TGF-β/SMAD direct targets. To identify
informative gene clusters that correspond to major synex-
pression groups, we pruned the hierarchical tree and iden-
tified 5 branches, including two major (Groups 2 and 4)

and three minor (Groups 1, 3 and 5) groups (See Addi-
tional Files 4 and 5 – Tables S1 and S2). We considered a
group as major if it contained at least 10 genes. The major
groups 2 and 4 respectively correspond to up- and down-
regulatory expression patterns. Group 2 consists of 80
genes that showed elevated gene expression in at least one
time point and group 4 consisted of 62 genes that showed
decreased expression in comparison to 0 hr time point.
Group 1, 3 and 5 had one, four and three genes, respec-
tively. We, then, focused on the two largest groups, Group
2 and 4 for further analyses to derive the SMAD modules.

Target genes within the up-regulated group were further
divided into two major and one minor branch. The
expression level of the 54 genes in the major branch
increased after TGF-β treatment and remained steadily
high; we labeled this major branch the "sustained up-reg-
ulated group". On the other hand, the expression of the
25 genes in the middle branch had significantly increased
at 3 hrs (p-values < 0.05 and fold increase > 1.5 in the
comparison of 0 hr vs 3 hr), and returned to baseline
expression over the 12-hr period. The genes in this synex-
pression group were labeled the "transient up-regulated
group". The bottom branch had only one gene, ATXN1,
with an elevated expression at the 3 and 12 hr time points
and repressed expression at the 6 hr time point. Overall,
we have identified 3 major synexpression groups – sus-
tained up-regulated (54 genes), transient up-regulated (25
genes) and down-regulated (62 genes).

Experimental validation of TGF-β/SMAD binding
SMAD4 binding of 10 randomly selected loci of the 150
targets that were shown to both bind SMAD4 and change
gene expression in response to TGF-β, were confirmed in
individual ChIP assays. On average, greater than 1.5 fold-
enrichment was observed in IOSE cells after 3 hrs treat-
ment with TGF-β1 (Figure 2). RT-PCR analysis was used to
confirm altered expression of five group 2, two group 3,
and three group 4 genes at 0, 3, 6 and 12 hrs after TGF-β
stimulation (Figure 3). Specifically, we observed that the
increase in expression of ADAM19, FBXO32, RunX1T1,
and DDAH (group 2, sustained up-regulated) was main-
tained at the time-course between 3 and 12 hrs after treat-
ment, while ZNF638 (group 2, transient up-regulated)
showed increased expression at the 3 hr time point and
gradual decrease to base-line level at the 12 hr time point.
Decreased expression of FRAT and CXXC6 (group 3) was
observed at 3 hrs after treatment. Expression levels of
these two genes tended to increase afterwards, but
remained below baseline levels by 12 hrs of treatment. On
the other hand, expression of NTN4, ADPN, and RGS17
(group 4) continued to decrease at 6 hrs or 12 hrs after
treatment. To summarize, the overall trends of temporal
changes of expression and binding by SMAD4 observed in
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Hierarchical cluster analysis of gene expression estimates from the expresssion microarrays and the heat map of binding ratios of the ChIP-chip experiments of the 150 TGF-β/SMAD target genes in IOSE cellsFigure 1
Hierarchical cluster analysis of gene expression estimates from the expresssion microarrays and the heat map 
of binding ratios of the ChIP-chip experiments of the 150 TGF-β/SMAD target genes in IOSE cells. Genes that 
showed both altered expression at 3, 6, or 12 hrs relative to 0 hr (low-green and high-red) and altered binding at 3 hrs compared 
to 0 hr (low-white and high-blue) after TGF-β signaling stimulation were shown. The expression data were median-centered and 
normalized to have a unit sum of squares for each gene before transforming to the color scale. Genes that were confirmed by 
ChIP-PCR and RT-PCR are indicated by asterisks. Results from the ANOVA analysis indicating the peak time point relative to 
0 hr is indicated by a color bar. The experiments labeled R1 were biological replicates in the expression microarrays and were 
technical replicates in the ChIP-chip experiments. In the Chip-chip experiments, normalized binding ratios to have a unit sum of 
squares for each gene were used for the heatmap.
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Experimental validation of ChIP-chip results by ChIP-PCR analysis of 10 randomly selected TGF-β/SMAD target genesFigure 2
Experimental validation of ChIP-chip results by ChIP-PCR analysis of 10 randomly selected TGF-β/SMAD tar-
get genes. The cross-linked DNA from IOSE cells treated with TGF-β 1 of 10 genes were amplified by ChIP assays and meas-
ured by a real-time PCR machine. The ChIP-PCR values were from normalized experimental results from a standard curve, 
which was derived from total input DNA using the same primers. The plots are in log2 scale.
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Experimental validation of microarray results by RT-PCR analysis of 10 randomly selected TGF-β/SMAD target genesFigure 3
Experimental validation of microarray results by RT-PCR analysis of 10 randomly selected TGF-β/SMAD tar-
get genes. The mRNAs of 10 genes from IOSE cells, treated with TGF-β 1, were amplified by RT-PCR and measured by a 
real-time PCR machine. The fold-change in mRNA expression for each gene was calculated by setting the expression (RT-PCR 
or microarray) values at 0 hr to 1. The plots are in log2 scale.
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our microarray platforms were recapitulated by the RT-
PCR and ChIP-PCR experiments, respectively.

Random Forest variable selection followed by CART 
modeling identified novel co-regulatory modules in TGF-β/
SMAD-responsive genes
In order to infer potential cis-regulatory SMAD modules
and to discriminate target promoters of different synex-
pression gene groups, we applied classification methods
driven by statistical learning approaches. For this classifi-
cation analysis, we choose three major synexpression
groups (sustained up-, transient up- and down-regulated
from the hierarchical clustering) as different classes. The
TFBSs, predicted by MATCH program, using the TRANS-
FAC (version 9.1) position weight matrices (PWMs), were
used as the predictor variables of the classification func-
tion. Each predictor variable takes binary values 0 or 1
depending on the presence or absence of corresponding
TFBS in the promoter region of interest. An attempt to
classify the three synexpression groups (sustained up-,
transient up- and down-regulated targets) by 3-class clas-
sifier resulted in very poor classification models (See
Additional File 5 – Table S3), probably due to insufficient
power as a result of the small sample sizes in each group.
We, therefore, proceeded with a binary classification
approach to build different classifiers for the two datasets
– dataset 1 (up- vs. down-regulated targets) and dataset 2
(sustained up- vs. transient up-regulated targets).

