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Abstract

Background: The major difficulty in modeling biological systems from multivariate time series is
the identification of parameter sets that endow a model with dynamical behaviors sufficiently
similar to the experimental data. Directly related to this parameter estimation issue is the task of
identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the
mathematical model is canonical, i.e., if it is constructed according to strict guidelines.

Results: In this report, we propose a method for the identification of admissible parameter sets
of canonical S-systems from biological time series. The method is based on a Monte Carlo process
that is combined with an improved version of our previous parameter optimization algorithm. The
method maps the parameter space into the network space, which characterizes the connectivity
among components, by creating an ensemble of decoupled S-system models that imitate the
dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited
in the context of these S-system models with an exploration not only of different parameter sets
that produce similar dynamical behaviors but also different network topologies that yield dynamical
similarity.

Conclusion: The proposed parameter estimation methodology was applied to actual time series
data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models
with different network topologies. In parallel, the parameter optimization algorithm was applied to
the same dynamical data upon imposing a pre-specified network topology derived from prior
biological knowledge, and the results from both strategies were compared. The results suggest that
the proposed method may serve as a powerful exploration tool for testing hypotheses and the
design of new experiments.
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Background

Mathematical models in modern molecular biology have
become attractive as compactors of the massive amounts
of multidimensional data produced by high-throughput
techniques, thus following similar ideas that previously
led from reductionism to quantitative inroads into physi-
ology and ecology. In the smaller-dimensional world
described by the model structure and its parameters, new
experiments are easier to conceive, hypotheses can be
tested with greater clarity, and knowledge can be extended
with inexpensive computational effort [1].

Generally, mathematical models are implemented with a
set of parameters, which give them the flexibility of map-
ping a range of behaviors into a unifying mathematical
framework. Except for singular cases where parameters are
directly measured experimentally, parameter estimation
from experimental data is an inevitable step in the process
of constructing models [2]. A good, first-tier compromise
between the need for a closed-form, computable represen-
tation of the biological process and the risk of ignoring
meaningful parameters of mechanistic, hypothesis-driven
reductions can be found in the use of generic, "canonical"
modeling frameworks. Specifically, within the framework
of biochemical systems theory (BST) [3-6], S-system mod-
els (Equation 1) offer a particularly convenient solution
because their parameters more or less directly describe the
interactions between the components of the system of
interest [6].
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In the general S-system form (Equation 1), the time varia-
tion of the concentration or amount of each component
X; of the system is given by the difference between produc-
tion and degradation terms. The constant rates ¢; and S,
represent the turnover rates of the production and degra-
dation fluxes and the kinetic rates g; and h;; quantitatively
characterize the influence of the component X; on the pro-
duction and degradation term of the system component
X;, respectively [6,7]. Thus, the network structure and the
nature of the interactions driving the phenomenon under
investigation are mapped essentially one-to-one onto the
parameter values of the model. This modeling framework
has been successfully applied to many biochemical sys-
tems [6] and can generally be considered a good first
default for representing complex biological systems, espe-
cially if the governing mechanisms are not well character-
ized [8]. Automation of the estimation of the high-
dimensional parameter set of an S-system model from
multivariate time series data has therefore become a
widely pursued computational challenge that has been
addressed by a wide variety of optimization techniques:
from relatively slow global heuristic optimization tech-
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niques like genetic algorithms and simulated annealing
[9-12] to fast local optimization algorithms such as alter-
nating regression and eigenvector optimization [13,14]
among others [15,16]. Most of these optimization algo-
rithms share the strategy of decoupling the differential
equation system into a larger, nonlinear algebraic system
[6,11,17,18]. This strategy eliminates the need for numer-
ical system integration at each step of the optimization
process, which is expensive because S-systems can be
numerically stiff, just like most other nonlinear models.

