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Abstract
Background: The identification of network motifs as statistically over-represented topological
patterns has become one of the most promising topics in the analysis of complex networks. The
main focus is commonly made on how they operate by means of their internal organization. Yet,
their contribution to a network's global architecture is poorly understood. However, this requires
switching from the abstract view of a topological pattern to the level of its instances. Here, we
show how a recently proposed metric, the pairwise disconnectivity index, can be adapted to survey
if and which kind of topological patterns and their instances are most important for sustaining the
connectivity within a network.

Results: The pairwise disconnectivity index of a pattern instance quantifies the dependency of the
pairwise connections between vertices in a network on the presence of this pattern instance.
Thereby, it particularly considers how the coherence between the unique constituents of a pattern
instance relates to the rest of a network. We have applied the method exemplarily to the analysis
of 3-vertex topological pattern instances in the transcription networks of a bacteria (E. coli), a
unicellular eukaryote (S. cerevisiae) and higher eukaryotes (human, mouse, rat). We found that in
these networks only very few pattern instances break lots of the pairwise connections between
vertices upon the removal of an instance. Among them network motifs do not prevail. Rather,
those patterns that are shared by the three networks exhibit a conspicuously enhanced pairwise
disconnectivity index. Additionally, these are often located in close vicinity to each other or are
even overlapping, since only a small number of genes are repeatedly present in most of them.
Moreover, evidence has gathered that the importance of these pattern instances is due to
synergistic rather than merely additive effects between their constituents.

Conclusion: A new method has been proposed that enables to evaluate the topological
significance of various connected patterns in a regulatory network. Applying this method onto
transcriptional networks of three largely distinct organisms we could prove that it is highly suitable
to identify most important pattern instances, but that neither motifs nor any pattern in general
appear to play a particularly important role per se. From the results obtained so far, we conclude
that the pairwise disconnectivity index will most likely prove useful as well in identifying other
(higher-order) pattern instances in transcriptional and other networks.
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Background
Network analysis is increasingly recognized as a powerful
approach to understand the organization of intracellular
systems. The topology (i.e., the architecture) of a network
describes how its elements are interconnected to one
another, thereby providing the necessary structural basis
for the subsequent analysis of the dynamics of the system.
Various biological networks, such as metabolic or protein
interaction networks, share global statistical features, i.e.,
(i) the small-world property referring to the shortest paths
between any two vertices and highly clustered connec-
tions and (ii) the scale-free property, indicating that the
vertex degrees follow a power-law distribution [1-7]. This
implies a certain hierarchy of connectedness, as most ver-
tices have a low degree and few vertices (hubs) have a
markedly increased number of immediate neighbors.

This hierarchy is reflected in the modular organization of
biological regulatory systems with each module perform-
ing its special functional task, separable from the func-
tions of other modules [8,9]. Such a modularity of
networks can be characterized topologically whereby their
scale-free organization coincides with hierarchical modu-
larity [3]. These hierarchical networks comprise many
small clusters that are densely interconnected rather than
consisting of independent groups of vertices [10]. Accord-
ingly, modules may overlap with each other so that a
nested type of organization is possible with smaller mod-
ules being part of bigger ones. It has been observed for var-
ious biological networks that the clustering coefficient of
the vertices is approximately inversely proportional to
their degree, which has been understood as the most
important indication of hierarchical modularity of a net-
work [3,11-13]. Understanding the organization of mod-
ules and their structural and functional roles emerges as a
new challenge when studying biological networks. The
corresponding analyses require proceeding from the level
of vertices and their edges to the level of groups of these
elements. It has been shown that 'network motifs' are an
important feature of biological networks and may repre-
sent the simplest building blocks from which the bigger
functional modules and whole networks are made
[8,14,15]. They appear to relate to the lowest level of a
hierarchical modularity.

Network motifs depict distinct topological patterns that
occur more often in a given network than in random net-
works with the same size and degree distribution [14,15].
In contrast, significantly underrepresented patterns are
known as anti-motifs [16]. Proteins belonging to specific
motifs in the yeast protein interaction network tend to be
highly conserved across species during evolution thereby
underpinning that also their respective motifs may have
an important, evolutionarily selected biological function
[17,18]. The same network motifs have been found in

diverse organisms from bacteria and yeast to plants and
animals reviewed in [20]. The concept of network motifs
as the building blocks of evolution has become one of the
central topics in the analysis of complex networks. Usu-
ally, studies focus on how each network motif can carry
out particular information-processing functions by means
of its specific internal organization [19-23].

So far little attention has been paid to the role of motifs
within a whole network, i.e., how they are embedded and
how important they are for supporting the global architec-
ture. Motifs are not isolated entities, but they are integral
parts of the whole network. Thus, the targeted removal of
the links among the vertices of all feed-forward loops and
bi-fan clusters from the transcription regulatory network
of E. coli fragmented this network into many small, iso-
lated subgraphs [18]. Although this observation already
indicates that motifs may be of big importance for the
structure of a whole network it hides the impact of a single
feed-forward loop or bi-fan representative in E. coli. It is
unclear whether such a fragmentation is caused by a lim-
ited number of these representatives only and if the signif-
icance of a representative goes along with a particular kind
of motif like the feed-forward loop. Furthermore, net-
works contain other topological patterns than motifs and
it remains to be seen whether they take a minor role for
the topology of a network [19]. Therefore, further studies
are necessary and they require switching from the abstract
view of a topological pattern to the level of their various
representatives, the instances of a pattern. In general, a top-
ological pattern depicts a unique kind of organization
between a defined number of vertices which is given by
the edges between these vertices. A pattern instance refers
to a distinct set of vertices and all edges between them so
that the arrangement of the edges reflects the respective
pattern. To estimate the significance of such an instance
for the topology of a whole network one has to consider
how it relates to the rest of the network, i.e., its environ-
ment, and therewith which kind of influence it may have.
No practical methods and theoretical approaches are yet
available for this purpose.

To evaluate the topological significance of individual
components in complex biological systems, we have
recently introduced a new topological parameter – the
pairwise disconnectivity index of a network's element
[24]. Such an element might be a vertex (i.e., molecule,
gene), an edge (i.e., reaction, interaction), as well as a
group of vertices and/or edges. The pairwise disconnectiv-
ity index quantifies how essential an element is for sus-
taining the communication ability between all connected
ordered pairs of vertices in a network. It can be viewed as
a measure of sensitivity (robustness) of this network to
the presence (absence) of each element. Here, we show
how this concept can be used to estimate the topological
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significance of a pattern instance and to find out the role
of the corresponding pattern within a whole network.
Subsequently, we apply this approach exemplarily to the
analysis of 3-vertex topological patterns in transcription
networks from different organisms: a bacterium (E. coli),
a unicellular eukaryote (S. cerevisiae) and higher eukaryo-
tes (mammals, mainly human, mouse, and rat).