We determined the presence of SBEs in the 150 putative
targets using the position weight matrix that we developed
on 67 experimentally known SBEs. The consensus
sequence of SBEs is highly degenerate with a 5-bp core
sequence CAGAC (Figure 4). We scanned 1 Kbp region
(500-bp on each side of the probe) around all the positive
60-mer probes on the promoter microarray and found
that 124 (82.6%) of the aforementioned 150 loci con-
tained at least one SBE (Figure 4, See Additional File 5 –
Table S2). The criterion set for searching SBEs was based
on the upper limit of sonicated DNA fragment length (i.e.,
~500 bp) in the ChIP assay. To confirm the significant
enrichment of SBEs in the target regions, we scanned for
SBEs in a randomly selected 10,000 sequences of length
1,060 bp from the human genome. We found that 71% of
these regions contained at least one SBE at the same cutoff
used for scanning the target regions. This suggests that
there is a significant enrichment of SBEs (Fisher's exact test
p-value 0.001) in the 150 putative targets in comparison
to the random set of sequences of similar length.

Next, we computationally analyzed the 124 loci for the
presence of other TFBSs. A 440-bp sequence region cen-
tered on one SBE was obtained. This window (-220 bp,
+220 bp) was used because 220 bp is the estimated length
of DNA in one nucleosome. For sequences with more

than one SBE, the one closest to the center of the 1,060 bp
region was chosen. The MATCH program was used to pre-
dict the TFBSs [26]. These binding sites, present in at least
35% of either group (up- or down-regulated targets for
dataset 1, sustained or transient targets for dataset 2), were
retained in the data matrix as predictor variables. The 35%
cut-off was arbitrarily chosen to keep the number of the
predictor variables within a reasonable range. To increase
our confidence, we tested and found that variation of this
cut-off from 20% to 40% did not influence the outcome
of the analyses. The final data-matrices contained a set of
164 and 159 TFBSs as predictor variables for dataset 1 and
2, respectively.

We initially fitted CART and RF models to our data. A
direct application of these models did not provide satis-
factory prediction accuracies (Table 1). However, a feature
of RF that is especially relevant in the current analyses is
the variable importance measure, which estimates the rel-
ative importance of the TFBSs in discriminating one group
from another and helps to select the TFBSs that are prob-
ably involved in the SMAD modules. RF provided a rank
for each of the prediction variables based on mean
decrease in accuracy of classification. We present the top
30 ranked variables identified by RF analyses in Figures 5
and 6. We also collected transcription factors that are
known to interact synergistically with SMAD from pub-
lished literature and the information is presented in Table
2. It is interesting to note that more than one third of the
TFs in the RF generated lists (Figures 5 &6) are previously

Computational prediction of SMAD binding elements (SBEs)Figure 4
Computational prediction of SMAD binding ele-
ments (SBEs). DNA sequences (1,060 bp) centered around 
each positive 60-mer probe sequence were used to detect 
SBEs. The degenerate nature of the binding site is shown by 
the SBE sequence logo, which was based on the 67 SBEs 
from literature (The logo was generated on http://www.bio-
genio.com/logo/logo.cgi).

500bp 500bp

60-mer

SMAD Binding Element (SBE)
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known to interact cooperatively with SMAD. On the other
hand, of the 22 known SMAD co-regulators in Table 2,
27% and 45% were respectively represented in the top 30
TFBSs selected by RF from datasets 1 and 2 (See Addi-
tional File 5 – Table S4). We then fitted the CART model
on subsets of these pre-selected variables. Using this
implementation, the misclassification rates were dramati-
cally improved in all the cases (Table 1). Although some
misclassification rates were still high, the classification
model and the RF generated lists provided an important
first step in the direction of predicting cis-regulatory mod-
ules involving SMAD.

The binary trees constructed by CART are presented in Fig-
ures 7 and 8. Six TGF-β/SMAD co-regulators that could
influence the expression status of target genes in each syn-
expression group, LEF1, ELK1, COUPTF, E2F, P53 and
PAX4, were identified. The presence or absence of four of
these TFBSs (LEF1, ELK1, COUPTF and E2F) distin-
guished between up- and down-regulated TGF-β/SMAD
targets, and binding of P53 and PAX4 was associated with
up-regulated genes (sustained and transient groups). The
DR1 in the CART tree that discriminates the subgroups of
up-regulated targets stands for Direct Repeat 1, a DNA site
bound by transcription factors PPAR, HNF-4, COUPTF
and RAR from the family of thyroid hormone receptor-
like factors. Table S5 (See Additional File 6) contains the
list of modules and their target genes. Interestingly, sev-
eral up-regulated target genes (PTHLH, DKK1 and
CFLAR), predicted to have a P53 binding site, have been
validated experimentally by others, indicating that our
prediction approach is correct for these three genes [27-
29]. To further validate our model, we performed RNAi
knock-down experiments for ADAM19 [30], a gene pre-
dicted to have SMAD4 and E2F binding sites and whose

expression is upregulated in normal ovarian epithelial
cells (Figure 3). However, only a slight decrease in
ADAM19 expression was observed after knock-down of
SMAD4 in TGF-β-treated IOSE, suggesting that additional
factors regulate expression of this SMAD4 target gene [30].
In this regard, our future experiments will investigate a
role for E2F play in the control of ADAM19 expression.