Ironically, the difficulty of finding any numerically inte-
grated S-system model that fits a given set of experimental
time series data well is accompanied by the "opposite"
problem: many recent publications have pointed out that
multiparametric models tend to have the capacity of
accommodating whole ranges of parameter values with-
out much affecting the system dynamics [19-28]. Further-
more, it was found that there are typically well-defined
directions in the parameter space to which the system
dynamics is insensitive, a phenomenon that was termed
"sloppiness" [22-25]. Since redundancy appears to be a
wide-spread design feature of biological processes, explor-
ing the admissible parameter space of a model and a data-
set of interest has relevance that reaches well beyond
typical sensitivity analyses of model parameters.

Although the concept of sloppiness has been discussed
quite intensely, little attention has been paid to the ques-
tion of whether or not sloppiness can be translated into
the structure of the biological system itself. In other
words, is the biological system in reality more or less
uniquely parameterized or is there such significant inter-
individual variation that we could in principle find large
"clouds" of parameter manifestations if we were able to
determine the parameters in individual cells or organisms.
The answer to this question is not without consequence,
because it would affect the definition of what it means to
have a good model fit to a given set of data.

In the case of S-systems, the question has further implica-
tions. If an admissible parameter cloud, defined by a suf-
ficiently accurate overall fit of some data, permits some
kinetic order parameter to be positive, zero, or negative,
the interpretation of the estimated model becomes dis-
tinctly different. In the first case, the effect is activating, in
the second it is negligible, and in the third it is inhibiting.
Is such a parameter cloud a computational artifact that
would disappear if more data were available, or is it pos-
sible that a real biological system would actually allow
such different effects of a variable on the system? To refor-
mulate the question, do natural systems only allow for
sloppiness in parameter values or also for sloppiness in
structure? While the question itself is not new (e.g., [29]),
it can presently not be answered in generality and with
reliability.
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In this report, we address the intrinsic redundancies in the
interactions between biological system components by
proposing an embedding method for S-system parameter
space estimation based on a Monte Carlo process that is
combined with an improved version of our previous
parameter optimization algorithm. We apply this meth-
odology to experimental time series data characterizing
the glycolytic pathway in the bacterium Lactococcus lactis
[30-32]. In the same context we explore the concept of
sloppiness in S-systems by studying the implications of
admissible ensembles of models that dynamically repre-
sent the data well but lead to different interpretations.

Neutral solution analysis

This section describes the concepts of the proposed analy-
sis of neutral solution spaces, i.e., of multiple model
parameter sets with similar dynamics; all technical details
are presented in the later Methods section. To characterize
the neutral solution spaces, we propose a Monte Carlo
(MC) random walk process [33], which is sped up by a
nonlinear optimization algorithm that allows us to assess
S-system parameter sets (forming the "neutral space") that
give the system a similar dynamical behavior as it had
been measured experimentally in the form of time series
data. Differently from similar methodologies suggested in
the literature [22,23,25,26], the proposed approach is per-
formed with the decoupled form of the system [34],
which allows analysis of one system equation at a time. In
this fashion, problems with numerical integration of dif-
ferential equations, which is otherwise needed at each
step of the MC process, are avoided. Thus, we suppose in
the following that the time series of all components are
available and have been smoothed, thus permitting the
numerical estimation of their first derivatives at each
point of the time series. For each system component, a
series of steps is performed as follows.

First, using the smoothed time series of all components X;,
as well as their numerically estimated derivatives, the sys-
tem of differential equations is converted into a system of
algebraic equations (Equation 2) [11,18,34]. Second, an
optimization algorithm is applied to this algebraic sys-
tem, leading to an optimal parameter set that matches the
algebraic equations with the observed systems dynamics.
This optimal parameter set is the starting point of the MC
process. A cost function C is defined to quantify changes
in behavior of the decoupled system resulting from per-
turbations in the parameter set (Equation 16). The Hes-
sian matrix of C is calculated at the optimal parameter set
and used to guide subsequent, artificial parameter pertur-
bations, which collectively form the MC random walk
[22,25]. At each MC step, the parameter set is perturbed
(using the eigenvectors of the Hessian matrix [35]) and
then used as initial guess for the optimization algorithm,
however, with an earlier stop criterion. This premature ter-
mination prevents the algorithm from converging to the
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same local optimal point and is accompanied by a (small)
residual error. The cost function C is evaluated with the
new local parameter set, and this parameter set is accepted
for the next iteration with a certain probability (Equation
18). Any parameter sets satisfying the conditions of a pre-
defined behavioral class (e.g., with a cost function value
smaller than a threshold) are recorded. At the conclusion
of the MC process, the recorded collection of parameter
sets contains solutions of the decoupled system that
adhere to the specified behavioral class.

