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Abstract
Background: In recent years, several stochastic simulation algorithms have been developed to
generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular
reaction networks. However, the effects of various stochastic simulation and data analysis
conditions on the observed dynamics of complex biomolecular reaction networks have not
recieved much attention. In order to investigate these issues, we employed a a software package
developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the
behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation
reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of
the factors that influence the analysis and interpretation of these data.

Results: Specific issues affecting the analysis and interpretation of simulation data are investigated,
including: (1) the effect of time interval on data presentation and time-weighted averaging of
molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of
number of simulations on precision of model predictions, and (4) implications of stochastic
simulations on optimization procedures.

Conclusion: The two main factors affecting the analysis of stochastic simulations are: (1) the
selection of time intervals to compute or average state variables and (2) the number of simulations
generated to evaluate the system behavior.

Background
All biological processes at the cellular level are the conse-
quence of a series of chemical-physical reactions at the
molecular level that occur within the micro-volume of the
cell. The collection of molecular species and the reactions
among them is referred to here as a 'biomolecular reaction
network'. The complete biomolecular reaction network
for a cell includes thousands of molecular components
and reactions involved in transcription, translation,

molecular self-assembly, metabolic reactions, transport
and physical movements. Since these reactions occur in
an extremely small reaction volume, the number of mole-
cules of any one molecular species that can participate in
a given reaction ranges from single copies of genes to sev-
eral hundred molecules of chemicals at the μM concentra-
tion to several hundred thousand molecules of chemicals
at the mM concentration. As a consequence of the fact that
a subset of all the reactions in the system involve low copy
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numbers of substrate molecules, the behavior of individ-
ual instances of the system cannot be modeled accurately
using continuous deterministic (C-D) approaches ([1-3]).
Thus, these natural micro-systems should be modeled and
simulated using basic theory of discrete stochastic (D-S)
chemical kinetics [4].

With the evolution of systems biology in recent years,
interest in modeling and simulating the behavior of engi-
neered genetic circuits in bacterial cells has increased [5].
In addition to living cells, nano-biotechnology research-
ers are exploring the possibility of developing and using
artificial cellular constructs employing natural and engi-
neered biological processes ([6-11]). In order to predict
the behavior of these constructs, modeling and simula-
tion of their biomolecular reaction networks are needed
to enable the design and fabrication of both the constructs
themselves and physical devices based on these con-
structs.

Using stochastic chemical kinetics for exact simulations of
biomolecular reaction networks presents several compu-
tational challenges. The ultimate goals of the simulation
exercise are to be able to: (1) model and simulate the
behavior of the system using a complete and accurate
physical and mathematical description of the system and
an exact simulation algorithm, (2) generate large numbers
of simulations, and (3) analyze the data in a meaningful
way. All of these goals should be accomplished in a rea-
sonable amount of computational time. The main factors
that determine the computational challenge of a particu-
lar simulation activity are the size of the model (how
many molecular species and reactions are involved), the
nature of the reactions (stiffness – mixture of fast and slow
reactions), the duration of the simulation, the number of
simulations required for statistical significance, the data
logging requirements, and, data analysis requirements.
Depending on the computational dimensions of the
problem, the ultimate goals of the simulation exercise, as
defined above, may be attainable. However, as the com-
putational dimension increases, the ability to meet all of
the requirements of the ultimate solution becomes more
difficult.

There are two approaches that can be taken to address the
more difficult computing problems associated with larger
computational dimensions. The first approach is to
employ approximations at various levels of the modeling
and simulation process. At the conceptual model level,
detailed reaction mechanisms consisting of multiple
micro-reactions can be replaced with approximate
lumped macro-reactions. This has the effect of reducing
the number of both molecular species and reactions in the
model. At the simulation level, there are approximate sto-
chastic simulation algorithms, such as τ-leaping [12], that
can speed-up the simulation time, but at the expense of

accuracy. At the statistical level, the accuracy of the statis-
tical properties of the ensemble of system simulations,
computed from the simulation data, increases as the
number of simulations increases, ultimately approaching
the statistical properties of the exact solution in the limit
as the number of simulations increases to infinity. Thus,
truncating the number of simulations to decrease the
computational time results in less accurate approxima-
tions of the statistical properties of the system. Finally, the
collection and storage of the raw simulation data will
affect the computational time. The maximum informa-
tion obtainable from a simulation run requires the collec-
tion of the time and nature of every reaction event.
Limiting the amount of data collected will reduce compu-
tation time at the expense of the types and accuracy of
subsequent data analyses.

The second approach is to run simulations on bigger and
more powerful computer hardware using software
designed to take advantage of multiprocessors. Although
the exact stochastic simulation algorithms do not lend
themselves to efficient parallelization of the algorithm
itself, running multiple simulations on separate proces-
sors can reduce the overall time required to generate a sta-
tistically adequate ensemble of independent simulations.
This approach does not reduce the actual computational
time, but, by running multiple simulations in parallel, it
does allow one to reduce the clock time required to obtain
a sufficient number of simulations for appropriate statis-
tical analysis. In addition, numerical analysis of the large
data sets generated by the simulation can be parallelized
to speed up this time consuming step. Overall, there are a
range of trade-offs between simulation strategy, data accu-
racy and computational time that must be taken into con-
sideration when optimizing the modeling, simulation
and analysis of biomolecular reaction networks for partic-
ular applications.

In recent years, single cell experiments have become a sig-
nificant focus of the experimental approach to problems
in systems biology. Analysis of data derived from such
experiments should be interpreted in the context of sto-
chastic systems and we feel that it is of practical value to
the broader community of researchers to present concrete
examples of these issues using a hypothetical model that
is relevance to the fundamental transcription-translation-
metabolism scheme. To model and simulate the behavior
of these systems, various software packages have been
developed and released to the general public (e.g., [13-
19]). Each of these software products has its advantages
and disadvantages for different modeling needs. We
developed a software package – the Biomolecular Net-
work Simulator (BNS) – that is specifically designed to
operate on either single or multiple processor hardware
[20]. The BNS software allows one to build a model of a
synthetic biomolecular reaction network and to investi-
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gate its behavior using several different stochastic algo-
rithms. Here we use the BNS software to investigate the
effects of various external conditions, such as selecting:
(1) the observation interval, (2) the time-averaging inter-
val, or (3) the number of simulation, on the observed
behavior of a hypothetical, yet relatively complex, biomo-
lecular reaction network involving transcription, transla-
tion and metabolism to illustrate some of the unique data
analysis issues that arise in stochastic simulations of bio-
molecular reaction networks. It is hoped that the reader
will gain a better intuitive understand of how these factors
can influence the interpretation of stochastic reaction sys-
tems.

Methods
Stochastic Simulation Algorithm
The mathematical description of the behavior of stochas-
tic biomolecular reaction networks is based on Markov
process theory [21]. The system behaves as a multi-vari-
ant, discrete state, Markov jump process and is governed
by the chemical master equation (CME). The solution of
the CME is in fact the mathematically exact description of
the behavior of the system. For our purposes, we will con-
sider a biomolecular reaction network consisting of NS
identifiable molecular species, denoted Si (i = 1, 2, ..., NS).
These molecular species can undergo NR fundamental
chemical reactions rk (k = 1, 2, ..., NR) and are confined to
a fixed reaction volume, VR. It is assumed that the system
is well-mixed (homogenous) and at constant volume and
temperature. Let s(t) be an NS-dimensional state vector
whose elements si(t) (i = 1, 2, ..., NS) are the number of
molecules in the system of each molecular species Si at
time t.