Functional analyses of TGF-β/SMAD-responsive genes
We performed Ingenuity Pathway Analysis (Ingenuity®

Systems, http://www.ingenuity.com, IPA 6.0) in order to
find significant molecular functional categories in SAMD-
target gene set and transform the target genes into a set of
relevant networks by using literature-based records that
are maintained in the Ingenuity Pathway Knowledge Base.
We first performed IPA analyses independently on SMAD-
responsive genes (from Affymetrix microarray analysis)
and SMAD target genes (from ChIP-chip data analysis).
The analyses produced 20 significant molecular and cellu-
lar functions (See Additional File 7 – Figure S4) that are
significantly enriched in both gene sets. We found consid-
erable overlap in the predicted pathways from both the
data sets, and Wnt/β-catenin signaling pathway as one of
the most significant pathways (Figure 9 and Table 3). Fur-
ther, LEF1, an important transcription factor of β-catenin
pathway, was predicted as a co-regulator of SMAD in our
predicted SMAD modules. The cooperation between TGF-
β and Wnt signaling pathways was also shown by several
of earlier studies [31].

Discussion
Through the interactions of different co-regulators, spe-
cific transcription factors can regulate different cellular
processes which sometimes lead to opposite downstream
effects [32,33]. SMAD transcription factors rely on tran-

Table 1: Misclassification rates by CART and RF modeling

Error rate
Number of Independent variables Class 1 Class 2

Dataset 1: Down/Up Down Up
Sample Size 51 65
CART 164 0.41 0.46
RF 164 0.59 0.31
RF + CART 4 0.37 0.23
Dataset 2: Transient/Sustained Transient Sustained
Sample Size 23 41
CART 159 0.22 0.68
RF 159 0.86 0.19
RF + CART 3 0.17 0.27

For each dataset, the synexpression group labeling was the dependent variable and the TFBSs were the independent variables. CART model was 
derived by using Gini splitting criterion, equal prior setting, unitary cost and a 10-fold cross validation. The best tree was selected by minimum cost. 
The error rates were the rates on the test sample by cross validation. RF was run with stratified sampling with an equal sample size for both classes, 
whereas the sample size was set to the one of the class with smaller number of observations. The error rates were the average of out-of-bag error 
rates of 100 runs of RF, each with 1000 trees. RF + CART was to build a CART model on the top most important variables selected by RF. For 
both datasets, RF + CART provided the best classification results with lowest misclassification rates.
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scription cofactors for appropriate activation or repression
of target genes in response to TGF-β. TGF-β/SMAD signal-
ing pathway is important for growth inhibition in normal
ovarian epithelium, thus signaling disruption may lead to
ovarian tumorigenesis [13]. Although primary ovarian
cancer retains TGF-β-mediated growth inhibition, studies
demonstrated that most ovarian cancer are non-respon-
sive to TGF-β signaling pathway [15,34]. The cell line that
we used in this study is responsive to TGF-β thus allowing
us to evaluate the disruption of TGF-β signaling pathway
in ovarian cancer. While most of the recent studies used
expression microarrays to interrogate TGF-β targets in a
particular system, those approaches cannot differentiate
between direct and in-direct TGF-β/SMAD4 targets

[35,36]. In our study, we combined both ChIP-chip and
expression microarray data to identify TGF-β/SMAD4 tar-
gets. This approach provides important information
regarding the direct TGF-β/SMAD4 targets as they relate to
ovarian biology. The regulatory module that we identified
may also be important in understanding the disruption of
TGF-β signaling in ovarian cancer. Only 17 out of the 150
TGF-β/SMAD targets were previously known to respond
to TGF-β in various systems (See Additional File 4 – Table
S1). Thus, more than 90% of the targets identified in this
study are novel targets.

To gain further insight into the potential biological rele-
vance of these newly identified TGF-β/SMAD targets, we

Table 2: List of transcription factors that are known to interact synergistically with SMAD (collected from literature search)

Cofactors Target genes

GATA4 IAP, IFABP [74]; INHA [75]

C/EBPβ, E2F4/5, FoxO p15INK4b [76]; c-MYC, p21Cip1, GADD45A, GADD45B, IER1, CTGF, JAG1, LEMD3, SGK, CDC42EP3, and OVOL1 [77]

STAT3 GFAP; HP [78-80]

LEF/TCF MYC [81]; Xtwn [52]

TCF/β-catenin, AP1 Gastrin [82,83]

MYOCD SM22alpha, Tagln [84]

P53 AFP [85], AFP [56]

SOX9 COL2A1[86]

COUPTF COL7A1[54].

SP1, SP3 LPL [87]; vimentin [88]

ETS-1 CCN2 [89]

NFKappaB and AP1 IL6 [90]

HIF1α VEGF [91]

AP-1 ET1 [92]

HNF-4 apolipoprotein C-III [58]

TFE-3 SERPINE1 (PAI-1) [93]

MITF mmcp-7 [94]

OCT-1 GATA2 [95,9]

AP-2 Col7a1[7]

RARγ human gene promoter construct [59]
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classified the 150 targets by biological functions. This
analysis revealed that the majority of the targets are
related to either signaling pathways or play a role in tran-
scriptional regulation (See Additional File 7 – Figure S4).
For example, expression of the kit ligand, KITLG, is down-
regulated after addition of TGF-β, a result consistent with
a previous study demonstrating that treatment of rat ovar-
ian surface epithelial cells with TGF-β results in KITLG
downregulation [37]. Interestingly, KITLG is an important
regulator of ovarian surface epithelial cell growth, and up-

regulation of KITLG expression has been reported in ovar-
ian cancer [38,39]. Taken together, these observations
suggest that disruption of TGF-β signaling pathway may
lead to altered KITLG expression, which in turn could con-
tribute to ovarian cancer carcinogenesis. An exciting
extension is the possibility of KITLG activation in ovarian
cancer initiating cells (OCICs), as we recently reported
upregulation of the KITLG receptor, c-kit/CD117, in this
highly tumorigenic subpopulation of cells in human ovar-
ian adenocarincomas [40].