After the MC process has been run for each system com-
ponent, instances from the collections of parameter sets
for all variables are randomly sampled to recouple the
models by means of numerical integration. Although the
decoupled, algebraic form offers the advantage of avoid-
ing numerical integration problems, it is not guaranteed
that the recoupled system will lead to an accurate, com-
prehensive solution. The Methods and Results sections pro-
vide detailed descriptions of the proposed techniques and
outcomes.

Results

After preliminary, successful tests with simulated data (see
supplementary material), we applied the proposed opti-
mization algorithm to actual time series. These data con-
sist of metabolite profiles from the glycolytic pathway of
the bacterium Lactococcus lactis, which were obtained with
in vivo NMR experiments [30,31]. For modeling purposes,
the concentrations of the metabolites were coded as fol-
lows: glucose - X;; glucose 6-phosphate (G6P) - X,; fruc-
tose 1, 6-bisphosphate (FBP) - X5; phosphoenolpyruvate
(PEP) - X,; lactate - X;; acetate — X,. As a pre-processing
step for the parameter optimization, the time series were
smoothed/denoised and their slopes (numerical first
derivatives) were estimated as shown in previous work on
non-stationary noise filtering [36].

Initially, the proposed algorithm exclusively used the time
series of all metabolites in the parameter optimization,
representing the case where no knowledge about the net-
work connectivity is at hand. The optimal parameter set of
each metabolite was separately translated into the
eigenspace of the solution and subsequently fed into the
MC process. The parameters were then perturbed and an
ensemble of models was created as described in the Meth-
ods section. The parameter sets were selected based on a
behavioral class [37], which was defined by a residual less
than 5 (see Equation 15). As an example, Figure 1 shows
all parameter sets for the G6P production term that fall
within the defined behavioral class. After ordering, these
parameters have the same distribution pattern (Figure
1B). Similar results were found for all other metabolites.

As an alternative, we performed a MC random walk in the
original parameter space, as opposed to the eigenspace.
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Kinetic orders estimated for the G6P (X;) production term with potential inclusion of all system variables. A)
The two indices refer to the two species considered by the interaction; for instance, g, indicates the effect of X (acetate) on
G6P production. B) The same parameter sets as shown in A, but ordered individually by magnitude, showing the possible vari-
ation admissible each parameter. The light green y-axis represents the region of parameter space with possible activation inter-
action; analogously, the light red y-axis represents the region of possible inhibition interaction.

Interestingly, although not surprising in the end, the
results did not present as wide a range as was found in the
exploration of the parameter set in the eigenspace. The
difference in outcomes is explained by the compensation
of errors between production and degradation terms: per-
turbations in the eigenspace of the matrix W affect both
production and degradation terms while perturbing only
one parameter does not always maintain the balance
between the two terms. In other words, given one of the S-
system's terms (production or degradation) and the vector
of slopes, the complementary term can be obtained by
multiple linear regression, which has been shown not to
be sloppy [24]).

As expected, eigenvalues of the Hessian matrix fall within
a sparse range [22-25,38], thereby elucidating the stiff and
sloppy directions (see Additional filel). The region of the
parameter space that produces similar dynamical model
behaviors can be approximated as an ellipsoid whose
main axes are given by the direction of the eigenvectors of
the Hessian matrix (see Figure 2) and whose width is
inversely proportional to the squared root of the corre-
sponding eigenvalue [22-25,38]. A projection of the ellip-

soid into three-dimensional space for the acetate
production parameters g4, 45 and g is shown in Figure
2. Revisiting reasons discussed for other modeling frame-
works [22-25,27], sloppiness can be explained in the pro-
posed approach by the neutral space of solutions for
Equation 6 and consequently Equation 8. Specifically,
given the "right" linear combination of the eigenspace of
the matrix W, any vector resulting from stretching or
shrinking this combination is also a solution of Equation
6, however with different parameter values.