Results
The topological significance of a pattern instance

Let G = (V, E) be a directed graph without multiple edges
that represents a regulatory network, where the vertices v

 V denote biological entities, e.g., proteins, genes or
small molecules. Causal relationships between these enti-

ties are made up of directed edges e  E. A topological pat-
tern is given by n connected vertices and the way they are
connected with each other. The particular coherence
which is described by a pattern is always based on all
edges that exist between n vertices. The entirety of all dis-
tinct n-vertex patterns in G is then given by

 where  is the i-th pattern consist-

ing of n vertices. Actually, each pattern  represents a set

of isomorphic connected subgraphs which have the same
structural properties and differ only in the participating

vertices. Accordingly, a pattern  comprehends a set of

instances, i.e., , and each instance

is a unique subgraph  of G, with the subset of

vertices   V and the subset of edges   E (Figure

1). The edges in  are only incident to vertices in 

and we denote them as the intrinsic edges of the pattern

instance . Other edges, e  E\ , do not contribute to

the coherence of the vertices . Moreover, these extrinsic

edges are part of the environment of  which describes

how the pattern instance is embedded into the network. If

there are more pattern instances  in G than in similar

random networks, then the respective pattern  is called

a motif. Consequently, the entirety of n-vertex patterns in
G may contain several n-vertex motifs

. Then, the motif  com-

passes its own representatives, the instances of the motif

.

Following the logic of [24], we denote the topological sig-

nificance of a pattern instance  as how essential for all

connections within a network it is. To quantify this signif-
icance we eliminate all edges of a pattern instance (i.e., its

intrinsic edges ) and measure how this affects the

number of connected ordered pairs of vertices in the net-

work. An ordered pair of vertices (i, j)|i  j and i, j  V, is
connected iff there is at least one path from vertex i to ver-
tex j in G. Note, that the ordered pair (i, j) is different from
(j, i) in a directed network. The more ordered pairs
become disconnected upon the removal of all edges of a
pattern instance, the higher is the topological significance
of this instance for the whole network. We define the pair-

wise disconnectivity index of a pattern instance, Dis( ), as

the fraction of those initially connected pairs of vertices in
a network which become disconnected if the intrinsic

edges of the pattern instance  are removed from the

network

In Eq. 1 N is the total number of ordered pairs of vertices
in a graph G = (V, E) that are connected by at least one
directed path of any length. It is supposed that N > 0, i.e.,
there exists at least one edge in the network that links two
different vertices. N' is the number of ordered pairs of ver-

tices in the subgraph G' = (V, E') of G where E' = E/ .

Therefore, G' is the subgraph of G that results from remov-

ing the intrinsic edges of the pattern instance  from G.

The pairwise disconnectivity index of a pattern instance
ranges between 0 and 1, whereas zero indicates that the
removal of its intrinsic edges does not disconnect vertices
within the network and one denotes the cases when no
pair of vertices is connected any more.

Figure 2 illustrates how an instance of the feed-forward
loop (FFL), one of the best studied network motifs
[14,15,20-23], may affect the existing communication in
a network. The FFL is a three-vertex pattern that is given
here by the intrinsic edges X  Y, Y  Z and X  Z. It is
linked to the rest of a network by its vertices X, Y, Z where
each of these can be at the start or end of an extrinsic edge
(blue dotted edges). Further extrinsic edges are between
other pairs of vertices in the environment of a FFL
instance, e.g. the ordered pair (E1, E2). Whether a FFL
instance can have an impact on the connection between
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two vertices depends on the kind of constituents of the
paths that link them. If these paths consist of extrinsic
edges only then the connection will not be affected upon
the removal of the FFL (e.g., the pair (E1, E3)). Essentially,
the FFL instance may be critical for those paths which
include at least one intrinsic edge of the instance. How-
ever, that depends on the presence of alternative (i.e., par-
allel) paths between the corresponding vertices that use
extrinsic edges only. For example, the pair (E2, Y) does not
critically depend on the FFL instance due to the presence
of another path (E2, X, E3, E4, Y) that includes no intrinsic
edge of the instance. In contrast, the pair (E2, E6) looses its
connection upon the deletion of the FFL instance though
three parallel paths are connecting these vertices.

Usually, several instances of a particular pattern can be
found in a network. For estimating the topological signif-
icance of the pattern itself the impact of its representatives
has to be considered. We find that the average pairwise
disconnectivity index of all instances of a pattern reflects
this appropriately and define

as the pairwise disconnectivity index of a pattern  that con-

sists of J instances. With it Eq. 2 also states the topological

significance of a randomly chosen instance of the pattern

.

Applying the pairwise disconnectivity index to the analysis 
of topological patterns in regulatory networks
We have applied our approach to the characterization of
three-vertex topological patterns in transcription regula-
tion networks from three different organisms: a bacteria
(Escherichia coli) [14], a unicellular eukaryote (the yeast
Saccharomyces cerevisiae) [15] and higher eukaryotes
(mammals: human, mouse, rat) [25,26]. 3-vertex motifs
were identified by means of the Z-Score as proposed by
Alon and colleagues [15]. This normalized value states
whether the abundance of a pattern in the real network
exceeds its occurrence in a number of random ensembles:
that is, a positive Z-Score refers to an over-representation
in the real network, whereas a negative Z-Score means
under-representation. Since there is no commonly
accepted threshold Z-Score value for defining motifs, we
consider patterns with Z-Score > 0 as motifs and all other
ones as non-motifs. For the networks of E. coli and S. cer-
evisiae 3-vertex motifs were already identified [14,15],
whereas for the mammalian transcription network this is
reported for the first time. To distinguish between differ-
ent motifs many of which have no commonly accepted
names, we used the identification numbers (IDs) of small
connected graphs as it is provided by the FANMOD soft-
ware [27,28]. The name of a pattern instance was gener-

Topological patterns and their instances in a networkFigure 1
Topological patterns and their instances in a network. A: A toy network with the set of vertices V = {1,..., 5}. B: The 

entirety of all 3-vertex patterns  in the toy network. C: The two instances of the pattern .
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ated by combining a prefix E, Y or M for referring to E. coli,
S. cerevisiae or mammalian, respectively, with the corre-
sponding ID followed by the pairwise disconnectivity
index rank of the instance among all instances of a given
pattern.