The stochastic process that describes the behavior of the
biomolecular reaction network is characterized by the
state probability density function P(s, t). This function
gives the probability that the system is in state s at time t,
where s can take on any value in the allowable state space.
P(s; t) is the solution of the CME [4]:

where ak (s, t) is the propensity of the kth fundamental
reaction at time t and νk is the state change vector, a NS-
dimensional vector that specifies the changes in the
number of molecules of each state variable when the kth

reaction occurs. Note, the sum is over all of the NR possi-
ble reactions that can occur. Further note, the propensity
for a given reaction, ak(s, t), is computed as the product of
the reaction probability constant, ck, and the total number
of combinations of possible reacting molecules for that

reaction. The reaction probability constant is, in a sense, a
measure of the reactivity of the reaction substrates [4].

The specification of the initial condition for the biomo-
lecular reaction network of interest, P0(s) = P(s0, t = 0),
depends on the precision and accuracy of the measure-
ment techniques used to experimentally characterize the
system. In theory, the system is in a single well defined
state s0 at time t0, where the number of molecules of each
molecular species is equal to the exact number of mole-
cules of that species contained in the reaction volume VR
at time t0. In this case, P0(s) is defined by the Kronecker
delta function as

For our purposes, it will be assumed that the initial condi-
tion as defined by Equation (2) will hold and the state
density function that is the solution of the CME can be
written as the conditional probability density function
P(s, t|s0, t0 = 0).

Usually, an analytical solution of the CME is not possible
and direct numerical computation of the solution is com-
putationally overwhelming due to the large state space.
However, the direct simulation of exact (theoretically pos-
sible) trajectories in state space is feasible [21]. The time
evolution of the state vector s(t) for a theoretically possi-
ble instance of the system can be calculated using various
algorithms proposed for Monte Carlo simulations of sto-
chastic trajectories. The Gillespie direct stochastic algo-
rithm [4] is used in this report to illustrate the stochastic
behavior of a gene expression system. The Gillespie direct
stochastic algorithm theoretically generates exact simula-
tions of system trajectories in state space if and only if all
reactions in the biomolecular reaction network are funda-
mental reactions [4]. In the limit of an infinite number of
simulations, the statistical properties of the ensemble of
exact simulations approaches those of the exact solution
of the CME, i.e., for the first moment (mean) of s (�s(t)�)
we have

where si (t) is the value of the state vector at time t in the
ith simulation run, �s(t)�n is the estimate of the mean state
vector at time t based on an ensemble of n simulations,
the left hand sum is over all possible states in state space
and the right-hand sum is over all values of the state vector
at time t observed in the n simulation runs. In addition,
the second moment of the probability density function
for the state vector s is related to the variance by the rela-
tionship
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where the variance of s is

and σn (t) is the estimate of the standard deviation (SD)
based on the ensemble of n simulations. Thus, computing
the mean and SD of the ensemble of simulations at a
given time provide an estimate of the first and second
moments of the probability density function for the sys-
tem at that time.

Although the basic biochemical reactions in a biomolecu-
lar reaction network are treated as discrete, jump Markov
processes and thus stochastic in nature, if the number of
molecules of every species in the system is large then the
process can be approximated by a continuous Markov
process [21]. Furthermore, if the number of molecules
and the volume increase in proportion such that the con-
centration of each species is constant (the so-called ther-
modynamic limit), then the solution describing the
behavior of the state variables can be written as the sum of
a single-valued variable that is the solution of the classical
rate equations and a variable factor that decreases in mag-

nitude as . Thus, for sufficiently large reaction vol-

ume, keeping concentrations constant (consequently
large number of molecules), the first moment of the prob-
ability density function of the state variables approaches
the classical continuous deterministic solution of the reac-
tion rate ODEs. However, if there are only a few molecules
of any given species, as is often the case in gene expres-
sion, this approximation will not accurately describe the
instantaneous state of the system. Furthermore, the C-D
approach will provide no information concerning the
temporal fluctuations of state variables of a given system
nor the variability between multiple instantiations of the
system with identical initial conditions.

Biomolecular Network Simulator Software
The Biomolecular Network Simulator software was devel-
oped to allow for stochastic simulations on either desktop
or multi-processor hardware (see age: http://
www.bhsai.org/bns_alpha.html for complete documenta-
tion of the software and http://www.bhsai.org/down
loads/bns_release.zip to download the software). The
front-end graphical users interface (GUI) and the backend
data analysis tools are written in MATLAB. This allows the

user to exploit the interactive features and visualization
tools of MATLAB for setting up simulations and analyzing
and interpreting the resulting data. The simulation engine
itself and the analysis tools are written in the C language
to maximize speed for the computationally intensive part
of a simulation run and post-simulation data analysis.

The BNS software accepts two types of model definitions:
(1) Systems Biology Markup Language (SBML) format
[22] and (2) BNS format where models are defined by a
set of MATLAB m-files. There are two types of output files:
snapshot data and event log data. Snapshot data files con-
tain the state of the system (number of molecules of each
molecular species that are selected to be monitored) and
the number of reaction occurrences in each reaction chan-
nel since the last snapshot at user specified time intervals.
The second type of output files – the event log files – con-
tain the record of every discrete event that occurs during
the simulation (i.e., the reaction name and time of each
and every event).

The BNS software has a comprehensive set of tools for
post-simulation analyses. The most frequently used type
of analysis is to plot the number of molecules of a partic-
ular molecular species versus time. The number of mole-
cules of a particular molecular species versus time plots
can be created with both types of output files, snapshot
data or event log data, with the event log data giving an
exact description of the behavior of the selected state var-
iable. A time-weighted average analysis provides for the
calculations of the average number of molecules of a par-
ticular molecular species during a user selected time-inter-
val. The time averaged number of molecules of state
variable k over the interval Δt at time ti, �sk(ti)�Δt, is given
by:

where

ti, j is the jth time subinterval in the interval ti to ti+ Δt and

the summation is over , the total number of reaction

events in the interval ti to ti+ Δt that affect sk. The compu-

tation is accomplished by summing up the products of the
time sub-intervals multiplied by the number of molecules
present in that sub-interval, thus the average is weighted
according to the amount of time the compound exists in
each state during the selected time-interval. The averaging
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analysis can be performed for a single simulation run or
for an ensemble of runs. In the latter case, the between run
average (the average of the individual time-weighted aver-
ages over the ensemble of simulation runs) and standard
deviation are plotted.

When multiple simulations are run, the distribution of
state variables for the ensemble of simulations at a given
time can be investigated by plotting a discrete histogram.
The data to generate these discrete histograms can be
extracted from data files saved by the analysis tools in the
BNS Toolbox. The distribution for a particular state variable

k at time ti, , is computed by counting the number

of times each possible state j for that state variable is occu-

pied at time ti in the ensemble of simulations ( ) and

dividing by the total number of simulations (ns).