Ideally, all combinations of parameter sets found for the
individual metabolites would generate recoupled models
that fit the data upon numerical integration, within some
error bound. Given the large number of parameters (at the
order of 104 combinations), a full exploration of this
statement is not possible. In order to ameliorate the
expensive combinatorial issue of assessing the trajectories
of the recoupled systems, the parameter set for each
metabolite generated from the MC process was randomly
selected and the resulting system numerically integrated.
This process was repeated 500 times and the results are
presented in Figure 3.
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Quantification of sloppiness for one of the equations of the Lactococcus model. The figure shows the 3-D projection
of the ellipsoid that represents the region of the parameter space that produces similar dynamical behaviors. The arrows show
the direction of the sloppy and stiff directions in the 3-D projection, corresponding respectively to eigenvectors with small and

large eigenvalues of the Hessian matrix of the cost function.

As can be seen from Figure 3, the uncertainties and
bounds in the prediction for most metabolites are actually
close to the observed data. A notable exception is lactate,
where the measured data contain little noise. Because PEP
is the main precursor of lactate in the model [31] (pyru-
vate is not explicitly modeled), the class of predictions of
the PEP dynamics was re-sampled for residuals less than
1. Furthermore, the newly sampled systems were inte-
grated with glucose supplied in three different initial con-
centrations, namely 20, 30 and 40 mM. The results of
these predictions are shown in Figure 4. For all three dif-
ferent scenarios the new ensemble model predictions pro-
vide accurate descriptions of the observed dynamics for
the concentrations of lactate and the other metabolites in
the model, except for the noticeable undershooting of PEP
(see [30,31] for information on the responses of the sys-
tem to different initial glucose concentrations).

Although the models found by the proposed procedure
accurately describe the dynamics observed in the experi-
mental data, none of the parameter sets match well with
the network topologies found in the literature, suggesting
that distinctly different parameter combinations, and not

just sloppy versions of some parameter set, area able to
match these data. A variety of techniques can be applied
to the ensemble in order to compare different models
[37,39], to cluster models by means of transformation
groups, or even reduce them to a smaller subset [20]. One
possible avenue for further analysis of this vast parameter
space is by creating groups defined by different behavior
classes based on biological and dynamical information
[37,39].

Regardless of specific follow-up analyses, one of the pur-
poses of this work is to demonstrate that the proposed
optimization algorithm can be effectively applied to the
parameter identification of specific networks, for instance,
by taking kinetic parameters of some component X; out of
the optimization process of X, Conversely, previous
knowledge can be used to restrict the values of the g and h
interaction parameters. For example, existing knowledge
about Lactococcus lactis primary metabolism [30-32,40]
provides precise clues about which interactions are rea-
sonable. To analyze the benefit of information outside the
time series data, we applied the proposed optimization
algorithm to the same Lactococcus lactis data, this time
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Ensembles of 500 models generated by randomly sampling parameter sets of all metabolites from the out-
comes of metabolite specific MC random walk processes.

however constraining some parameter values with the
pre-existing information. The simulation results with the
resulting system (Figure 5; see equations in Additional
file1) not only describe the data but also agree with the
double pulse of glucose described in [32].

Exactly as described before, the system resulting from this
combined approach could be used as the starting point of
a MC random walk process, and the same analysis of slop-
piness and behavior classes could be performed. In order
to assess the accuracy of the solutions for large systems,
the optimization algorithm was also tested with a sym-
bolic genetic network model consisting of 30 components
[41] (see Additional filel). Because the algorithm performs
the parameter optimization with the decoupled form of
the system, its complexity is linear with the number of the
system's components [14]. Thus, rather than system
dimension, the real limitation of the optimization algo-
rithm is the time series dynamics. Poor dynamical varia-
bility (components close to the steady-state) and collinear
time series will result in a conditioning deficiency of the
matrix L, causing numerical problems with the inverse
operations and misleading the convergence. Despite the
successful retrieval of the 30-dimensional system dynam-
ics, the algorithm's limitation becomes more evident with

large systems (higher possibility of having time series por-
tions with collinear components, resulting in ill-condi-
tioned blocks in the matrix L [42]). This drawback is
partially resolved with the regularization technique pre-
sented in the Methods section. Also, problems of this
nature can be prevented by removing the collinear com-
ponents from the matrix L or placing them as independ-
ent variables (variables that do not take place on the
parameter optimization [6]). Of course, this issue is dras-
tically diminished when a chosen network topology con-
straints the matrix L.