Bacterial transcription network
The E. coli transcription network consists of 418 vertices
and 519 edges. It exhibits four 3-vertex patterns, two of
which are motifs according to the Z-score criteria (Figure
3). One of these motifs (ID = 6) appears most frequently
and seems to be part of larger motifs known as the single-
input module [20]. The mean pairwise disconnectivity
index of its instances is 0.0039: that is only about 0.4% of
all connected pairs of genes become suspended when a
randomly selected instance of this motif is deleted from
the network. The second motif, ID = 38, is known as the
feed-forward loop [14,15] and appears in the E. coli net-
work less often than the previous, but its instances exhibit
a higher average pairwise disconnectivity index (0.018).
The patterns ID = 12 and ID = 36 are not over-represented
here (negative Z-Score) and are therefore not ranked as
motifs. The pattern ID = 12 denotes a chain-like structure
where a gene regulates another one which itself regulates
a third one. It is attributed to a pairwise disconnectivity

index that ranges within the same scale as the feed-for-
ward loop on average. In contrast, the pattern ID = 36,
that abstracts the influence of two genes on a third one,
has a much lower mean pairwise disconnectivity index
than that of the ID = 12 pattern, but higher than that of
the ID = 6 motif.

The boxplots in Figure 4 show how the pairwise discon-
nectivity index is distributed among the instances of dif-
ferent 3-vertex patterns (see Figure 3, E. coli). The
population of each pattern is very heterogeneous. Most
instances exhibit a low pairwise disconnectivity index
value. However, very few pattern instances cause a signifi-
cant effect when deleted, thereby indicating that the net-
work is vulnerable against a targeted removal of particular
instances. While about 3% of all motif instances are not
crucial for sustaining the connection between any gene
pair, nearly 9% of them disconnect at least 1% of the gene
pairs in E. coli. In contrast, the instances of non-over-rep-
resented patterns always disconnect at least one gene pair
and one third of them 1% or more. In general, comparing
the medians of pattern instances (shown in Figure 4 as a
solid horizontal bar) indicates that motifs are not topo-
logically more significant than the non-motif patterns.

The embedding of a feed-forward loop (FFL) instance into a networkFigure 2
The embedding of a feed-forward loop (FFL) instance into a network. The FFL pattern is given here by the coher-
ence between the vertices X, Y, Z. Therewith its only instance consists of these vertices and the intrinsic edges X  Y, Y  Z, 
X  Z. How the FFL instance relates to the rest of the network is determined by those kinds of extrinsic edges that are 
attached to the vertices X, Y, Z (blue dotted edges). Other extrinsic edges link further vertices (blue vertices) in the environ-
ment of the FFL instances. The connection between a pair of vertices can be affected only then by the FFL instance if the paths 
linking them contain at least one of the intrinsic edges. For example, the connection between the pair (E2, E6) depends of the 
relation between the vertices X, Y, Z. In contrast, there still is an alternative path between the vertices E2 and Y that remains 
untouched. Note that the 'feed-forwarding' action of the FFL instance does not apply to those paths which cross only one 
intrinsic edge of this instance – e.g., path {E1, E2, X, Y, E8, E9} and path {E3, E4, Y, Z, E6, E7}.
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Nevertheless, the instance with the highest pairwise dis-
connectivity index in the E. coli network is a motif
instance. This feed-forward loop consists of the genes hns,
flhDC and fliAZY (Figure 5, ID = E.38.1). Interestingly, the
gene flhDC is part of all pattern instances with a high top-
ological significance, either together with the gene fliAZY
or ompR_envZ (Figure 5). Like hns and fliAZY, the gene
flhDC is involved in the synthesis of flagella in E. coli. A
reduced activity of flhDC and fliAZY results in the loss of
motility in E. coli [29,30] which has vital consequences for
the bacteria. This can be the case for a loss of the
ompR_envZ regulatory system too, which is known to play
a critical role in stress response by regulating the transcrip-
tion of porin genes in response to medium osmolarity
[31]. Altogether, the high topological significance of the
pattern instances in Figure 5 seems to reflect the impor-
tance of the few recurring interactions between these
essential genes for E. coli adequately.

Yeast transcription network
The transcription network of S. cerevisiae consists of 688
vertices and 1079 edges. It features three additional pat-
terns besides those ones that have already been identified
in E. coli. A positive Z-Score is attributed to four patterns
in S. cerevisiae, although the patterns ID = 102 and ID =
166 occur only once (Figure 3). Likewise to the observa-
tions from E. coli, the average topological significance of
the motif ID = 6 is lower than that of the feed-forward
loop. On average, a randomly selected FFL instance breaks
the connection between less than 1% of all connected
pairs of genes, which is lower than for instances of the pat-
tern ID = 12. Their mean pairwise disconnectivity index is
about 0.0135 and appears to be the highest of all patterns
in the S. cerevisiae network with a negative Z-Score.

Except for the pattern ID = 14, the pairwise disconnectiv-
ity index varies considerably for the instances of a pattern

3-vertex patterns in the transcriptional networks of E. coli, S. cerevisiae and MammalsFigure 3
3-vertex patterns in the transcriptional networks of E. coli, S. cerevisiae and Mammals. The column Pattern outlines 
the respective pattern. Its name can be found in the column ID. The column Freq denotes the number of occurrences of a pat-

tern (a positive Z-Score indicates over-representation).  stands for the mean pairwise disconnectivity index of all instances 
of a pattern.