It is interesting to note that TGFBR2 and SMAD3 were
among the down-regulated targets, suggesting a possible

Top 30 TFBSs selected by RF and their mean decrease in accuracy in up- vs. down-regulated SAMD target genesFigure 5
Top 30 TFBSs selected by RF and their mean 
decrease in accuracy in up- vs. down-regulated 
SAMD target genes. The mean decrease in accuracy was 
an average of 100 runs of RF. Experimentally known SMAD 
interacting TFBSs are marked with . Statistically significant (p-
value < 0.05 by Fisher's exact test) over-represented TFBSs 
are labeled in red and blue colors: red, over-represented in 
up- compared to down-regulated; Blue, over-represented in 
down- compared with up-regulated genes.
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Top 30 TFBSs selected by RF and their mean decrease in accuracy in sustained vs. transient SAMD target up-regulated genesFigure 6
Top 30 TFBSs selected by RF and their mean 
decrease in accuracy in sustained vs. transient SAMD 
target up-regulated genes. The mean decrease in accu-
racy was an average of 100 runs of RF. Experimentally known 
SMAD interacting TFBSs are marked with . Statistically signif-
icant (p-value < 0.05 by Fisher's exact test) over-represented 
TFBSs are labeled in magenta – over-represented in the sus-
tained group as compared with the transient group.
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negative feedback loop in the pathway. Since our microar-
ray platform spans only the promoter regions, the number
of binding sites in the present study is likely to be an
underestimate at the whole genome level as recent finding
indicates that the transcription factor binding happens
throughout the genome [41]. On the other hand, we have
identified a total of 1946 SMAD4 targets by ChIP-Chip,
but only 150 shows expression changes. The other 1796
targets, however, may show expression changes after 12
hours of TGF-β stimulation but could not be detected in
the current setting. Alternatively, those targets may require
other transcription factor(s) for initiation. Although the
presence of false positive cannot be excluded, our experi-
mental design, in which the ChIP-chip data is subtracted
from 3 hr after addition of TGF-β to 0 hr, should have
minimized this possibility.

In order to decipher complex gene regulatory networks
associated with signaling pathways that play critical roles

in normal and aberrant cell behavior, accurate prediction
of transcription factor co-regulatory modules is essential
[42]. Computational analyses that rely solely on motifs
derived from position weight matrix scanning are consid-
ered far from perfect and known to produce both false-
positive and false-negative results [26]. Phylogenetic foot-
printing, can be used to identify conserved sequences
between distantly related species thereby improving mod-
ule discovery [43]. However, this comparative genomics
approach can only partially improve prediction accuracy
due to the lack of conserved binding sites among species
and the unavailability of human gene counterparts in
other organisms for comparative genomic analysis. With
the advance of ChIP-chip technologies, we can now com-
putationally interrogate the interactions between cis-act-
ing elements and transcription factors using experimental
data [44]. Recently, computational approaches that com-
bine seemingly disparate experimental data have been
successful in developing concise pathway models and
transcriptional modules [45,46]. RFs have been receiving

Classification model that discriminates up- and down-regu-lated TGF-β/SMAD targets and corresponding SMAD co-regulatory modulesFigure 7
Classification model that discriminates up- and 
down-regulated TGF-β/SMAD targets and corre-
sponding SMAD co-regulatory modules. Upper panel 
shows the CART model that discriminates between the 
TGF-β/SMAD up- and down-regulated targets. Lower panel 
shows the derived cis-regulatory modules of these target 
genes identified by the CART model. In the CART trees, 
"yes" means the TFBS was present and "no" means the TFBS 
was absent.
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Classification model that discriminates sustained and tran-sient TGF-β/SMAD targets within the up-regulated groupFigure 8
Classification model that discriminates sustained and 
transient TGF-β/SMAD targets within the up-regu-
lated group. Upper panel shows the CART model and 
lower panel shows the derived cis-regulatory modules of 
these target genes identified by the CART model.
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increased attention in the data-mining field as a means of
variable selection in many classification tasks in computa-
tional biology, including the selection of a subset of
genetic markers and genes in microarray data analysis rel-
evant for the prediction of a certain disease [47-50]. Here,
we have used an integrative modeling approach that com-
bines CART and RF to classify different SMAD target pro-
moters with reasonably good classification accuracy and
reduced instability. Other popular classification methods,
such as Naïve Bayes Tree, Logistic Model Tree, Bagging
and LogitBoost (reviewed in [51]) or combination of
these algorithms with RF may give different performance
results and derive different SMAD modules, which needs
a systematic testing. Although the main goal in classifica-
tion is to build a model with minimal mis-classification
error in cross-validation (Table 1), in this application we
are equally interested in identifying TFBSs as highly
important discriminating variables. One of the main goals
of our analyses is to select potential SMAD interacting
transcription factors from a large feature space (>150 tran-
scription factors from Transfac database) in order to build
SMAD modules. RF algorithm generates internal esti-
mates of the decrease in the classifier's overall accuracy if
that particular variable was not used in building the clas-
sifier. Thus, variables (TF binding sites) with larger impor-
tance measures can be deemed to have more power in
discriminating different groups. A notable fact about our
RF feature selection procedure is that more than one third

of the transcription factors in the top ranking variables
(Figures 5 and 6) are previously known to synergistically
interact with SMAD in regulating the target promoter
(Table 2). Conversely, a substantial number of the known
SMAD co-regulators appeared as the most important vari-
ables (See Additional File 5 – Table S4). This demon-
strates the power of RF feature selection procedure and
indicates that other top ranking transcription factors
could be novel partners of SMAD, resulting in different
transcriptional outcomes.