Discussion and Conclusion

Within the new field of systems biology, an extraordinary
effort has been devoted to kinetic modeling with the aim
of understanding biological processes better [1,43,44]. A
very significant part of this effort has been directly related
to the identification of model parameters [2,45-47]. Until
recently, the quality of the estimated parameter values was
judged by the fit of experimental data. However, new
analyses have pointed out the importance of other crite-
ria, such as extrapolability and error compensation
among terms [48], which is in some sense related to the
sloppiness of admissible parameter sets and the fact that
different parameter values can generate similar dynamical
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behaviors in nonlinear biological systems models
[22,23,25-27]. These observations have a direct impact on
the robustness of models, which may translate into
robustness of the biological system itself, which may
become apparent in tolerance to mutations, changes in
gene expression, and insensitivity to modest changes in
environmental conditions. This need for physiological
robustness implies that biochemical networks should be
able to preserve their dynamical properties within reason-
able ranges of their kinetic parameters [49].

In this report, we present an extension of our previous
optimization algorithm for S-system parameter identifica-
tion from time series data [14]. The proposed method
turned out to be faster and more accurate than its prede-
cessor (see Additional file1) and was used here in combina-
tion with a Monte Carlo random walk technique to
explore the space of admissible parameter sets of S-system
models. This strategy allowed us to explore the concept of
sloppy models. The results indicate that both, a fully inte-
grated and a decoupled model, can be sloppy. We also
reanalyzed time series of the concentrations of six metab-
olites within the glycolytic pathway of the bacterium Lac-
tococcus lactis and demonstrated how a sloppiness analysis
can elucidate the admissible parameter space and ulti-
mately lead to more reliable estimates.

The central result reported here is that a diversity of
parameter sets may produce quasi-isomorphic dynamics
for S-system models. Most of the parameter variations
extended to both positive and negative parts of the param-
eter space (Figure 1B). This result is interesting, because it
could be the consequence of two distinctly different sce-
narios. First, it could reflect redundancy or sloppiness
caused by insufficient data. In other words, the data are
not informative enough to distinguish between alterna-
tive models that fit equally well. In the past, such situa-
tions have often been "resolved" by setting as many
parameters to zero as possible with the set of admissible
solutions, borrowing arguments of parsimony or Ock-
ham's razor. The important feature of this scenario is that
further experimental data, maybe obtained under similar
yet sufficiently different conditions, would declare one of
the candidate models the (sole) winner. The second pos-
sible root cause of distinct, well-fitting parameter sets is
the actual natural co-existence of different regulatory sig-
nals between components (inhibition versus activation) or
different regulatory networks (some with and some with-
out particular regulatory signals). Thus, otherwise similar
cells or organisms would function under slightly different
regulatory regimens. The difference between these scenar-
ios is conceptually similar to the distinction between
uncertainty and variability, which was discussed intensely
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Glucose double pulse simulation. A second 20 mM glucose pulse was supplied to the system after 50 min, resulting in the

further accumulation of lactate and acetate.