E. coli S. cerevisiae Mammals

Pattern ID Freq Z-Score Dis Freq Z-Score Dis Freq Z-Score Dis

�

� � 6 4777 11.23 0.0039 11892 14.54 0.0018 1916 -0.39 0.0023

�

� � 12 160 -11.21 0.0189 295 -14.25 0.0135 1068 -1.67 0.011

�

� � 14 - - - 18 -1.30 0.0063 73 -10.47 0.0079

�

� � 36 227 -11.76 0.0046 894 -13.86 0.0019 1620 -2.91 0.0044

�

� � 38 42 11.18 0.018 70 14.00 0.0086 129 5.68 0.0050

�

� � 46 - - - - - - 17 11.18 0.0042

�

� � 78 - - - - - - 4 -10.85 0.0099

�

� � 102 - - - 1 15.91 0.028 3 0.35 0.0224

�

� � 140 - - - - - - 1 -0.88 0.0137

�

� � 164 - - - - - - 197 -6.52 0.0051

�

� � 166 - - - 1 4.65 0.0052 20 7.12 0.0058

�

� � 174 - - - - - - 6 7.31 0.0109

�

� � 238 - - - - - - 1 - 0.0073

Dis
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in this network (Figure 6). The respective patterns of the
candidates with a high topological significance display
positive Z-Scores as well as negative Z-Scores, which refer
to over-representation and under-representation, respec-
tively. Hence, motifs are not in favour for sustaining the
pairwise connections between genes compared with non-
motif patterns. In contrast to the E. coli network, the S. cer-
evisiae network seems to be more robust upon the elimi-
nation of a pattern instance, since much less of them have
a notable effect on the existing pairwise connections
between genes at all: The average pairwise disconnectivity
index of a pattern instance is with 0.002 just half as high
as in the E. coli network. Therewith, more alternative paths
are at hand that strengthen pairwise connections between
genes here so that also fewer instances cause a significant

perturbation in the network (about 3% with Dis ( ) 

0.05 in yeast contrary to 10% in the E. coli network). Cer-
tainly, the overall impact of these pattern instances is
comparable to the E. coli network (see Figures 5 and 7). A
reason for this might be that such pattern instances are
embedded in an alike fashion in both networks and may
so have a similar influence on the existing connections.

The highest pairwise disconnectivity index is about 0.08
(Figure 6) and refers to a feed-forward loop instance that
embodies the genes RME1, IME1 and IME1_UME6 (Fig-
ure 7). RME1 is known to encode a zinc finger protein that
can repress the transcription of IME1 [32]. RME1 and
IME1 are the master regulators of meiosis in S. cerevisiae
[33-35]. An ime1 disruption prevents expression of almost
all meiotic genes and all tested meiotic events [33]. RME1
is essential for sustaining the communication abilities
between lots of gene pairs, similar to the genes MCM1,
SNF2_SWI1 and SWI5. Gene MCM1 is central to the tran-

The topological significance of 3-vertex pattern instances in E. coliFigure 4
The topological significance of 3-vertex pattern instances in E. coli. The left boxplot denotes the two 3-vertex motifs 
found in the network on the x-axis and the distribution of the pairwise disconnectivity index of their instances on the y-axis. 
The right boxplot constitutes this for patterns that are not over-represented in E. coli. The dotted line indicates the average 
pairwise disconnectivity index of all pattern instances in the network (0.0046). Note that one point may stand for several pat-
tern instances.

Pi j,
3
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scription control of cell-type specific genes and the phe-
romone response. The SNF2/SWI complex is an
evolutionarily conserved ATP-dependent chromatin
remodeling complex that plays an important role in DNA
damage repair, DNA replication and stress response [36].
SWI5 activates the expression of cell cycle genes [37]. Alto-
gether, these genes exert vital functions in S. cerevisiae and
each of them appears quite frequently among the pattern
instances with the highest topological significance.

Mammalian transcription network
The third network represents genes coding for transcrip-
tion factors in mammalian species (human, mouse, and
rat) and their interplay. This mammalian network consists
of 279 vertices and 657 edges and has been extracted from
the contents of the TRANSPATH® database on signal trans-
duction [25] and the TRANSFAC® database on eukaryotic
cis-acting regulatory DNA elements and trans-acting fac-
tors [26]. Unlike the other two networks it contains all of
the thirteen possible 3-vertex patterns. Although five pat-
terns display positive Z-Scores, only four of them indicate
a clear over-representation (Figure 3). In addition, one

might find it difficult to classify the pattern ID = 102 as a
motif due to its low frequency. Nevertheless, the FFL is a
motif in mammals and the only pattern that is over-repre-
sented in all three networks. Although its occurrence rises
with the increasing density and complexity of the net-
works, its topological significance is decreasing notably.
Actually, a low average pairwise disconnectivity index can
be observed for almost all motifs in mammals, with motif
ID = 174 as the only exception.

Three of the seven patterns with a negative Z-Score have
been found in the networks of E. coli and S. cerevisiae too,
but unlike in mammals the pattern ID = 6 is a motif in
them. Yet, its average topological significance for these
networks does not differ greatly. Similar applies to the pat-
tern ID = 12 that exhibits one of the highest mean pair-
wise disconnectivity indices here as well. In contrast, just
a minor role seems to be adopted by the pattern ID = 36
though it is the second most common one. Other non-
motif patterns in the mammalian network are crucial for
linking only 1% of gene pairs mostly on average. Never-
theless, their appearance is a hint on the more complex

The highest topologically significant 3-vertex pattern instances in E. coliFigure 5
The highest topologically significant 3-vertex pattern instances in E. coli. The column Pattern outlines the respective 
pattern of an instance. Its name can be found in the column ID. The column Dis refers to the pairwise disconnectivity index of 
the pattern instance. The column Participants denotes the set of genes involved in the instance and their locations within the 
pattern.

Pattern ID Dis Participants (X, Y, Z)

Z

Y X E.38.1 0.0859 hns, flhDC, fliAZY

Z

X Y E.12.1 0.0638 ompR envZ, flhDC, fliAZY

Z

X Y E.36.1 0.0624 crp, ompR envZ, flhDC

Z

X Y E.12.2 0.0541 crp, flhDC, fliAZY

Z

Y X E.38.2 0.0541 flhDC, fliAZY, fliLMNOPQR

E.38.3 0.0541 flhDC, fliAZY, fliFGHIJK

E.38.4 0.0541 flhDC, fliAZY, fliE

E.38.5 0.0541 flhDC, fliAZY, flhBAE

E.38.6 0.0541 flhDC, fliAZY, flgBCDEFGHIJK

Z

Y X E.6.1 0.0527 flhDC, fliAZY, flgAMN

E.6.2 0.0443 ompR envZ, flhDC, csgDEFG

E.6.3 0.0443 ompR envZ, flhDC, fadL
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organization of transcription regulation in higher organ-
isms. Thus, it seems to be convenient that the pattern ID
= 238 can be found only here (Figure 3): it represents the
mutual transcription control of three retinoic acid recep-
tor isoforms with the vertices RAR-alpha, RAR-beta and
RAR-gamma. Note that this pattern does not even occur in
any random network of similar size and degree distribu-
tion. On the other hand, it is still surprising that the pat-
tern ID = 164 appears nearly 200 times in the mammalian
network, but neither in the network of E. coli nor in the
network of S. cerevisiae.