We first built a large number of RFs to identify and rank
TFBSs of importance; and then supplied the resultant
TFBSs as a relatively smaller set of predictor variables to
CART for classification, using step-wise forward selection
procedure. Based on our original microarray data, this
process dramatically improved the misclassification error
rate compared to using CART or RF analysis alone. By run-
ning a large number of RFs, we obtained a stable rank for
the most important variables, which could not be
achieved with a single RF run. When fitting the CART
model, a series of models were built, starting with the
most important TFBS as the predictor variable, followed
by systematically adding more TFBSs from the variable
reservoir. As expected, the overall misclassification error
rate (defined as the sum of the error rates for the individ-
ual groups) first decreased and then increased again (See
Additional File 8 – Figure S5). The one at the bottom of

Table 3: Functional comparison of SMAD responsive (from gene expression) and SMAD-target (from ChIP-chip) gene sets obtained 
using Ingenuity Core analyses

IPA Signaling Pathway Affymetrix (1095 genes) SMAD predicted (150 targets)

IPA ratio IPA p-value No. molecules IPA ratio IPA molecules

TGF-beta signaling 0.169 3.68E-06 14 0.012 SMAD3

RAR activation 0.08 2.50E-03 15 0.011 GTF2H2, SMAD3

IGF-1 signaling 0.108 3.58E-03 10 n/a n/a

Wnt/beta-catenin signaling 0.084 4.12E-03 14 0.018 CSNK1A1, DKK1, FRAT1

Cell cycle: G1/S checkpoint regulation 0.117 7.37E-03 7 0.033 HDAC9, SMAD3

BMP signaling 0.097 1.01E-02 10 n/a n/a

GM-CSF signaling 0.113 1.34E-02 7 0.016 CAMK2D

LPS/IL-1 mediated inhibition of RXR function 0.065 2.68E-02 13 n/a n/a

IL-4 signaling 0.1 5.15E-02 7 0.014 NFAT5

Only significant signaling pathways are listed. Ratio shows the relative overlap between number of molecules per pathway within each dataset over 
the total number of pathway-specific molecules present in Ingenuity Knowledge Base.
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Ingenuity Pathway Analysis of SMAD targetsFigure 9
Ingenuity Pathway Analysis of SMAD targets: (A) A graphical representation of overlapping signaling pathways detected 
in differentially expressed genes and SMAD-target genes. Wnt/β-catenin was found to be significant. (B) The result of Ingenuity 
analyses of Affymerix gene expression and SMAD-predicted datasets. There are total nine significant signaling pathways (shown 
in bar graphs) for gene expression data, and six significant signaling pathways for SMAD-predicted molecules (shown by aster-
isks). There is a major functional overlap (about 70% or 6/9) between gene expression and SMAD-predicted data. Note that 
the p values were calculated by Ingenuity algorithm http://www.ingenuity.com per each pathway within Affymerix gene expres-
sion dataset and minus log p values are shown. The minus log p values for SMAD-predicted molecules are not shown.
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the decreasing trend is the best model, overcoming the
limitation of using pre-set arbitrary cutoff values for vari-
able selection in other CART models [42].

By computational prediction, 83% of the target promoters
contained SMAD4 consensus sequences, a significant
enrichment compared to a random set of sequences. The
consensus sequence of the SBE, nevertheless, contains
only a weak signal. To ensure the binding of the SMAD
complex, the presence of the binding sites of the co-regu-
lators is equally important. Based on the ChIP-chip data,
the combined classification tree analysis accurately pre-
dicted previously known TGF-β/SMAD co-regulators,
including LEF1 [52], ELK1 [53], COUPTF [54], E2F [55],
and P53 [56]. The transcription factors that recognize the
DR1 site, PPAR, HNF-4, COUPTF and RAR are all known
SMAD partners [54,57-59]. The combined RF and CART
analysis also uncovered a novel co-regulator, PAX4, a
paired-homeodomain transcription factor and important
regulator of pancreas development [60,61]. Previous stud-
ies have demonstrated regulation of PAX4 expression by
activin A, a TGF-β superfamily member, and transcrip-
tional regulation via interactions between paired domain
transcription factors PAX8 and PAX6 and SMAD [62,63].
Therefore, it seems reasonable to suggest that our compu-
tational prediction of a PAX4-SMAD interaction and sub-
sequent target gene co-binding could contribute to gene
up-regulation (Table S5). Furthermore, as a potential
tumor suppressive function for PAX4 has recently been
reported [64], we speculate that disruption of PAX4 could
compromise TGF-β-mediated growth inhibition and con-
tribute to ovarian carcinogenesis.

Our integrative computational modeling and Ingenuity
Pathway Analysis suggests that SMAD and LEF1 co-regu-
late some of the up-regulated SMAD responsive genes. It
was shown that the activation of MSX2 gene was mediated
via the cooperative binding of SMAD4 at two SBEs and of
LEF1 at two Lef1/TCF binding sites [65]. However, these
predicted SMAD regulatory modules need to be con-
firmed by biological experiments. First, quantitative ChIP-
PCR with the antibody against a TF can corroborate the
recruitment of the TF to the promoter region of the target
gene. Second, a promoter of a target gene with a TFBS
deleted can be compared to a wild-type promoter to see if
the TFBS confers any biological activity in a promoter-
reporter assay setting. Third, comparison of target gene
expression levels in cells transfected with siRNAs against
specific SMAD proteins, or against a TF predicted to be a
SMAD co-regulator, or against both, can reveal if there is
any synergistic action between the two interacting part-
ners.

Conclusion
In conclusion, we have identified 124 TGF-β/SMAD tar-
gets by microarray experiments coupled with bioinfor-

matics. Further computational analysis using CART and
RF modeling has identified several transcription factor
modules and provided important information in the tran-
scriptional control of TGF-β/SMAD signaling. Guided by
this computational information, experiments are under-
way to verify these co-regulator modules in normal and
aberrant conditions such as ovarian cancer, a disease in
which dysregulation of TGF-β/SMAD signaling has
recently been demonstrated [66].