The data are plotted with the y-axis representing the frac-
tion of the simulations that the state variable was in the
discrete state indicated on the x-axis. This is an estimate of
the probability that the system would be in that particular
state at the defined time ti, i.e., the state probability den-
sity P(s, t|s0, t0) defined by Equation 1.

Complex biomolecular reaction networks that involve
gene expression are usually stiff systems, i.e., contain reac-
tions that occur on widely different time scales; some reac-
tions have a low propensity and occur rarely while other
reactions have a high propensity and occur frequently. A
unique feature of the BNS software is that the data stored
allows the user to perform various reaction event rate
analyses on the simulation data to learn more about the
basic nature of the reactions in the system. The time-aver-
aged reaction event rate in reaction channel q (number of
q reaction events per unit time) can be calculated for a
user-selected time-averaging intervals Δt by:

where  is the number of reaction events in the

time interval ti to ti+ Δt. These analyses provide important

information about the behavior of the system, e.g., rela-
tive event rates for important reactions. Such event rate
data can be used to calculate the rate of substrate utiliza-
tion in selected reaction channels as a function of the state
of the system.

The BNS software can be run on high performance comput-
ing (HPC) hardware. Parallelization of the BNS code for
simulation runs on HPC hardware is accomplished using
the Message Passing Interface (MPI). In our parallelization
scheme, the 'master' processor divides the total number of
simulation runs into a set of jobs depending on the number
of available processors and sends a job to each of the
'worker' processors. The snapshot data from the workers are
sent back to the master processor for the interactive graph-
ics while the event log files are saved directly to the hard
drive by the workers. In this approach to parallelization, the
power of parallel processing is utilized to run a large
number of simulations simultaneously and thus speedup
the overall clock time for large batch jobs.

Exemplar model
In order to investigate the analysis of a discrete stochastic
system, a hypothetical model of a generic two gene, self-
assembling catalytic ligation reaction in a cell-free tran-
scription-translation (CFTT) system is explored. The
hypothetical biomolecular reaction network consists of
the transcription and translation reactions of two genes in
a gene expression system and the subsequent metabolic
reactions of the expressed enzymes. The system is
assumed to be a closed system contained in a vesicle with
a reaction volume of 5 × 10-16 L corresponding to a spher-
ical vesicle with a diameter of approximately 1.0 μm.
Note, in such a vesicle, a molecular species at a concentra-
tion of 1 μM is equivalent to a total of 301 molecules
present in the vesicle. The CFTT system contains all of the
necessary components for transcription and translation of
target genes into the expressed proteins.

To formulate a conceptually simple, yet biochemically
reasonable, model of the kinetics of the self-assembly of
the exemplar biomolecular reaction network and the sub-
sequent metabolic reactions, the high level conceptual
system model illustrated in Figure 1 was proposed. The
detailed model of the system consists of 249 state varia-
bles and 287 reactions (see Additional File 1 for a com-
plete description of the model and Additional File 2 for
the SBML model description). In the detailed conceptual
diagram of the system, state variables are labeled with
names that are descriptive of the molecules that they rep-
resent. However, internally in the SBML model code the
state variables are labeled s001 to s249. Wherever there
may be confusion in the discussion below, both labels are
used for clarity.

Transcription of geneA and geneB consists of four reac-
tions each. The four reactions are the association and dis-
sociation of the RNA polymerase (RNAp – s001) and the
promoter sites for geneA (P_A – s002) and geneB (P_B –
s022) to form the promoter-polymerase complexes
(RNAp_P_A – s003 and RNAp_P_A – s023). The polymer-
ase then translocates from the promoter site to the tran-
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scription start site forming the transcription start complex
(RNAp_geneA – s004 and RNAp_geneB – s024) and the
subsequent formation of the mRNA (geneA_mRNA –
s009 and geneB_mRNA – s025). The mRNAs can either be
degraded by a generic RNase or used as a template for pro-
tein synthesis. Translation consists of three reactions that
include association and dissociation of the small ribos-
omal unit (Rib_s – s015) with the ribosomal binding site
on the mRNA to form the ribosomal-mRNA complex
(Rib_s_geneA_mRNA – s016 and Rib_s_geneB_mRNA –
s026) and the subsequent translation reaction resulting in
the formation of the protein products (Pro_A – s018 and
Pro_B – s027). Key substrates for the translation reaction
are the 20 charged transfer RNAs (AA_i_tRNA_AA_i –
s091 to s111) which are formed from the appropriate
amino acids (AA_i – s032 to s051) and the corresponding
transfer RNAs (tRNA_AA_i – s072 – s091) by the associ-
ated aminoacyl-transferases (Trans_AA_i – s052 to s071).
The protein product Pro_A is capable of catalyzing the
ligation of Sub_1 (s233) and Sub_2 (s237) to form the
metabolic product Prod_A (s240) via a series of associa-
tion, catalytic and dissociation reactions. The protein
product Pro_B must form a tetramer (Pro_B_4) to be cat-
alytically active. Once formed Pro_B_4 catalyzes the liga-

tion of Prod_A and Sub_3 (s245) to form the final
product Prod_B (s248) via another series of association,
catalytic and dissociation reactions. All proteins can be
degraded by a generic protease (Prot – s031).

In this biomolecular reaction network, the biomolecular
reactions relating to the expression of geneA and geneB
and subsequent metabolism are treated as stochastic in
nature. Here we use the Gillespie direct stochastic algo-
rithm to obtain sufficient numbers of probabilistically
correct state space trajectories, consistent with the CME,
for statistical analyses. The simulation data sets obtained
through the use of these Monte Carlo simulations are used
to illustrate some of the statistical properties of the sto-
chastic behavior of the exemplar model. Note, these sim-
ulation data are for a generic model and do not necessarily
represent the behavior of any actual system.

Results and Discussion
Simulation of exemplar model using the Gillespie Direct 
Algorithm
In order to explore the general behavior of the exemplar
model, a series of simulations were run using the follow-
ing conditions: (1) the Gillespie direct stochastic simula-