Despite the overall low mean topological significance of
the various patterns in the mammalian network, the pair-
wise disconnectivity index of their instances covers a
broad range of values (Figure 8). This spreading is even
stronger for non over-represented patterns and more
noticeable as in the other two networks. Thus, a high top-
ological significance does not go along with motifs here as
well. However, this network is different with regard to the
robustness of its architecture: About one third of all pat-
tern instances do not affect any of pairwise connections
between genes and more than 15% disconnect at least 1%

of the gene pairs. No motif instance exhibits a pairwise
disconnectivity index higher than 0.04. This can be found
for non-over-represented patterns exclusively (ID = 6, 12,
36, 164).

The most intense perturbation outranks the topologically
most significant pattern instances in the other two net-
works. Deleting this pattern instance, which comprises
the genes c-myc, HMGA1 and PAX3, suspends the connec-
tions between 10% of all genes in the mammalian net-
work (M.6.1, Figure 9). The proto-oncogene c-myc is
engaged in diverse processes ranging from cell prolifera-
tion to apoptosis [38] and its interaction with PAX3
repeatedly occurs in the pattern instances with the highest
topological significance (Figure 9). Such a frequent
appearance has been observed for some genes in the net-
works of E. coli and S. cerevisiae too. Furthermore, these
genes have been found to exert vital functions in their
organism. The same applies for PAX3 and c-myc in mam-
mals: The paired box gene 3 activates developmental
genes (e.g., Mitf) and just as c-myc the loss of PAX3 is
lethal [39]. It is interesting to note that all transcription
factors encoded by the genes constituting the interlinked

Distribution of the pairwise disconnectivity index in 3-vertex patterns in S cerevisiaeFigure 6
Distribution of the pairwise disconnectivity index in 3-vertex patterns in S. cerevisiae. The left boxplot shows how 
the pairwise disconnectivity index of a motif instance (x-axis) is distributed in within the respective motif (y-axis). The boxplot 
on the right present a similar comparison for non-motif patterns in S. cerevisiae. The overall mean pairwise disconnectivity 
index of all pattern instances in the network (0.0021) is represented by the dotted line. One point may represent several pat-
tern instances.
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patterns M.6.1, M.6.2, M.12.1, M.12.2 and M.164.1 (Fig-
ure 9) play pronounced roles in cell proliferation (E2F-1,
c-myc, c-fos, HMGA1, and NSEP1) or are important devel-
opmental regulators (PAX3, Mitf).

A note on the joint deletion of intrinsic edges
The unusually often appearance of the same links (i.e.,
intrinsic edges) between genes in the pattern instances
with the highest pairwise disconnectivity indices in all
three networks raises the question of their contribution to
the estimated significance of these pattern instances.
Probably, the removal of individual intrinsic edges may
already destroy the connection between many gene pairs
so that their simultaneous removal is not as crucial. Oth-
erwise they may have a significant non-additive impact
taken together. However, answering this requires knowing
the effect of deleting a single interaction (i.e., edge) in a
network which can be accomplished in a similar way as
for a pattern instance. It has been introduced as the pair-
wise disconnectivity index of an edge in [24] and specifies

the fraction of ordered pairs becoming disconnected due
to the removal of an individual edge.

As a first attempt, this fraction has been estimated for each
intrinsic edge of a pattern instance in the three networks
and their sum has been opposed to the pairwise discon-
nectivity index of the respective pattern instance.
Although such kind of comparison highlights just a ten-
dency if and how far the intrinsic edges of a pattern
instance act synergistically, it is already a way that works
for all kinds of patterns independent of their specific
arrangement. Figure 10 illustrates this approximation for
the pattern instances with the highest pairwise disconnec-
tivity index in each network. The edge weights denote the
topological significance of an edge for the corresponding
network, e.g., Dis(hns  flhDC) = 0.005 for the edge from
gene hns to flhDC in E. coli. Hence, the deletion of this
interaction merely disconnects a half percent of all pair-
wise linked genes in E. coli. As expected, no effect is
accomplished by removing the edge from hns to fliAZY,

The highest topologically significant 3-vertex pattern instances in S. cerevisiaeFigure 7
The highest topologically significant 3-vertex pattern instances in S. cerevisiae. The column Pattern outlines the 
respective pattern of an instance. Its name can be found in the column ID. The column Dis refers to the pairwise disconnectivity 
index of the considered instance. The column Participants denotes the set of genes involved in the instance and their locations 
within the pattern.

Pattern ID Dis Participants (X, Y, Z)

Z

Y X Y.38.1 0.0818 RME1, IME1 UME6, IME1

Z

X Y Y.12.1 0.0616 SIN3, SNF2 SWI1, MCM1

Y.12.2 0.0571 SNF2 SWI1, MCM1, SWI5

Z

X Y E.36.1 0.0538 SIN3, SWI5, RME1

Z

X Y Y.12.3 0.0513 MCM1, SWI5, RME1

Z

X Y Y.36.2 0.0461 MCM1, REB1, SWI5

Z

Y X Y.6.1 0.0487 SIN3, RME1, SNF2 SWI1

Y.6.2 0.0435 SNF2 SWI1, ALPHA1, MCM1

Y.6.3 0.0435 SNF2 SWI1, HAP4, MCM1
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since there is always the alternative path via flhDC. In con-
trast, a relatively high pairwise disconnecivity index has
been measured for the edge from flhDC to fliAZY. But still,
the summarized effect of deleting these intrinsic edges
separately from the E. coli network (0.049) is considerably
lower as compared with the topological significance for
the whole pattern instance, Dis(E.38.1) = 0.086. The same
holds for the other two pattern instances in Figure 10 as
well. Therewith a much stronger impact on pairwise con-
nections between genes clearly exists due to the coherence
of the intrinsic edges.

Whether this can be generalized for all pattern instances
found in the three networks is shown in Figure 11. Most
pattern instances in the three networks cluster near the
diagonal since the joint removal of their intrinsic edges
disconnects approximately the same number of gene pairs
as the separate elimination of them does. However, some
exceptions have been found, especially among those pat-
terns that exhibit a high pairwise disconnectivity index per
se.