in the 1980s and 1990s within the fields of risk assess-
ment and exposure analysis [50]. The former case of
uncertainty (due to insufficient data) is only valid if the
model is, in principle, uniquely identifiable and structur-
ally distinguishable [19,51] from among all feasible S-sys-
tems. This aspect raises the possibility that a sloppy model
could be unidentifiable and that the sloppy directions,
which are given by the possible parameter combinations
[22] could be a measure of non-identifiability [51]. For S-
systems this argumentation can be extended. Our results
show that an ensemble of S-systems could be interpreted
as a collection of structurally indistinguishable and uni-
dentifiable models [19]. This conjecture would explain
the range of variability (negative, zero, positive) of the
parameter sets that were found. Furthermore, the identifi-
ability characteristic of the mathematical framework
could be associated with the robustness of the biological
system to environmental changes. Analogously, the struc-
ture distinguishability characteristic could be, in some
sense, associated with the robustness of the biological sys-
tem to mutations that change the network of interaction
among components. A more rigorous study of S-system
identifiability and distinguishability will be needed to
reveal more concrete conclusions and mathematical
implications [52,53].

Whether the distinction between parameter sloppiness
and structural distinguishability in biological models is an

important issue will have to await further investigation.
Nevertheless, it is clear that extrapolability in the generic
network identification problem from time series data is a
more complex task than the computational fitting of a
model. One should expect that this observation is true for
any model structure, but it was shown here that S-system
models allow its exploration in a most translucent fash-
ion.

The assessment of sloppiness provides valuable informa-
tion that can be extracted from the prediction of the
ensemble of models and through the investigation of
behavioral classes that differ in their dynamical features
(e.g. overshoots or response time). These classes may be
further reduced by biological knowledge such as bio-
chemical, physico-chemical, or thermodynamic con-
straints [54,55]. The proposed techniques could also serve
as a powerful exploration tool for the testing of hypothe-
ses and the design of new experiments. Moreover, the
union of the proposed optimization algorithm with statis-
tical methods could also result in a robust network infer-
ence implementation [56].

Maybe the most important value of this report is the clear
definition of a framework to explore sloppiness, robust-
ness and evolutionary innovation [38,49,57], where neu-
tral parameter spaces (system with essentially the same
dynamical behavior) are merged with neutral networks
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[49,57] into one unique structure. This approach could
reveal insights into how different metabolic networks
could possibly have been changed during the evolution-
ary process.

Methods

The method described here is an extension of our previous
work in S-systems parameter estimation [14]. Exactly as its
predecessor, the proposed algorithm exploits the advan-
tages of the numerical decoupling of S-systems, which
allows that each component has its own optimization
process [6,11]. However, the optimization is now per-
formed in a transformed equation of the decoupled form.
This transformation enhances the ability of the algorithm
to reach local optimal points. Given a time series collec-
tion X,,(;) of the concentrations of species or metabolites
m = [1,..., M] in the time interval ¢; = [¢,,..., ty] and their
respective slope values S, (t;) estimated in the same time
interval, one can numerically decouple the S-system equa-
tions and write a semi-linearization (only the left-hand
side is linearized) form for each species m as follows

L-Vp,, =log sm+ﬁmﬁx?w’ , )
=1
where
1 log(X,(t,)) log(X(t)) log(X (t,))
_| 1 log(Xu(t2)) log(X;(t2)) log(Xu(t2)) |
! log(X.l(tN)) log(X.i(tN)) 1og(X@(tN))
3)

and Vp,, = [log @,, 8,1 8m2 < &mm] 1S the parameter vector for
the production term. In Equation (2), the time point
index t; is suppressed in order to keep a simple notation.
If a multiple regression step is applied to the system in
Equation (2), the production parameter vector can be
written as

M
Vo, =L log| S, + B, [ [ X]" | (4)

j=1

The matrix L+ is the Moore-Penrose inverse of the matrix
L, given by L+ = (LTL)-!LT. Substituting Equation (4) into
Equation (2), we obtain the following eigenvector prob-
lem [14,58]:

M M

Wlog| S,, + ,BmHX?"’f =log| S,, + ﬁmHX?"‘"

j=1 j=1

(5)

http://www.biomedcentral.com/1752-0509/3/47

In this equation, the matrix W = LL+ is idempotent with
M+1 unit eigenvalues, while the remaining eigenvalues
are zero. It is clear from Equation (5) that not only