Process diagram of the two gene biomolecular reaction network used as an exemplar modelFigure 1
Process diagram of the two gene biomolecular reaction network used as an exemplar model. For a detailed 
description of the exemplar model see Additional File 1.
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tion algorithm, (2) an SBML model definition (see
Additional File 2 for model code), (3) the stochastic reac-
tion parameters and initial conditions in the SBML model
definition, and (4) the following simulation parameters:
number of simulations = 10, duration of simulation =
3600 sec, snapshot interval (SSI) = 50 sec (giving a total of
72 snapshots), and event log = on. A limited number of
simulations (n = 10) were used to obtain representative
results quickly (total simulation time for 10 simulations
was 365 sec). Due to the scale of the model (249 state var-
iables), it is not possible to show the total set of data for
all state variables, but a few selected and important state
variables are shown in Figure 2 to illustrate the general
behavior of the system. The data presented show the tra-
jectories of the selected state variables for a single repre-
sentative simulation using the event log data. These data
show each and every event that affected the selected state
variables and is an exact trajectory in state space. The bio-
molecular reaction system under investigation is a closed
system with a limited supply of energy molecules and
reaction substrates. The system self-assembles via tran-
scription and translation of geneA and geneB, using the
available energy and substrates, to form the metabolic
reaction pathway consisting of two tandem ligation reac-
tions that ultimately synthesize the final product, Prod_B.
When critical substrates are depleted, reactions dependent
on these substrates stop. In this particular system, three
substrates, GTP (s006), ATP (s005) and Sub_1 (s233)
prove to be critical (Figures 2(F) and 2(H)) although
another substrate, charged tRNA for glutamine
(AA_Q_tRNA_AA_Q – s105) could be critical under
slightly different circumstances (Figure 2(E)). First, GTP is
depleted at about 1700 sec. Since GTP is utilized by both
mRNA synthesis as a substrate and protein synthesis as an
energy source, both transcription of messenger RNA and
translation of the protein products are simultaneously ter-
minated at the time when GTP is depleted. Even if protein
synthesis had not terminated at 1700 sec due to depletion
of GTP, it would have terminated soon thereafter due to
the depletion of AA_Q_tRNA_AA_Q. Secondly, ATP is not
only a substrate for mRNA synthesis, but is also an energy
source for the ligation reactions and charging of tRNA
with amino acids. Therefore, when ATP is depleted at
about 3600 sec, both the enzymatic ligation reactions and
the tRNA charging reactions terminate. Third, the first
metabolic ligation reaction terminated when Sub_1 was
depleted at about 2900 sec and subsequently, the second
metabolic ligation reaction would have terminated when
all of Prod_A formed by the first ligation reaction was
depleted. These reactions illustrate the general behavior of
a closed biomolecular reaction network, reactions that
depend on substrates and energetic molecules terminate
when these components are depleted while simple bind-
ing reactions that operate on thermal energy continue to
be executed.

To generate the exact trajectories for state variables, the
'Create Plots from Data' tool in the BNS Analysis Toolbox
must parse the event log to obtain the time sequence of
each reaction and then create the trajectory of each state
variable. For systems that involve many reactions and
many state variables, this can be a computationally
demanding and thus a time consuming process. To obtain
a quicker but lower resolution picture of the general
behavior of the system, the BNS software computes the
state of each state variable at fixed time points determined
by the snapshot interval (SSI) which is user defined. Fig-
ure 3 shows three of the same trajectories as in Figure 2
but using the snapshot data with SSI ranging from 1 to
100 sec. Note, these simulations were performed using the
same random number seed, thus the event logs are identi-
cal for all of these simulation, only the snapshot data files
change between simulations. For state variables that are
experiencing rapid dynamic fluctuations (e.g., Figure
3(A), and 3(B)), it is obvious that the snapshot plots do
not reveal all the details of the behavior of the state varia-
ble. For example, the instantaneous values of the free
mRNAs for geneA (geneA_mRNA, s009 – Figure 3(B) blue
line) fluctuate rapidly between 2 and 23 copies when tran-
scription terminates (t > 1700 sec in top plot). However,
inspection of the snapshot data for SSI = 50 sec during the
same time interval suggests that the levels only fluctuate
between 8 and 19 copies. As this series of data indicate,
the snapshot data approach the exact behavior (event log
data) as the SSI decreases. For this particular biomolecular
reaction network, only a SSI = 1 sec gives an adequate
approximation to the exact behavior of these rapidly fluc-
tuating state variables. On the other hand, state variables
that are only created (final products) or only destroyed
(non-renewable substrates) do not fluctuate but merely
increase or decrease monotonically (Figure 3(C)). For
these state variables, a SSI = 100 sec gives an adequate
approximation. For this model, a SSI = 50 sec will be ade-
quate to give a general impression of the behavior of most
state variables except for those that fluctuate rapidly.
However, the ability to observe the actual range of a state
variable that fluctuates rapidly will only be possible using
the event log data.

Each simulation run provides a probabilistically accurate
trajectory of the system in state space. Figure 4 shows the
state space trajectories of the number of molecules of sev-
eral state variables for 3 individual simulations. Although
each of the trajectories shown illustrates the possible
behavior of the state variable that is consistent with the
physical-chemical nature of the system, the likelihood
that the behavior of any actual system would behave in an
identical manner to a simulated trajectory is small. Thus,
comparison of the data for a single simulation run with
time-series experimental data from a single biomolecular
reaction system would not be particularly useful, except in
Page 7 of 21
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the sense of general trends. The value of individual simu-
lation runs is to provide some intuitive insight into the
possible range of behaviors of the system under investiga-
tion. For example, Figure 4(A) illustrates the behavior of
free geneA mRNA (geneA_mRNA – s009). In all three sim-
ulations, the level of free mRNA increases while transcrip-
tion is active, then levels off when GTP is depleted. In spite
of the rapid fluctuations in the level of free mRNA, the
general trend is similar in all three simulations. In Figure
4(B), the state space trajectories of the number of mole-
cules of the free amino-acyl-transferase for the amino acid
glutamine, AA_Trans_AA_Q (s065), the uncharged tRNA
for glutamine, tRNA_AA_Q (s085), and the charged
glutamine tRNA, AA_Q_tRNA_AA_Q (s105) is shown. In
each simulation, the level of the charged tRNA fluctuates

about a value of approximately 570 while it is feeding the
translation reactions and then drops rapidly when
glutamine is depleted. However, the timing of the rapid
drop in charged tRNA and the final level of the charged
tRNA varies from run-to-run depending on when GTP is
depleted and how many protein molecules were com-
pletely synthesized before GTP was totally consumed. In
Figure 4(C), the substrates and products of the ligation
reactions are shown. In the left-hand panel, the rate of the
second ligation reaction was fast relative to the first liga-
tion reaction and all of the intermediate product was con-
verted to final product at the end of the simulation. In the
right-hand panel, the opposite was true, and much less
intermediate product was converted to final product. The
difference in rates can be traced to the amount of Pro_A

Selected results for simulations of the exemplar modelFigure 2
Selected results for simulations of the exemplar model. Plots are of a possible trajectory in state space (number of 
molecules of the selected state variable versus time) for a single simulation. These plots were obtained from the event log data 
and include every event that influenced the particular state variable. The x-axis is time (sec) and the y-axis is the number of 
molecules of the given state variable(s). All plots were created using the 'Create Plots from Data' tool in the BNS Analysis 
Toolbox.
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and Pro_B formed (Figure 4(D)). Here, the total protein
translated is plotted using the fictitious state variable,
Pro_A* (t250) and Pro_B* (t251) that were included in the
model code to count every translation event for geneA and
geneB, respectively. In the left-hand simulation more
Pro_B than Pro_A was formed and vice versa in the right-
hand simulation. Thus, by inspecting several individual
simulations some insight into the possible range of
dynamical behavior of the system can be obtained.

Figure 4(D) also illustrates another feature of the stochas-
tic nature of the system. The two genes, geneA and geneB,
are treated identically in this exemplar model in the sense

that their nucleotide compositions are the same and all
reactions with the RNA polymerase, subsequent transcrip-
tion reactions, ribosomal subunits and translation reac-
tions have the same probabilistic reaction constants.
Therefore, if the system was continuous and deterministic
the two genes would be expressed at the same rate and
attain the same magnitude. However, due to the stochas-
tic nature of the system, neither the rates nor the magni-
tudes of synthesis of Pro_A and Pro_B are identical within
a given simulation. Furthermore, the rates and magni-
tudes are not repeatable from simulation to simulation.
Inspecting Figure 4(D) reveals that in two cases more
Pro_A was translated than Pro_B and in one more Pro_B.