A pattern instance is positioned below the diagonal dot-
ted lines in Figure 11 due to considerable overlapping in
the sets of pairwise linked genes which become discon-
nected upon the separate removal of the intrinsic edges of
the instance. For example, consider how the vertices 1 and
5 in Figure 1A are linked. To disconnect them it is enough
to delete one of the edges 1  2 or 2  5 at a time. Such
kinds of dependencies seem to exist in larger scales in the

analyzed networks pinpointing to lots of gene pairs that
are connected in a linear chain-like manner as reflected by
the pattern ID = 12 (Figure 3). There are almost no inde-
pendent alternative paths between such gene pairs so that
the connection between them is very sensitive upon the
deletion of a single intrinsic edge. Therewith, the pattern
ID = 12 is contained virtually exclusively amongst the pat-
tern instances below the diagonal dotted lines in Figure
11.

The concurrent elimination of the intrinsic edges of a pat-
tern instance located above the diagonal dotted lines
breaks also pairwise connections between genes that are
not so easily assailable as described above. At least two
paths between such genes exist, each using a unique com-
bination of intrinsic edges. Thus, they cannot be affected
by eliminating a single intrinsic edge only. For example, in
Figure 2 there are three paths linking vertex E2 with E6: The
first one includes the intrinsic edge X  Z. The second
consists of the intrinsic edges X  Y and Y  Z whereas
the third path contains only the edge Y  Z. However, no
matter which of the intrinsic edges is deleted, the vertex
pair (E2, E6) remains untouched since at least one of the
three paths is still present. Their connection is disrupted
only if the whole pattern is deleted. Such dependencies
can be observed in Figure 11 for few pattern instances in
E. coli, but increasingly in the other two networks. This
trend is most distinctive in the mammalian network.
Besides the pattern instances with a high pairwise discon-
nectivity index, a considerable number of motif instances
appear in the lower left corner of the plot for the mamma-
lian network (Figure 11, red triangles): their intrinsic
edges have an extremely small or even no impact at all on
pairwise connections between genes. But as motif
instances, they are a bottleneck for linking many gene
pairs.

Discussion
A new method to asses the global role of patterns and 
motifs
The work presented here describes a method that has been
proved to be suitable for evaluating the role of topological
patterns within a network. This holds true regardless of
the size and complexity of these patterns. The method
assesses the significance of a pattern depending on the
contribution of its instances, i.e. connected subgraphs, for
the connectivity of a network. The approach is based on
the technique described previously in [24], which esti-
mates the necessity of a network element (e.g., a vertex or
an edge) for sustaining the communication ability
between connected pairs of vertices in a network. This is
accomplished in a similar way as wet experiments in a lab:
a gene (corresponding to a vertex in a graph) is knocked
out and the effect of this removal is observed in the con-
sidered context. The same may be applied to a reaction

The pairwise disconnectivity index of 3-vertex pattern instances in MammalsFigure 8
The pairwise disconnectivity index of 3-vertex pat-
tern instances in Mammals. The boxplot on the left indi-
cates the distribution of the pairwise disconnectivity index in 
the 3-vertex motifs in the network. The same relation is pic-
tured in the right boxplot for patterns with a negative or no 
Z-Score at all. The dotted line describes the mean pairwise 
disconnectivity index of all 3-vertex pattern instances in the 
network (0.0051). One point may represent several pattern 
instances.
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(an edge in the graph), when a gene has been mutated and
the encoded product (vertex) is still present, but unable to
undergo a certain reaction.

In this work, we have proposed to proceed likewise for
pattern instances, but disturbing the interactions between
the involved vertices rather than eliminating the vertices
themselves. Consequently, only the causal links between
these vertices are destroyed and therewith the respective
pattern is removed in a minimally invasive way. This is
conducted without making any a priori assumptions on
the analyzed network and its properties. In contrast to the
attempt made in [18], we destroy the coherence between
the edges of only one single pattern instance at a time,
leaving the remainder of the network intact. On the one
hand, different impacts on the network connectivity
exerted by the various instances of a pattern can thus be
discovered. On the other hand, the topological role of a
pattern can be determined more realistically since an over-
rating is avoided.

3-Vertex patterns in transcriptional networks
We exemplarily applied the method developed and pro-
posed here to the analysis of transcriptional regulation
networks of three very distinct taxa (E. coli, S. cerevisiae
and mammals, i. e. human, mouse, and rat); for simplic-
ity, we focused here on 3-vertex topological patterns in
these networks, but the method can easily be adopted to
the analysis more complex and larger patterns. A first
check of which of the thirteen possible 3-vertex patterns
are present in these networks at all revealed that all of
them can be found in the mammalian network, the S. cer-
evisiae network contains seven and that of E. coli only four
of them. Moreover, these latter four patterns are shared by
all three networks. Amongst them, only the "feed-forward
loop" is statistically over-represented and, thus, could be
considered as a "motif" (Figure 3).

As to be expected, the abundance of a pattern decreases
with its complexity: Thus, 3-vertex patterns with two edges
occur much more frequently than those with three edges,

The highest topologically significant 3-vertex pattern instances in MammalsFigure 9
The highest topologically significant 3-vertex pattern instances in Mammals. The column Pattern outlines the respec-
tive pattern of an instance. Its name can be found in the column ID. The column Dis refers to the pairwise disconnectivity index 
of the considered instance. The column Participants denotes the set of genes involved in the instance and their locations within 
the pattern.

Pattern ID Dis Participants (X, Y, Z)

Z

Y X M.6.1 0.1011 c-myc, HMGA1, PAX3

M.6.2 0.0756 c-myc, NSEP1, PAX3

M.6.3 0.0731 IRF-1, FOXA2, NR3C1

Z

X Y M.12.1 0.0711 E2F-1, c-myc, PAX3

Z

Y X M.6.4 0.0681 NR3C1, C/EBPAlpha, NR1l3

Z

X Y M.12.2 0.0660 c-myc, PAX3, Mitf

Y

Z X M.164.1 0.0643 Mitf, c-fos, HMGA1

Z

X Y M.36.1 0.063 POU1F1, RUNX2, ER1

M.36.2 0.061 c-myc, MYCN, PAX3
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etc. The order of the abundance is almost the same in all
three transcription networks. It is of interest that the net-
work patterns "coupled feedback loop" (Figure 3, ID = 78)
and "3-vertex-circuit" (Figure 3, ID = 140) do not exist in
the networks of E. coli and S. cerevisiae and are clearly
under-represented in the network of mammals (Figure 3),
although they are widespread in signaling circuits of vari-
ous bacterial and eukaryotic organisms [40-44]. We
assume that this is an intrinsic property of transcriptional
networks and cannot be explained by the incompleteness
of the underlying knowledge, since other patterns of sim-
ilar complexity (e.g., the mentioned feed-forward loop)
are not consistently under-represented among these three
networks.