M M
log(Sm +BmHX?'”7 J but also log[amHXf’"f ] are
j=1

j=1
eigenvectors of W corresponding to eigenvalue 1. If Equa-
tions (2), (4) and (5) are rewritten in order to isolate the
degradation parameter vector instead of the production
M
parameter vector, the vector log[ ﬁmH X j" J also
j=1
belongs to the eigenspace. Standard routines for eigen-
value analysis can easily calculate the eigenvectors of
matrix W. However, this does not imply that any of these
eigenvectors will map onto the "correct” parameter set. In
fact, these vectors form the eigenspace of W correspond-
ing to eigenvalue 1, leading to the conclusion that the true
parameter set can be formulated as a linear combination
of these eigenvectors. Thus, let EigS be a matrix where the
columns are the eigenvectors with correspondent eigen-
values 1. Then the following vectors can be defined:

M
log amHXf"” = LigS -y
j=1
, (6)
M
log ﬁmHX?mf = FigS - &
j=1
or
M
amHX?m] — eElgS«u/
=1
! (7)

o .
huj _ EigSs
ﬂml IX]-"" =e
j=1

In Equations (6) and (7), wand dare (M+1)-dimensional
vectors that represent an arbitrary linear combination of
the eigenvectors of W. We can use Equation (7) to write
the decoupled form of the S-system as

S, = eV _ pLigss (8)

Equation (8), once written as a function of the production
and degradation parameter vectors, can now be seen as a
function of the vectors y and &. Using the uniqueness of
the mapping between the vectors y and 6,

EigS-8

) 9)

= (EigS ) log(S. +e
v = (EigS ) log(s,,
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we can rewrite Equaiton (8) as a function of only the vec-
tor o. For the estimation of vector § and consequently of
vector y, we define a cost function as the sum of squared
residuals between the two sides of Eq. (8).

F:log((Sm—Sm(é'))T(Sm—Sm(S))J, (10)

where §m (&) is the right-hand side of the Equation (8).

Thus, Equation (10) leads to the following gradient equa-
tions

5 v 95 25

or

r

ai_g _,EigSwy ; al EigS-S A _a

86_0( e 0| EigS Y OEigS (Sm sm(s)),
(12)

where

. o—1 .
W _ EigS* [((sm + g tiss? ) 0 gFiss? ]OEigS}.

98
(13)

The symbols and represent the Hadamard and Shanghai
Jiao Tong (SJT) product respectively [42,59], defined as

vectors a ={a; }1uxi b = {b;}1xk
matrix C = [cij] IxK
aob={ab}ix

a0C =[ajc;] i

(14)

In Equations (11) and (12), v is the argument of the log-
arithm in Equation (10). We use the Levenberg-Mar-
quardt routine [60] for the minimization of F with the
following nonlinear constraints

S,, +e% >0
Icb < L*EigSS < ucb
Ikb < L*(EigS)(EigS*)log(S,, + ¢"%) < ukb
(14a)

In these inequality constraints (see also Equation (7)), the
pairs Icb-uch and Ikb-ukb are the intervals (lower and upper
bounds) for the rate constants and kinetic orders respec-
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tively. Preliminary tests with a simulated systems show
the potential and accuracy of the algorithm (see Additional
file1). Without change in the gradient equations, a
Tikhonov regularization [61] was also implemented in
order to overcome potential problems with the ill-condi-
tioning of the matrix L, resulting in the following matrix:

L =(LTL+/II)_1 L7, (15)

where A is the regularization parameter and I the identity
matrix.

Sloppiness in S-systems models

Sloppiness has been proposed as a nearly universal char-
acteristic of parameter sensitivity from multiparametric
nonlinear models (see definition of 'universal' in [22]). In
a nutshell, a model is sloppy if it is markedly more sensi-
tive to some parameter combinations than to others. This
feature has been shown to be the rule rather than the
exception among biological systems models [22]. One
characteristic attribute of sloppiness is a diversity of
parameter sets that produce similar dynamical behaviors.
If a cost function is defined to quantify the variation in
dynamical behavior one can visualize sloppiness in terms
of the eigenvalues of the Hessian of this cost function.
These eigenvalues are typically very sparse within a large
range, suggesting that the model is more sensitivity to cer-
tain parameter combinations (eigenvectors with largest
eigenvalues - stiff combinations) than to others (eigen-
vectors with smallest eigenvalues - sloppy combinations)
[22-25].