Effect of the snapshot interval (SSI) on the appearance of the trajectories of state variablesFigure 3
Effect of the snapshot interval (SSI) on the appearance of the trajectories of state variables. Individual simulations 
using the same random number seed were performed with different SSIs ranging from 1 sec to 100 sec. The first row is the 
exact trajectory using the event log data. The other plots are obtained based on the snapshot data from simulations using the 
indicated SSIs. The x-axis is the time (sec) and the y-axis is the number of molecules of the given state variable. All plots were 
created using the 'Create Plots from Data' tool in the BNS Analysis Toolbox. Column: (A) – RNA polymerase (RNAp – s001); 
(B) free geneA_mRNA (s009) and geneB_mRNA (s024); and (C) Sub_1 (s233), Sub_2 (s237), Prod_A (s240), Sub_3 (s245) and 
Prod_B (s248).
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In the simulations shown in Figure 4(D), the protein that
started with the higher translation rate ended up making
the most protein. However, if more simulations are inves-
tigated, it is found that this is not always true, i.e., the two
trajectories can cross over. Note also that for these state
variables, both of which monotonically increase with no
fluctuations, there is significant variability between simu-
lations in the total protein synthesized at the end of the
simulation ranging from 40 – 75 protein molecules syn-
thesized.

As a consequence of the inherent stochastic variability of
the behavior of state variables, experimental time-series
data obtained from individual biomolecular reaction sys-
tems (vesicles in this example) represent single physical
instances of the system under investigation. In general,

one would conduct multiple experiments on individual
systems and compute the mean and standard deviation of
the observed time series (see discussion below). However,
if one wished to investigate the behavior of a single exper-
imental time series in relation to the model predictions,
the only meaningful comparison is between the experi-
mental data for the selected state variable si and the simu-
lation ensemble mean ± standard deviation for si. This is
because the simulation ensemble mean and standard
deviation are the best estimates of the mean (first
moment) and standard deviation (square root of the sec-
ond moment) of the state density function P(s, t/s0, t0) for
each selected state variable si (Equations 3 and 5). Figure
5 shows the mean ± the standard deviation of selected
state variables using the snapshot data from 100 simula-
tions. These plots were created using the 'Time-Weighted

Variability in state variable trajectories between individual simulation runsFigure 4
Variability in state variable trajectories between individual simulation runs. Individual trajectories for three separate 
simulations for selected state variables are plotted. The data used in creating these plots were taken from the event logs. The 
x-axis is time (sec) and the y-axis is the number of molecules of the given state variable. All plots were created using the 'Cre-
ate Plots from Data' tool in the BNS Analysis Toolbox.

� � � � � � � � � � 	 
 � � � 
 � � � �

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

s009

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

s009

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

s009

� � � � � � � 
 � � � � � � 
 � � � � � � 
 � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � � 
 � � � �

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

s065

s085
s105

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

s065

s085
s105

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

s065

s085
s105

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

s233

s237

s240
s245

s248

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

s233

s237

s240
s245

s248

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

s233

s237

s240
s245

s248

� � � � �  ! " # # $ % � � � � "  ! " # & $ % ' ( ) * � +  ! " , - $ % � � � � #  ! " , . $ % ' ( ) * � /  ! " , 0 $

' ( ) � + 1  2 " . - $ % ' ( ) � / 1  2 " . � $

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

t250

t251

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

t250

t251

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

t250

t251
Page 10 of 21
(page number not for citation purposes)



BMC Systems Biology 2009, 3:64 http://www.biomedcentral.com/1752-0509/3/64
Average' Tool in the BNS Toolbox. This tool was set-up to
calculate the mean and standard deviation of the number
of molecules of the selected state variable for the ensem-
ble of 100 simulations at 50 sec intervals. These plots are
estimates of the temporal behavior of P(s, t/s0, t0) based
on the model. If the model is a reasonable representation
of the physical system, two thirds of the time the experi-
mental data for a single vesicle should fall within the
envelop of the mean ± the standard deviation. However,
significant excursions from the envelop can occur even
when the model is a correct representation of the experi-
mental system and thus observing the behavior of a single
experimental time series may be misleading. As suggested
above, a better comparison between experimental data for
single systems and model simulations is between the
experimental mean ± standard deviation obtained from

multiple (many) single vesicle observations versus the
mean ± the standard deviation of an ensemble of a large
number of simulations runs (see discussion below on the
effect of the number of simulation runs on estimates of
the mean and standard deviations of the probability den-
sity function for the system).

As the number of individual experiments on single sys-
tems increases, the experimental estimates of the mean
and standard deviation of the system state variables
improve. However, if experimental data for state variables
are only obtained as the mean of a large composite sam-
ple of vesicles (i.e., the data are obtained by analyzing
samples consisting of a large number of individual sys-
tems), then the only meaningful comparison is between
this 'macro-sample' mean and the mean of a large number

Estimates of the mean ± standard deviation of the probability density function P(s, t/s0, t0) for selected state variablesFigure 5
Estimates of the mean ± standard deviation of the probability density function P(s, t/s0, t0) for selected state 
variables. These plots were obtained using the snapshot data (SSI = 50 sec) from 100 simulation runs. The x-axis is time (sec) 
and y-axis is the number of molecules of each state variables. These plots were obtained from the 'Time-Weighted Analysis' 
Tool in the BNS Toolbox.
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of simulations at corresponding time points. In this case,
no data concerning the variability between individual ves-
icles can be obtained. Note, the standard deviation
obtained from analyzing multiple macro-samples does
not correspond to the fluctuations exhibited in individual
model simulations of the system or fluctuations between
model simulations, but rather is a measure of experimen-
tal uncertainties (e.g., experimental measurement errors
and non-identical systems), which are not taken into con-
sideration by the model simulations. In fact, if there were
no experimental uncertainties, then the macro-means of
multiple macro-samples taken from ensembles of identi-
cal systems would converge to a single value as the
number of individual systems collected in the macro-sam-
ple increases.

To further investigate the behavior of the system, the event
rates of selected reactions were investigated. As the system
is treated as a discrete jump Markov process, each event
occurs instantaneously and the value of associated state
variables change discontinuously at the time of the event.
Consequently, there is no derivative of the state variables
that would correspond to the C-D concept of rate of
change. Hence, for these processes, the 'reaction rate' is
defined as the number of events counted during a time-
averaging interval (TAI) divided by that time interval, giv-
ing an estimate of the reaction event rate (number of
events per unit time). These estimates will depend on the
TAI as illustrated in Figure 6. When calculating the reac-
tion event rate in a particular reaction channel, a very
small TAI relative to the average time between events
results in counting individual events, depending on
whether an event occurs or not in a particular time averag-
ing interval. Subsequently dividing by a small TAI results
in what appears as an anomalously high reaction event
rate and the computed reaction event rate will exhibit
large fluctuations between successive sample times
depending on whether an event occurred or not. This
effect is most obvious in the TAI = 1 sec panel in Figure
6(A), where the between sample time variability is large
fluctuating between 1 and 0 (in Figure 6(A) note the dif-
ference in scales in the TAI = 1 and 10 sec plots compared
to the other plots). On the other hand, a large time-aver-
aging interval will reduce the variability thus smoothing
the data, but will affect the time resolution and the ability
to precisely observe dynamical changes in rates due to the
averaging over long intervals. For the results discussed
below, a TAI of 50 sec was selected to maximize time res-
olution of system dynamics without significant artifacts
due to too small a TAI.