All networks studied here appear to be rather robust
against the elimination of a randomly chosen pattern
instance. Therewith, the various 3-vertex patterns in these
networks display a low topological significance on aver-
age. Mostly, the overall majority of the instances of a pat-
tern have a rather small effect on the existing pairwise
connections between genes, in most cases even less than
1% of all pairwise connections are affected.

Motifs do not seem to be more important than non-motif 
patterns for the global architecture of a network
Also the motifs among the 3-vertex patterns examined did
not exhibit a generally higher importance for the connec-
tivity of the whole network than non-motif patterns, as
one might have expected. This is, however, in agreement
with previous studies on the evolutionary and functional
assessment of motifs in the regulatory networks of differ-
ent yeasts, which have provided evidence that motifs are
not subject to any particular evolutionary pressure to pre-
serve the corresponding interaction pattern [45,46]. No
simple relationships have been found between evolution-
ary conservation and over-representation of network pat-
terns, on the one hand, and their functional enrichment,
on the other hand, in the yeast regulatory network [42]. In
accordance with these observations, our results indicate
that there is no positive correlation between the abun-
dance (i.e., over-representation) of a network pattern and
its topological significance. Thus, focusing on motifs
exclusively rather than searching for important pattern
instances in general would have lead to a completely dif-
ferent and deceptive picture.

Pattern instances can be identified that are crucial for the 
connectivity of the network

In spite of the generally low impact of all types of patterns
(including motifs) found in the analyzed networks, a few

The impact of the coherence between the genes in the pattern instances with the highest topological significance in the tran-scription networksFigure 10
The impact of the coherence between the genes in the pattern instances with the highest topological signifi-
cance in the transcription networks. Edge weights denote the impact of an individual edge for sustaining the pairwise con-
nections between genes. In all three pattern instances, the intrinsic edges themselves fail to reproduce the impact as 
accomplished by their common elimination. The summarized effects of their separate removal are significantly lower as com-
pared with the simultaneous deletion of the relation between the respective genes. Hence, these pattern instances affect only 
as whole entities those gene pairs that are linked by several alternative paths.

fliAZY

flhDChns

IME1

IME1_
UME6

RME1

PAX3 HMGA1

c-myc

0.0440

0.005

0.0090

0.005

0.0560

Pattern instance
E.38.1 in E. coli

Pattern instance
Y.38.1 in S. cerevisiae

Pattern instance
M.6.1 in Mammals

Dis(E.38.1) = 0.086 Dis(Y.38.1) = 0.082 Dis(M.6.1) = 0.101
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pattern instances cause a significant perturbation upon
their removal. This trend is manifested in the heterogene-
ous distribution of the pairwise disconnectivity index
among all the instances of a pattern (Figs. 3, 4, 5). Topo-
logically, this may originate from the way how a pattern
instance is embedded, i.e., its particular position within
the whole context of the respective network. Biologically,
such heterogeneity might be caused by the influence of
the genes in the network that are forming a pattern
instance. In the networks, the topologically most signifi-
cant pattern instances consist preferably of genes that pro-
vide basic functions for the organism. Interestingly, most
of these instances belong to one of the patterns that are

shared by the three networks, which may emphasize the
importance of these patterns. Furthermore, such instances
may indicate locations within the networks rendering
them vulnerable upon a targeted removal.

Among the pattern instances that are of particular impor-
tance for the network connectivity, motif instances again
do not play a predominant role over instances from non-
over-represented patterns. In the mammalian network,
most of the outliers even belong to the non-motif pat-
terns. Altogether, our data support the view that far not all
instances of any pattern (motif or not), but only few of
them may play specific functional roles [47] and thereby

The joint deletion of the intrinsic edges of a pattern instance may synergistically reduce connections between genes in the E. coli, S. cerevisiae and Mammals networksFigure 11
The joint deletion of the intrinsic edges of a pattern instance may synergistically reduce connections between 
genes in the E. coli, S. cerevisiae and Mammals networks. The pairwise disconnectivity index of a pattern instance 
(motifs are drawn as red triangles, others as black circles) is outlined on the y-axis. By contrast, the x-axis denotes the fraction 
of gene pairs becoming disconnected upon the deletion of a single intrinsic edge, summarized for all intrinsic edges of a given 
pattern instance. The diagonal dotted lines indicate the cases when the impact of the concurrent elimination of all intrinsic 
edges of a pattern instance does not differ from the sum of impacts provided by the separate removal of the same edges. 
Hence, pattern instances that are drawn below these lines include intrinsic edges that have an overlapping in their impacts: they 
can disconnect the same gene pairs. Finally, the position of a pattern instance above the dotted lines shows that some of its 
intrinsic edges are parts of alternative (i.e., parallel) paths between two genes. Such genes do not become disconnected when 
only one intrinsic edge is eliminated, but some of them do upon simultaneous removal of all intrinsic edges of the pattern 
instance: i.e., the joint removal exerts a higher than merely additive effect.
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exhibit a strong impact on pairwise connections between
genes in transcription networks.

Pattern instances of high topological significance tend to 
form clusters
In all the networks analyzed here, a limited number of
genes repeatedly appears in the pattern instances display-
ing the highest topological significance. For example, in E.
coli the gene flhDC is part of all pattern instances that dis-
connect at least 4% of the gene pairs, preferably together
with the genes fliAZY or ompR_envZ. Similar observations
can be made in S. cerevisiae for the genes MCM1, SIN3,
SNF2_SWI1 and SWI5. Likewise in the mammalian net-
work, the interaction between the genes c-myc and PAX3
participates in many of the pattern instances with a high
pairwise disconnectivity index. Altogether, the common
occurrence of genes and interactions between them
underlines the key importance of these constituents for
the corresponding organism. All these genes are engaged
in important processes and at least in E. coli and S. cerevi-
siae they are crucial for linking a significant number of
gene pairs [24]. Hence, their damage can be lethal for the
respective organism. Furthermore, these pattern instances
are not located in different regions of a network. They are
connected with each other and seem to form a bigger pat-
tern cluster that controls a lot of pairwise connections
between genes in these networks.