Methods
Chromatin Immunoprecipitation Microarray (ChIP-chip)
IOSE cells were maintained in a 1:1 mixture of medium
199 (Sigma, St. Louis, MO) and 105 (Sigma) supple-
mented with 10% FBS, 400 ng/ml hydrocortisone
(Sigma), 10 ng/ml EGF and 50 units/ml of penicillin/
streptomycin (Invitrogen, Carlsbad, CA). The cells were
treated with 10 ng/ml of TGF-β1 (Sigma) for 3 hrs and
then crosslinked with 1% formaldehyde for 10 min. Chro-
matin immunoprecipitation was performed by using a
ChIP assay kit (Upstate Biotechnology, Lake Placid, NY)
as described previously [42]. In brief, 1 × 106 cells were
sonicated and immunoprecipitated by incubation with an
anti-SMAD4 polyclonal antibody (H552, Santa Cruz Bio-
technology, Santa Cruz, CA). Immunoprecipitated (ChIP)
and total input DNAs were amplified by ligation-medi-
ated-PCR for 24 cycles. Two μg of ChIP-DNA or input
DNA were aminoallyl-labeled using the BioPrime DNA
labeling system (Invitrogen) and then coupled with Cy5
and Cy3 fluorescence dyes (Amersham, Buckinghamshire,
UK), respectively. DNAs were then co-hybridized to a
modified version of whole genome oligonucleotide
microarray (~44,000 60-mer probes; Agilent Technolo-
gies, Palo Alto, CA) representing the promoter regions of
~17,000 unique genes [67]. Following hybridization, the
arrays were washed and then scanned using a GenePix
4000A Scanner (Axon, Union City, CA), followed by anal-
ysis with GenePix Pro 6.0 software (Axon).

Expression Microarray
Total RNAs from IOSE cells treated with TGF-β1 at 0, 3, 6,
and 12 hrs were extracted using TRIzol reagent (Invitro-
gen) following the manufacturer's instructions. In brief,
about 1.5 μg of total RNA were reverse transcribed into
cDNA using a HPLC-purified T7-oligo(dT) primer and
Superscript II reverse transcriptase (Invitrogen). Bioti-
nylated antisense cRNAs were then generated by in vitro
transcription using the Bioarray RNA transcript labeling
kit (Enzo Life Sciences, Farmingdale, NY). Fifteen μg of
fragmented cRNAs were then hybridized to a Human
Genome U133A plus 2.0 GeneChip Oligonucleotide
Array (Affymetrix, Santa Clara, CA), representing over
47,000 transcripts in the human genome. Finally, the
microarray slides were scanned using a GeneChip Scanner
3000 (Affymetrix) and analyzed by GeneChip Operating
Software.
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Microarray Analysis
For ChIP-chip, low quality spots that were flagged by the
software and spots that had a percentage of pixels with
intensities more than two standard deviations above the
background for each color ≤ 50% and spots with signal to
noise ratio of ≤ 1.25 were excluded from the analysis.
Background corrected median intensities of two channels
were normalized by using intensity-dependent lowess
normalization, and the binding ratio of immunoprecipi-
tated DNA to control DNA was determined for each spot
on the microarray [68]. By adopting a single-array error
model, a confidence estimate (p-value) for each binding
ratio was estimated using standard deviations of the two
background-intensities [69]. Binding ratios for each of the
2 replicated samples were combined by a weighted aver-
age method, and final p-values were calculated for the
weighted ratios at the 0- and 3-hr time points [69]. A gene
was deemed to be bound if its weighted ratio at 3-hr time
point is above 2 with p-value < 0.01 and showed at least a
30% increase in relative binding compared to 0 hr time
point. Then, in order to identify candidate TGF-β/SMAD
targets from the bound gene list, genes that showed signif-
icant changes in gene expression would be selected after
expression microarray analysis.

For expression microarrays, gene expression levels from
probe intensities were estimated using a robust multichip
average method with quantile normalization and back-
ground correction [70]. Principal component analysis
(PCA) of 8 Affymetrix arrays showed high variation
between the two sets of replicated arrays that were proc-
essed on two distinct days (day1 and day2). A two-way
mixed model ANOVA analysis with a fixed effect of time
variation (0 hr, 3 hr, 6 hr, and 12 hr) and a random effect
of day variation (day1 and day2), using Partek software
(Partek Discovery Suite 6.2, Partek Inc, St. Louis, MO),
was performed to identify and remove the day-to day var-
iation from gene expression estimates. Corrected gene
expression estimates, were used for further analysis. Clus-
ter analysis of 8 samples using all the genes, was per-
formed using centered correlation metric and average
linkage method. To study the effect of different time
points on gene expression, ANOVA analysis was applied.
Individual contrasts within the ANOVA model was esti-
mated in order to identify differentially expressed genes
that show significant up- or down-regulation at 3, 6 or 12
hr compared to 0 hr using Partek software. Genes with a
significant contrast (p-value < 0.05) and an absolute fold
change over 1.5 were considered as differentially regu-
lated.

Gene promoters that were identified as Smad4-bound at 3
hr (relative to 0 hr) in the ChIP-chip data analysis, and
those that showed significantly differential gene expres-
sion estimates at 3 hr, 6 hr or 12 hr (relative to 0 hr), were

considered to be candidate TGF-β/SMAD targets. Hierar-
chical cluster analysis of the candidate TGF-β/SMAD tar-
get genes was then performed by the centered correlation
metric and average linkage method, using expression
array data [71].

Quantitative ChIP-PCR and RT-PCR
To confirm candidate TGF-β/SMAD target promoters,
ChIP-PCR was conducted using immunoprecipitated
DNAs as templates. Primers (sequences available upon
request) were designed to flank a region within 500 bp of
the predicted SMAD binding element. Fold-enrichment of
amplified DNAs was determined using previously
described protocols [42].

Quantitative RT-PCR was performed as described previ-
ously [42]. To remove potential DNA contamination, 2 μg
of total RNA was treated with DNase I (Invitrogen) and
then reverse transcribed with Superscript II reverse tran-
scriptase (Invitrogen). Specific primers for amplification
are available on request.