The total number of reaction events in each reaction chan-
nel during the entire simulation run is calculated by the
BNS software. fIn this exemplar model, the total number
of reaction events in a given reaction channel ranged from

one to several hundred thousand over the 3600 sec simu-
lation. The specific reaction event rate was computed for
selected reactions using a user defined TAI of 50 sec as dis-
cussed above and the results are shown in Figure 7. In Fig-
ures 7(A) through 7(E), the mean ± one standard
deviation for the ensemble of 10 simulations are shown.
For the selected reactions, the reaction event rates vary
during the simulation depending on the availability of
substrates (and enzymes where required). For example,
the reaction event rate ranged from 0 – 0.06 reaction
events per sec for transcription (reaction r4, Figure 7(B)),
0 – 25 reaction events per sec for formation of metabolic
products Prod_A and Prod_B (reactions r275 and r285, Fig-
ure 7(E)) and 0 – 60 reactions events per sec for the asso-
ciation of ATP with the amino acyl-transferase for
glutamine (reaction r147, Figure 7(C)). By plotting the
event rates for several related reactions on the same graph,
it is possible to observe relationships between reactions.
For example, Figure 7(A) plots the association and disso-
ciation of the RNA polymerase (RNAp, s001) with the pro-
moter for geneA (geneA_P, s002) along with the sliding
reaction of the bound polymerase to the start site to form
the start complex (RNAp_geneA, s003). As long as tran-
scription is proceeding, the association rate (reaction r1)
exceeds the dissociation rate (reaction r2) and newly
bound polymerase continues to slide to the start site (reac-
tion r3) and transcription of geneA_mRNA proceeds
(reaction r4 shown in Figure 7(B)). However, when GTP
is depleted (t > 1700 sec), transcription cannot proceed
and the polymerase stalls at the start site blocking the slid-
ing of new polymerase molecules to the start site (reaction
r3). The polymerase sliding reaction ceases and now the
association and dissociation reactions are equal resulting
in a new quasi-steady state for the RNA polymerase (see
Figure 5(A)).

A unique feature of stochastic systems is that the timing of
specific events varies from one simulation to the next. An
example of this effect is seen in Table 1, where the time of
the last transcription event is displayed for the transcrip-
tion of geneA (reaction r4) and translation of
geneA_mRNA (reaction r8) into Pro_A for each of the 10
simulation runs. These data were obtained from the
parsed event log data files viewed in the MATLAB work-
space. The transcription reaction terminates when the
available GTP is depleted and ranges from 1637 to 1907
sec with a mean and standard deviation of 1757 ± 77 sec
for the transcription of geneA. The translation reaction
stops when GTP and/or the limiting amino acid charged
tRNA for glutamine (AA_Q_tRNA_AA_Q, s105) is
depleted which occurs over a range of 1354 to 1870 sec
with a mean and standard deviation of 1653 ± 147 sec for
the transcription of geneA. Thus, the timing of any specific
event in a stochastic process will always appear as a distri-
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bution rather than a fixed time as would be the case for a
C-D process.

Improvement in estimating the mean and standard 
deviation of s with the number of simulation runs
The mean and standard deviation of the number of mole-
cules for the ensemble of simulation runs at a given time
t allow one to estimate the first and second moments of
the probability density function, P(s, t/s0, t0), for the ran-
dom variable s as defined by the solution of the CME (see
Equations (3) – (5)). As the number of simulations
increases, the accuracy of these estimates improve. This
can be seen by inspecting the estimated mean ± SD for
batch jobs with increasing numbers of simulation runs
(Figure 8). Figure 8(A) and 8(B) illustrate the behavior of
two state variables that can only fluctuate between a lim-

ited number of states due to the stoichiometry of the sys-
tem. Figure 8(A) shows the free RNA polymerase (RNAp,
s001) where, although the number of total molecules is
fairly large (301 in this exemplar model), the state varia-
ble can only fluctuate between 301 and 297 molecules
corresponding to zero or four polymerase molecules
bound to the promoter and start sites of the two genes.
The mean and SD for an ensemble of simulation runs
fluctuates significantly from one sample time to the next
when averaged over a small number of simulation runs –
i.e., the mean appears to be noisy when the number of
simulations are small (Figure 8(A), n = 10 plot). However,
this is merely a consequence of the approximate nature of
the statistical estimate of the first and second moments of
the solution of the CME using a small number of simula-
tions. In fact, the exact mean, �s(t)�, and the SD, �σ(t)�, are

Effect of time-averaging interval (TAI) on time averaged reaction event ratesFigure 6
Effect of time-averaging interval (TAI) on time averaged reaction event rates. The time-averaged event rate data 
for a single simulation were calculated using various TAIs from 1 to 600 sec for selected reactions. The same random number 
seed was used for each set of simulations (rnseed = 100). The x-axis is time (sec) and the y-axis is the reaction event rate 
(number of reaction events per sec). Note the difference in scale between the TAI = 1 and 10 sec panels and the other panels 
in Figure 6(A). These plots were generated by the 'Reaction Frequency' Tool in the BNS Toolbox.
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(B) Formation of Prod_A (r275) / Prod_B (r285)
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smooth functions of time as the series of approximations
with increasing n in Figure 8(A) suggests. Only for estima-
tions of the mean with n ≥ 100 runs does the mean
become a relatively smooth function of time. Also, the
shift in the mean between 1600 and 2000 sec becomes
well defined with increasing number of simulations. This
shift is due to the stalling of two RNA polymerase mole-
cules at the start sites of geneA and geneB when GTP is
depleted resulting in the cessation of mRNA synthesis.
Figure 8(B) shows the behavior of the estimates of the
mean and SD of the probability density function for the
complex of the RNA polymerase and the start site for
geneA (RNAp_geneA, s004). For this state variable, the only
possible states in state space are either 0 or 1 correspond-
ing to when the start site is unoccupied and when the
polymerase is bound at the start site, respectively. Thus,
the number of molecules of the complex fluctuate over

time between 0 and 1 in any given simulation of the sys-
tem (Figure 8(B), n = 1 plot). This rapid fluctuation con-
tinues until transcription terminates due to the depletion
of GTP. The red band in the n = 1000 plot indicates the
mean ± one SD for time when transcription terminated as
calculated in Table 1. When mRNA transcription termi-
nates, a polymerase is locked at the start site and the value
of the state variable RNAp_geneA (s004) becomes a con-
stant. Also, these data indicate that at any given time dur-
ing active transcription, the start site for geneA would be
occupied by a polymerase in approximately 30 percent of
the individual systems in an ensemble of a large number
of systems.