Edges of pattern instances display synergistic effects
In many cases, the intrinsic edges of a pattern instance
contribute to its pairwise disconnectivity index in a syner-
gistic manner, i.e., the simultaneous removal of the
respective edges exerts a much higher than merely additive
effect (Figure 11). Although the approach we used for this
purpose is a conservative approximation, it shows a prin-
cipal tendency in these networks. More exact computa-
tions of this feature may be desirable but developing
suitable algorithms for this, which have to take into
account the particular characteristics of every pattern sep-
arately, was beyond the scope of this paper. However, we
find that our approach was adequate to disclose clearly
that the intrinsic edges of certain pattern instances display
synergistic effects. This is the case for the pattern instances
with the highest pairwise disconnectivity index in each of
the three networks. Some other candidates have been
found in E. coli and increasingly more in S. cerevisiae and
mammals. This trend goes along exactly with the increas-
ing density of the networks (1.2 edges per vertex in the E.
coli network, 1.6 in S. cerevisiae and 2.3 in Mammals). The
reason for this is on the hand: a more densely connected
network provides a higher average vertex degree and
thereby offers more alternative paths between pairs of ver-
tices. These paths need not to share a similar set of edges,
i.e., the connection of a pair is becoming more robust

requiring more edges to be removed in order to discon-
nect it.

Prospects of the proposed method
It should be noted that the observations reported here
have been made for the networks as they are known at
present. In particular the mammalian network may still
suffer from incomplete knowledge. However, our method
can be used for monitoring changes in such networks
obtained from updated pathway databases like TRANS-
PATH® [25] in the future. We see our results as the begin-
ning of a large work which may consider the analysis of
increasingly larger patterns including more than 3 verti-
ces. More regulatory networks of various types (e.g., signal
transduction networks, protein-protein interaction net-
works, gene expression networks) from different organ-
ism must be considered and tested in this regard in future
as well. First attempts with signaling networks have con-
firmed the basic conclusions drawn here in spite of small
characteristic differences in some details. Thus, we feel
that the basic trends reported here will hold true for the
more complete transcriptional as well as for other types of
networks that will come up in future with increased relia-
bility of high-throughput approaches and their systematic
application.

On the other side, our method provides for the first time
the possibility to assess the impact of patterns and motifs
in general as well as individual pattern instances onto the
overall connectivity of a graph. It is therefore suitable to
identify bottlenecks in a biological network, which may
be particularly important for the normal function of a cell,
and may be top candidates to investigate disease mecha-
nisms related to these functions. Since it identifies indi-
vidual components in a network (vertices, edges, or
pattern instances), it works independently of any a priori
knowledge about the statistical over- or under-representa-
tion of certain network features. Though our approach
was developed for the analysis of biological regulatory
networks, it seems to be suitable for the analysis of other
networks regardless of the particular nature of processes
they represent (e.g., ecological, social, technical net-
works).

Conclusion
We have developed a new method that quantifies how the
elimination of a topological pattern instance affects the
existing communication abilities within a network. We
have applied this method exemplarily to the analysis of 3-
vertex topological patterns and their instances in the tran-
scription networks from a bacteria, yeast and mammals.

The elimination of most 3-vertex pattern instances does
not drastically affect the global structure of transcription
networks. However, these networks are vulnerable upon a
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targeted perturbation of few pattern instances. In these
cases, the links between their genes contribute to the pair-
wise disconnectivity index of the pattern instance in a syn-
ergistic manner, i.e., the simultaneous removal of the
respective edges exerts a much higher than merely additive
effect. The topological significance of an instance does not
easily correlate with the abundance of the respective pat-
tern in a network. Although motifs might play an essential
role in their respective local contexts, they do not seem to
be more important than non-motif patterns for the global
architecture of a network. Rather, the topological role of a
pattern instance is unique and mainly determined by its
location and the way how it is embedded in a given net-
work.

Methods
Network databases
Literature-based databases of experimentally verified
direct relationships for Escherichia coli [14] and Saccharo-
myces cerevisiae [15] have been used where E. coli V1.1 and
S. cerevisiae V1.3 are available at http://www.weiz
mann.ac.il/mcb/UriAlon. The mammalian network of
transcription factor genes (human, mouse, rat) was
retrieved from the TRANSPATH® Professional database
(release 8.3, made in 2007) on signal transduction [25]
and TRANSFAC® Professional database (release 11.3,
made in 2007) on eukaryotic cis-acting regulatory DNA
elements and trans-acting factors [26]. The network
describes the causal relationships between genes that are
coding for transcription factors, based on the regulation of
these genes from transcription factors. However, the tran-
scription factors themselves are not part of the network,
i.e., the interaction chain "gene A codes for transcription
factor A regulates gene B" has been summarized to: "gene
A  gene B", which is a commonly used technique when
inferring gene regulatory networks. Furthermore, genes
are represented at the level of "ortholog abstraction", at
which all species-specific data (human, mouse, rat) that
refer to mammalian genes have been summarized to cor-
responding generic entries.

Selected genes (vertices) in the yeast and mammalian
transcription networks were checked for their viability
using the BIOBASE Knowledge Library™ http://www.bio
base.de and the Saccharomyces Genome Database (Stan-
ford Genomic Resources [48]).

Pattern analysis
The networks were scanned for 3-vertex topological pat-
terns using the FANMOD software with default settings
[27,28]. The statistical significance of the network motifs
was evaluated by means of the Z-Score [15], Z = (Mreal -
Mrand)/SD, where Mreal and Mrand are the numbers of
appearance of the motif in the real network and the rand-
omized networks, respectively. SD is the standard devia-

tion. The sign of edges (such as 'positive' for activation or
'negative' for inhibition) is not considered.

The pairwise disconnectivity index was calculated using
the DiVa software [49]. The statistical analysis was accom-
plished with R [50].

The pairwise disconnectivity index of an edge

For estimating the impact of a single intrinsic edge on the
existing pairwise connections between genes we have
applied the pairwise disconnectivity index on an edge as
defined in [24]. In this manner it states the fraction of
those ordered pairs of vertices that have been discon-

nected upon the removal of an edge, i.e., .

Similar to Eq. 1, N is the number of linked ordered pairs
of vertices in a network and we assume N > 0. The term N'
stands for the number of connected ordered pairs of verti-
ces in the network we obtain when deleting the edge e.
Hence, Dis(e) = 0 the edge e is not crucial for linking at
least of vertex pair. In contrast, Dis(e) = 1 if no vertex pairs
remains connected.
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