For S-system models, the diversity in the parameter space
is to be interpreted not only as a variation in the kinetic
constants but also as redundancy in the topology of the
biological network or as alternative topologies associated
with the same phenotype. Either interpretation has no
effect on the usefulness of the model from the predictabil-
ity point of view as we discuss in the Results section.
Indeed, it has been shown that sloppy models can lead to
accurate predictions (e.g., [24,38]).

Decoupled ensembles of S-system models

Recently, a Monte Carlo random walk method [33] in the
parameter space of multiparametric system biology mod-
els was suggested in order to assess uncertainties in model
parameters and model structure [22,23,25,26,38]. In this
context, S-system models are particularly convenient
because they map any network topology directly onto its
parameter values (g and h) with no change in model struc-
ture [6]. Therefore, we propose a walk in the parameter
space of the S-system and proffer that it corresponds to a
walk in the 'topology space'. This idea is explored here by

Page 10 of 13

(page number not for citation purposes)



BMC Systems Biology 2009, 3:47

combining of the Monte Carlo approach with a nonlinear
optimization algorithm. In contrast to relevant work in
the literature, but in accordance with our optimization
method, the random walk is performed separately with
the decoupled S-system format for each system compo-
nent. This strategy avoids difficulties encountered in the
numerical integration of stiff equations and poses no sig-
nificant loss of information, under the reasonable
assumption that there are no bifurcation points within the
considered parameter ranges. Thus, we define the follow-
ing cost function, which quantifies variations in the first
derivatives of a variable with respect to variations in the
parameter set Ad:

c(5)=[(sm(A5)—sm(5’))T(sm(Aa)—sm(a*)(Q.)

Here, 6* is the optimal parameter set found using the pro-
posed optimization algorithm. Evaluation of the Hessian
matrix,

2
H(8)= 9°C , (17)
52| .
5=5
allows us to analyze the sensitivity of the first derivative of
each component of the system in relation to its parame-
ters. This Hessian is also used to guide the Monte Carlo
random walk, which selects the next perturbations within
the parameter set. Thus, the Monte Carlo random walk
starts with the optimal vector ¢* as initial condition, ran-
domly selects one component of this vector and perturbs
it proportional to the Hessian eigenvector (see [25,35]),
and uses the new vector as initial condition for the pro-
posed optimization algorithm, which now has an early
stop criterion (number of iterations). The new optimal
vector AS (i.e., the outcome of the optimization algo-
rithm) is accepted as the next step of the process with
probability

Pa=min(1,P(sm(5*)|sm(A5))/P(SmISm(5)))

(18)
[26], where

P($u(8) 18, (8)) = e {719

is the probability distribution of the parameter set § given
the model for the slopes 6 m(5*). In Equation (19), k is a
normalization factor (that vanishes in the probability of
acceptance [26], Eq. (18)) and o'is the standard deviation
of the slopes S,,. If a new vector Jis accepted for the next

http://www.biomedcentral.com/1752-0509/3/47

step, the hessian matrix is recalculated and the process fol-
lows as described above. This strategy permits a more
detailed exploration of the parameter space where the MC
steps are taken in the sloppy directions. A small range for
the number of iterations of the optimization algorithm
(early stop criteria) was tested and no significant differ-
ences were observed. Relative large numbers were avoided
in order to prevent the algorithm convergence to the same
neighborhood. After the optimization process, the vectors
o are mapped onto the parameter degradation vector Vd,,
= [log B, hyihyy < hym]T and consequently onto the
parameter production term Vp,, = [log &, 81 &ma < &uml ™
restating the decoupled system in its original parameters.
All the numerical integrations presented in this report
were carried out by the MATLAB® ode23s routine. The rate
constants were optimized within the range [0.1, 300]
while the kinetic order were optimized within the range [-
2, 2]. All the results shown in this report can be repro-
duced with the freely available MATLAB® scripts (see Addi-
tional file2).
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