Figure 8(C) shows the behavior of free protein B (Pro_B,
s027) as n increases. In this case, the values of the state var-
iable is not inherently limited by the stoichiometry of the

Time-averaged reaction event rates of selected reactionsFigure 7
Time-averaged reaction event rates of selected reactions. Each panel shows the mean ± SD for the time-averaged 
reaction event rates (time averaged over 50 sec intervals) averaged over an ensemble of 10 simulation runs. The x-axis is the 
time (sec) and the y-axis is the reaction event rate (number of events per sec). These plots were constructed with the 'Reac-
tion Frequency Analysis' Tool in the BNS Toolbox.
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system. For Pro_B, there are approximately 60 molecules
synthesized. However, because Pro_B forms a tetramer
and that tetramer is involved in catalytic reactions, the
number of free molecules of Pro_B remains low through-
out the simulation and fluctuates rapidly due to the asso-
ciation and dissociation of the dimer – tetramer
complexes. Again, the estimates of the ensemble mean
and SD show significant fluctuations from one time point
to the next when n is small due to the inaccuracies in each
estimate of �s(t)�n and �σ(t)�n. As n increases, each individ-
ual estimate of the mean of s(t) and SD improves and the
plot approaches the exact smooth curve for P(s, t/s0, t0).
For this state variable, the details of its behavior only
become well defined with 100 or more simulations.

Finally, Figure 8(D) shows the time course of the number
of proteins translated using the fictitious variables t250
and t251 to count the number of molecules of Pro_A and
Pro_B synthesized, respectively. For any individual simu-
lation, the translation of geneA and geneB can be quite
independent within the constraint that the total number
of protein molecules synthesized are limited by the avail-
ability of energy and substrates (Figure 4(D)). However,
as the number of simulations increases, the ensemble
means of Pro_A* and Pro_B* approach each other demon-
strating that the expression of the two genes are controlled
in an identical manner. All of these examples emphasize
the need to conduct a large number of simulations to
obtain accurate estimations of the behavior of the state
variables.

The dependency of the accuracy of the estimates of the
mean and SD of state variables on the number of simula-
tions is an issue that must be taken into consideration
when comparing model predictions with experimental
data. If simulations are used to estimate what the model

would predict for experimental observations, then the val-
ues for state variables predicted by the model will only be
exact in the limit of n → ∞ simulations. Therefore, if a
finite number of simulations are used, there will be some
error in the model predictions. There are several situations
where this issue becomes particularly important. One
example is when one believes that a model is adequate,
but there are still minor discrepancies between model pre-
dictions and the available experimental data. The usual
cause for this situation is that the uncertainty in some
model parameters, such as the reaction probability con-
stants, leads to uncertainties in simulations that are
greater than the uncertainties in the experimental data. To
investigate whether minor adjustments to model parame-
ters will improve the correlation between model predic-
tions and experimental data, various optimization
techniques can be employed. To successfully adjust model
parameters based on experimental data, it is necessary to
compute a large number of simulations to adequately esti-
mate the behavior of the system each time model param-
eters are variedin the optimization algorithm. If too small
a number of simulations are used, the fluctuations in
model predictions as the model parameters are varied
from one cycle to the next of the optimization process will
be so great as to limit the usefulness of the optimization
procedure. The larger the number of simulations the bet-
ter the estimate of the model prediction, thus reducing
this additional source of error that is not present when fit-
ting solutions of C-D ODEs to experimental data.

Similar issues arise when investigating reaction event
rates. Averaging over multiple runs gives a more accurate
and consistent estimate of the model predictions of the
mean and SD of the reaction event rate as a function to
time. It should be noted that the mean and SD for the
time-averaged reaction event rate are not directly related

Table 1: Time of last transcription and translation events.

Simulation Run Time of Last Transcription Event for geneA
(r4)

Time of Last Translation Event for geneA
(r8)

1 1757 1592
2 1700 1634
3 1907 1870
4 1693 1631
5 1758 1739
6 1822 1504
7 1703 1710
8 1637 1354
9 1781 1727
10 1805 1774

Average 1757 1653
Standard Deviation 77 147

For each of the 10 simulation runs, the time of the last transcription event for transcription of geneA (reaction r4) and translation event for geneA 
(reaction r8) is given. These data were obtained from the parsed event log.
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to the first and second moments of the state density func-
tion P(s, t|s0, t0), but are related to the reaction probability
constants. The reciprocal of the time-averaged reaction
event rate is the mean time between reactions given the
current state of the system, which is determined by the
propensity. Thus, the time-averaged reaction event rate is
related to the reaction probability constants through the
state dependent propensity. Even for reactions that occurs
at a significantly greater rate than transcription or transla-
tion, e.g., the metabolic formation of products Prod_A and
Prod_B (Figure 9(B)) with a reaction event rate ranging
from 0 to 23 events per sec, the effect of averaging over
multiple simulations is still apparent, particularly for the
details of the mean and standard deviation.

When sufficiently large numbers of simulations are per-
formed, it becomes reasonable to generate discrete histo-

grams of the distributions of state variables at defined
times. Figure 9 shows the distribution of several state var-
iables at two time points, one during active transcription
and translation (t = 1000 sec) and the other at the end of
the simulation (t = 3600 sec). These histograms were gen-
erated using 1000 individual simulation. This is an esti-
mate of the probability that the system would be in that
particular state at the defined time t, i.e., the state proba-
bility density P(s, t|s0, t0). During gene transcription and
translation (t = 1000 sec), the free polymerase probability
density (Figure 9(A)) is distributed among the five possi-
ble states from no polymerases bound (s001 = 301) to
four polymerases bound (s001 = 297) with two polymer-
ases bound (s001 = 299) being the most probable state. At
the end of the simulation (t = 3600), the most probable
state is with four polymerases bound (prob = 0.7) and fur-
thermore, the states with zero or one polymerase bound

Comparison of estimates of the mean and standard deviation of selected state variables with increasing numbers of simulation runsFigure 8
Comparison of estimates of the mean and standard deviation of selected state variables with increasing num-
bers of simulation runs. For each state variable, the mean ± SD for the number of molecules are plotted using a SSI = 50 sec 
for various numbers of simulations. The x-axis is time (sec) and the y-axis is the number of molecules of the given state varia-
bles. These plots were obtained from the 'Time-Weighted Analysis' Tool in the BNS Toolbox.
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(s001 = 300 or 301) are not populated (prob = 0). This is
due to the fact that when transcription terminates, two
polymerases are stalled at the start sites of the two genes.
This is seen in Figure 8(B), where before transcription ter-
minates (t = 1000 sec), the start site of gene A is only occu-
pied with a probability of approximately 0.3 while after
transcription terminates it is occupied with a probability
of 1.0. Figure 9(C) and 9(D) are the estimates of the state
probability density functions for the free gene A mRNA
(geneA_mRNA, s009) and the total number of protein A
molecules synthesized (Pro_A*, t250). Both of these state
variables increase with time while transcription and trans-
lation are active. Furthermore, the number of possible
states available to each state variable increases and is only
limited by the total number of molecules of mRNA and

protein A synthesized. The free geneA mRNA state variable
is influenced by five reactions (its synthesis (r4), its degra-
dation (r5), its association and dissociation with the small
ribosomal unit (r6 and r7), and its release after translation
(r8)), while the fictitious total protein synthesized varia-
ble is only a counter for the number of transcription reac-
tions (r8). The variability in Pro_A* is a consequence of
the stochasticity in the transcription reaction alone, while
the variability in geneA_mRNA is a combination of the
variability in the total number of mRNA molecules tran-
scribed at a given time and the variability introduced by
the other reactions that influence that state variable. Dis-
crete histograms of the state variables give a better visual-
ization of the true nature of the state probability density
function than just the first and second moments.