Ingenuity Pathways Analysis
Ingenuity Pathways Analysis (Ingenuity® Systems, http://
www.ingenuity.com, IPA 6.0) Compare Biomarker fea-
ture was used to define common molecules for gene
expression (Affymetrix U133A, 1095 molecules) and
ChIP-chip data (Agilent Technologies, 2135 molecules)
followed by functional analyses aimed to determine the
similarities between SMAD-module predicted and IPA-
generated targets. The functional analyses run separately
on SMAD-predicted and IPA-generated targets identified
the biological functions that were most significant to the
data sets. Genes from each data set associated with biolog-
ical functions in the Ingenuity Pathways Knowledge Base
(IPKB) were considered for analyses. In addition, IPA
Core analysis feature was used to define the signaling
pathways common for Affy and SMAD-predicted datasets.
More than 800,000 objects currently present in IPKB
ontology were used to define algorithmically whether the
tested dataset fit into the existing canonical pathways.
Fischer's exact test was used to calculate a p-value deter-
mining the probability that each biological function
assigned to that data set is due to chance alone. Ratios
were the relative representation of the number of hits
within the tested dataset against the total number of hits
within the IPKB.

Prediction of SMAD and Other Transcription Factor 
Binding Sites

Sixty-seven SMAD binding elements (SBEs) from human,
mouse and rat were collected from the published litera-
ture (See Additional File 9 – Table S6). The consensus SBE
5'-CAGAC-3' was extended 6 bp upstream and 4 bp down-
stream. A SBE position weight matrix on the 15 bp
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sequences was constructed by formula

, where fb,

i is the number of nucleotide b at position i, N is the

number of sequences, and p(b) is the background fre-
quency of nucleotide b. In the PWM, the 8th and 9th posi-
tions were fixed to nucleotide A and G, respectively. The
background frequency was determined on 100,000
pseudo-SBE sequences. A 3,000 bp region (-2,000 bp,
+1,000 bp), flanking the transcription start site of ran-
domly selected human promoters from the MPromDb
database, was extracted [72]. For every AG nucleotide base
pair present in the promoter sequence, the flanking
regions (-7 bp, +6 bp) were extracted to represent a 15 bp
pseudo-SBE sequence. An in-house Perl script was devel-
oped that could detect SBEs in Fasta sequences (program
available upon request). The core score was the score on
the 5 bp consensus SBE; the full score was that on the
whole 15 bp sequence. In determining SBEs, the 60-mer
sequence on the 44K promoter microarray was equally
extended on both directions to a 1,060 bp sequence and
scanned for SBE using 0.9 and 0.7 as cutoffs for the core
and full scores, respectively. Other transcription factor
binding sites that fall within -220 bp to +220 bp of a SBE
were of interest in the CART and RF analysis. These bind-
ing sites were detected by the MATCH program, using the
position weight matrices from TRANSFAC database
(TRANSFAC 9.1, minSum profile) [26].

Random Forest
The Random Forest (RF) classifier is based on growing a
large ensemble of classification trees, and the majority
vote of the trees determines the class of an observation
[21]. Each tree is constructed on a bootstrapped sample
from the original data and only a number of randomly
selected predictor variables are used in tree branch split-
ting. This number is a user-defined parameter or set to a
default value, i.e. square root of the total number of pre-
dictor variables. The result is not sensitive to this number.
An estimate of the classification error is supplied by the
out-of-bag sample, i.e. the observations that are not used
in a particular tree construction. The class label of the out-
of-bag sample is predicted by the tree and compared with
the true label of the sample. The whole tree ensemble thus
generates the misclassification error rate.

While RF is considered as a "black box" method, with no
interpretable classification model is present at the end of
the application, it still provides useful information, such
as variable importance. One of the measures of variable
importance is the mean decrease in accuracy, calculated
using the out-of-bag sample. The difference between the

prediction accuracy on the untouched out-of-bag sample
and that on the out-of-bag sample permuted on one pre-
dictor variable is averaged over all trees in the forest and
normalized by the standard error. This gives the mean
decrease in accuracy of that particular predictor variable
which has been permuted. Thus, the importance of the
predictor variables can be ranked by their mean decrease
in accuracy.

For our random forest analysis, we used the RF package in
R http://www.r-project.org, with each RF run having 1000
trees in the forest. Stratified sampling with equal sample
size in each stratum was employed for the bootstrapped
sampling [73]. The dependent variable was the synexpres-
sion group labeling derived from the hierarchical cluster-
ing of the expression levels of the TGF-β/SMAD target
genes. Each predicted transcription factor binding site
within the 440 bp sequence, which was centered on a pre-
dicted SBE, was considered as a binary predictor variable,
with 1 for presence, 0 for absence. Transcription factor
binding sites that were present in at least 35% of the
sequences of either class were retained in the data matrix
for RF, as well as for CART analysis.

Classification and Regression Tree Analysis

Because of its simplicity and interpretability, CART is one
of the most frequently used classification tools [22]. The
building of the tree is a 3-stage process. In the first stage,
the tree is grown by recursively dividing the data space to
binary spaces. The splitting variable and the splitting
point can be selected by several criteria. We used the Gini

index, defined as , for a node t with esti-

mated class probabilities p(j|t), j = 1,..., J, where J is the
total number of classes. Once a large tree is grown, the
next step is to prune it, until the root node remains in the
tree. This pruning procedure, guided by a minimal cost
complexity measure, creates a nested subset of trees. The
optimum tree is the one with the lowest misclassification
error rate by cross validation. CART software (Salford Sys-
tems, San Diego, CA) was used in our analysis with equal
prior setting and a 10-fold cross validation. The misclassi-
fication cost for each class was set to 1. We note that CART
differs with RF in that it only builds one tree based on all
predictor variables; while RF combines multiple (1000 in
our case) trees that are constructed on randomly selected
predictor variables.