Histograms of the distribution of state variables at two timesFigure 9
Histograms of the distribution of state variables at two times. Histograms of the selected state variables were com-
puted at t = 1000 and 3600 sec using the data from 1000 simulations. The left hand panels are the data at t = 1000 sec while the 
right hand panel is at t = 3600 sec. The x-axis is the number of molecules of each state variable and the y-axis is the probability 
of occupancy. These histograms were generated from data files generated by the 'Time Weighted Average' Tool in the BNS 
Toolbox.
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Scaling of run time with the number of processorsFigure 10
Scaling of run time with the number of processors. Speed-up was calculated as the run time for the batch job on one 
processor divided by he run time with the given number of processors. (A) Speed-up for the two gene 
(geneA_geneB_CFTT_1p1) exemplar model. (B) Speed-up for the one gene (geneA_CFTT_0p0) model with 1× and 10× 
parameter sets. All models were run 10,000 times as a batch job using the BNS software on a HP XC machine with distributed 
memory architecture using up to 100 processors.
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Comparison between single and multi-processor 
simulation runs
As is apparent from the discussion above, the ability to
accurately estimate the first and second moments of the
state density function of the system under investigation
using the Monte Carlo simulation approach increases
with increasing numbers of simulations. Various analysis
techniques, such as optimization (data fitting) and sensi-
tivity analysis, require repeated batch jobs of large num-
bers of simulation to obtain statistically valid results. This
may not be a problem for a relatively simple biomolecular
reaction system, but as the complexity of the system
model increases this will increase the computational
demand. The need for high performance computing
becomes essential.

Running a simulation session as a batch job on multi-
processor HPC hardware entails a certain amount of over-
head, e.g., the time it takes to break up the job into smaller
tasks and assign the problem to each processor on the
front end and the data collection and storage on the back
end. As a result, the speed-up gained by using multi-proc-
essor hardware is to a degree dependent on how compu-
tationally intensive the problem is. For a relatively simple
problem that is not particularly computationally inten-
sive, the majority of the clock time for the simulation ses-
sion is taken up with overhead. Whereas, for a problem
that is computationally intensive, the computations
involved in the actual simulation are the time consuming
component of the simulation process.

To investigate this effect, we ran a batch job with the
exemplar model using multi-processor HPC hardware to
evaluate the speed-up in clock time with increasing num-
bers of processors. Specifically, we executed 10,000 simu-
lation runs of the exemplar model as a batch job on an HP
XC machine with distributed memory architecture using
the Gillespie direct stochastic simulation algorithm and
various numbers of processors. The speed-up, defined as
the clock time for a run with one processor divided by the
clock time for the same run on multiple processors, is
shown in Figure 10(A). For a simulation of this computa-
tional complexity (clock time for the batch job on one
processor was 41,351 sec), the speed-up was relatively lin-
ear with the number of processors. However, the speedup
observed by running the model on 100 processors in the
batch mode was only 85.1-fold. This drop-off in perform-
ance is due to the computational overhead discussed
above, and thus, the performance when using more than
100 processors results in diminishing returns

To further explore this effect, we repeated the test with a
batch job of significantly less computational complexity.
Using a one gene model with lumped reactions (denoted

geneA_CFTT_0p0 – 1× model with a total of 45 state var-
iables and 12 reactions), the speed-up for a batch job con-
sisting of 10,000 simulation runs was calculated using up
to 50 processors. The clock time for a single processor to
run the batch job was 1,920 sec and the speed-up is shown
in Figure 10(B). In this case, the computational demand
for the actual simulations is relatively small and the over-
head becomes a dominant factor. Given these conditions,
using more than 20 processors provides little benefit. The
computational complexity of this relatively simple model
can be increased by increasing the number of plasmids per
reaction network from 1 to 10 and the number of sub-
strate molecules by a factor of 10 (denoted the
geneA_CFTT_0p0 – 10× model). This is equivalent to hav-
ing 10 plasmids containing geneA present in the same
reaction volume with ten times the number of substrate
molecules available. The speed-up results using the 10×
model are also given in Figure 10(B). Here the value of
additional processors is clearly apparent even when 50
processors are accessed.

Conclusion
In this manuscript, we have tried to point out some of the
issues that arise in interpreting the results of modeling
and simulating discrete stochastic systems. The issues of
how the snapshot interval affects the visualization of state
variables and how the time-averaging interval affects the
estimation of the time-averaged reaction event rates illus-
trate how simulation and analysis parameters can influ-
ence the interpretation of system behavior. Probably even
more important is how the number of simulations affect
the estimation of the mean and SD of state variables.
Unless sufficient numbers of simulations are conducted,
these estimates will not be adequate to: (1) observe the
details of the temporal dynamics of state variables, (2)
accurately estimate the variability between simulations, or
(3) when optimization procedures are being employed, to
expect consistent convergence of solutions.

An important point to remember is that the stochastic
nature of individual state variables is to some extent
model dependent, i.e., will depend on: (1) the relation-
ships between state variables, (2) the mathematical forms
of the reaction propensities, (3) the values for reaction
probability constants, and (4) initial conditions for state
variables. For example, if the diameter of the vesicle was
increased 10 times (from 1.0 to 10.0 μm), then the initial
numbers of molecules of each state variable would be
increased 125 times (except for the number of genes as
determined by the number of gene promoter sites which
would still be 2, one for each gene). In this case, the effect
of stochastic processes on some state variables, such as the
transfer RNAs, would be significantly diminished while
the effect on others, i.e., transcription, would remain.
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In addition, we investigated the generic behavior of a bio-
molecular reaction network consisting of the expression
of two genes in a cell-free transcription-translation system
enclosed in a artificial reaction vessel. Such a closed sys-
tem does not reach a steady state and generates a different
class of kinetics than is found in systems where it is
assumed there is an infinite supply of substrates and
energy and all waste products are 'taken care of' by the sys-
tem. The closed system investigated here simply 'dies out'
when critical components are exhausted. The ability to
simulate such a system allows one to identify the critical
factors that limit the performance of the system. Although
the model for the system is still relatively crude, it is clear
that the availability of limiting amino acids controls the
ultimate expression of proteins, the availability of GTP
limits transcription of the plasmid genes to form mRNA
and the availability of substrates (including ATP) for the
catalytic ligation reactions limits the generation of the
final products. This quantitative knowledge can be used,
for example, to optimize the system to maximize produc-
tion of products, either proteins or metabolites. As the
models for the CFTT-vesicle system become more sophis-
ticated, a more detailed understanding of the behavior of
these biological constructs will evolve.

Availability and requirements
The BNS software is available to all researchers through
the website below.

Project name: Biomolecular Network Simulator

Project home page: http://www.bhsai.org/
bns_alpha.html

Project downloads: http://www.bhsai.org/downloads/
bns_release.zip

License: GNU GPL

Operating systems: Platform independent

Programming Language: C, MATLAB

Other Requirements: MATLAB 6.5 or newer; MatlabMPI
and MPI libraries for multiprocessor execution.
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