Random Forest Variable (TFBSs) Selection for CART 
Model
When the number of predictors is large and the number of
observations is small (so called "small n large p" problem
in the field of Statistics), CART generally produces a poor

w b i p b i
p b

fb i N N N
p b( , ) log log( , )

( )
( , / ) /( )

( )= =
+ +

2 2
4

1 2− ∑ p j t
j
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classification result due the instability of the individual
trees. However, RFs can increase the prediction accuracy as
compared to single CART tree, because the ensemble
adjusts for the instability of the individual trees induced
by small changes in the learning sample, which weakens
the prediction accuracy in test samples [22]. Therefore, we
first used RF for selecting the most important variables,
which were then included in the CART analysis. Because
of the randomness inherent to RF, such as random boot-
strapping of the data and random selection of the predic-
tor variables for splitting, the most important variables
selected by RF would be different from each run. How-
ever, the variables that are truly important would consist-
ently appear at the top of the most important list.
Therefore, we ran the RF 100 times, with each run having
1000 trees. The variables were then ranked by the average
of the 100 runs, with regard to the mean decrease in accu-
racy.

A series of CART models were then built on the top 30
most important variables in a systematic way. The dataset
that the CART model was built upon, initially had only
one independent variable (the most important one), and
was expanded, by adding more independent variables
from the list of the top 30 most important variables, in the
order of decreasing importance. The error rates from
cross-validation of the CART models are shown in Figure
S5A (See Additional File 8). The CART model with the
lowest overall misclassification error rate was chosen as
the final model. This criterion also agrees with using sen-
sitivity and specificity to judge the model performance
(See Additional File 8 – Figure S5B).

The ChIP-chip data are under the accession number
[GEO:GSE6727] and the Affymetrix gene expression data
are under the accession number [GEO:GSE6653] at the
GEO database.
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Additional file 1
Figure S1. Reproducibility of ChIP-chip experiments. Normalized log 
ratios (immonuprecipated DNA over total input DNA) of the biological 
replicate experiments (0 hrs untreated or 3 hrs TGF-β1-treated) are plot-
ted as smooth scatter plots. Binding ratios for 150 significant genes are 
indicated by red dots. The overall correlation coefficient of each plot is also 
shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S1.ppt]

Additional file 2
Figure S2. Reproducibility of expression microarrays. Dye intensities 
(log 2) from the technical replicate experiments (0 hrs untreated, 3, 6, 12 
hrs TGF-β1-treated) are plotted as scatter plots. Expression data for 150 
significant genes are indicated by red dots. The overall correlation coeffi-
cient of each plot is also shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S2.ppt]

Additional file 3
Figure S3. Cluster analysis of expression microarray. Data from expres-
sion microarrays were used to perform cluster analysis. The replicates at 
each time points were technical replicates and were labeled as "Rep1" and 
"Rep2". The scale bar is "1-correlation". Therefore, the shorter the dis-
tance, the stronger the correlation. The result showed that data from the 
treated and the untreated experiments can be grouped into two different 
clusters.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S3.ppt]

Additional file 4
Table S1. List of 150 putative TGF-β/SMAD target genes and their 
expression levels. Genes are sorted from most change to lease change 
according to binding response to treatment.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S4.xls]

Additional file 5
Supplementary Tables S2, S3 and S4. Table S2. Distribution of TGF-β/
SMAD target genes. Table S3. Misclassification rates by CART and RF 
modeling with three synexpression groupsTable S4. Selection of known 
SMAD co-regulators by RF.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S5.doc]
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Additional file 6
Table S5. Predicted modules for TGF-β/SMAD target genes. Column 
1 shows the SMAD target gene, column2 gives the predicted SMAD mod-
ule; columns 3 and 4 show the predicted and observed groups respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S6.xls]

Additional file 7
Figure S4. A graphical representation of overlapping molecular and 
cellular functions in SMAD responsive (from Affymetrix array data) 
and SMAD target (from ChIP-chip) gene sets from Ingenuity Pathway 
Analysis. A graphical representation of overlapping molecular and cellu-
lar functions for 73 IPA and 145 SMAD-module predicted targets sorted 
by a p-value. The significance of each function was calculated by Fischer's 
exact test (see Methods).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S7.ppt]

Additional file 8
Figure S5. Choosing the best CART model by step-wise forward vari-
able selection procedure. Figure S5A: Plot of the mean error rates as a 
function of the number of variables in the CART model (top ranking 30 
most important variables selected by RF were used by step-wise forward 
selection, starting with the most important variable) for dataset 1: up- vs. 
down-regulated targets and dataset 2: Sustained up- vs. transient up-reg-
ulated targets. The error rates were a summation of the error rates of the 
two classes and were estimated from 10-fold cross-validation. The error 
rates first dropped and then increased as a function of the number of inde-
pendent variables. The best CART models, in terms of the lowest overall 
error rate, consisted of 4 variables for up vs down and 3 variables for sus-
tained up- vs. transient up-regulated targets. Figure S5B: The sensitivity 
versus 1-specificity plot of the CART models. Down regulated target class 
and transient up-regulated class were selected as positive group for data-
sets – 1 and 2, respectively. The sensitivity and specificity values were 
derived from the confusion matrix on the test data reported by the CART 
software. The point closest to the upper left corner (1-specificity = 0, sen-
sitivity = 1) on each plot was indicated with an arrow, which was the best 
model in terms of a balance between sensitivity and specificity. For both 
datasets, equal mis-classification cost rate was used. Consequently, the 
model with optimal sensitivity and specificity values was also the model 
with the lowest overall error rate.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S8.ppt]

Additional file 9
Table S6. List of 67 sequences containing SBEs from the published lit-
erature. Column 1 shows the number of experimentally known binding 
sites (SBEs) within each target gene; columns 2, 3, 4 and 5 give the gene 
symbol, Unigene ID, Accession ID and Gene ID respectively; columns 6 
and 7 give the relative start and end positions of the SBE (relative to tran-
scription start site); column 8 gives the SBE; columns 9 to 12 give the 
chromosomal location of the SBE (The genomic coordinates are according 
to Human NCBI Build 35; Rat Nov. 2004 (rn4) assembly & Mouse 
NCBI Build 36); columns 13 and 14 give the sequence around SBE (-50 
to +50 around the SBE) and its length respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-73-S9.xls]
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