
BioMed CentralBMC Systems Biology

ss
Open AcceResearch article
Reconstruction of Escherichia coli transcriptional regulatory 
networks via regulon-based associations
Hossein Zare1, Dipen Sangurdekar2, Poonam Srivastava2, Mostafa Kaveh1 
and Arkady Khodursky*2

Address: 1Department of Electrical and Computer Engineering, The University of Minnesota, Minneapolis, MN, USA and 2Department of 
Biochemistry, Biophysics and Molecular Biology, The University of Minnesota, St. Paul, MN, USA

Email: Hossein Zare - hossein@umn.edu; Dipen Sangurdekar - sang0036@umn.edu; Poonam Srivastava - sriva036@umn.edu; 
Mostafa Kaveh - mos@umn.edu; Arkady Khodursky* - khodu001@umn.edu

* Corresponding author    

Abstract
Background: Network reconstruction methods that rely on covariance of expression of
transcription regulators and their targets ignore the fact that transcription of regulators and their
targets can be controlled differently and/or independently. Such oversight would result in many
erroneous predictions. However, accurate prediction of gene regulatory interactions can be made
possible through modeling and estimation of transcriptional activity of groups of co-regulated
genes.

Results: Incomplete regulatory connectivity and expression data are used here to construct a
consensus network of transcriptional regulation in Escherichia coli (E. coli). The network is updated
via a covariance model describing the activity of gene sets controlled by common regulators. The
proposed model-selection algorithm was used to annotate the likeliest regulatory interactions in E.
coli on the basis of two independent sets of expression data, each containing many microarray
experiments under a variety of conditions. The key regulatory predictions have been verified by an
experiment and literature survey. In addition, the estimated activity profiles of transcription factors
were used to describe their responses to environmental and genetic perturbations as well as drug
treatments.

Conclusion: Information about transcriptional activity of documented co-regulated genes (a core
regulon) should be sufficient for discovering new target genes, whose transcriptional activities
significantly co-vary with the activity of the core regulon members. Our ability to derive a highly
significant consensus network by applying the regulon-based approach to two very different data
sets demonstrated the efficiency of this strategy. We believe that this approach can be used to
reconstruct gene regulatory networks of other organisms for which partial sets of known
interactions are available.
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1 Background
One of the goals of systems biology is to elucidate func-
tionally relevant regulatory interactions[1,2]. Since
changes in gene expression are in part determined by such
interactions between regulators and their target genes,
genome-wide expression data can be effectively used to
impute regulatory transcriptional networks. One
approach, which is based on the assumption that func-
tionally related genes should show similar transcriptional
activity across time points or different environmental con-
ditions, uses clustering to identify sets of genes with simi-
lar expression profiles [3] and regulator-specific network
modules [4]. However, the utility of this pioneering
approach was limited by the greedy nature of clustering
and lack of a quantitative measure of interactions between
genes.

To overcome these limitations more complex statistical
and mathematical models have been proposed, which are
briefly summarized below and in Table 1. The first class of
gene regulatory network models considers a gene regula-
tory network as a linear and time continuous system, with
the transcriptional activity of genes described by a time
continuous dynamical system of first order differential
equations [5-7] or by stochastic dynamical equations, a
framework based on a state space model [8] or Dynamic
Bayesian network [9,10]. Boolean gene regulatory net-
works [11-13] are particular cases of dynamic networks
which assume that the time and states of the system are
discrete. Genes are the network nodes which are in one of
two binary on/off states, which is the boolean function of
the each node inputs' states. These methods often use
time series data collected over a small number of time
points, compared to the large number of genes, which
results in an under-determined problem [14,15]. The

algorithms falling in the second category, including rele-
vance networks [16-18], Bayesian networks [19] and
graphical Gaussian models (GGM) [20,21], impute gene
networks by establishing connectivity (edges) between
genes based on the dependencies in their expression pro-
files. The GGMs and relevance networks model condi-
tional and marginal independencies, respectively, among
the gene pairs. The application of the GGMs is limited to
the gene networks with the number of experimental meas-
urements significantly greater than the number of genes.
Similarly, the relevance network algorithm, which uses
mutual information between genes and treats gene expres-
sion levels across different conditions as ensembles of sin-
gle random variables, can capture the condition-specific
activity of the genes only when the sample size is very
large.

Yet another approach to inferring gene regulatory net-
works is through non-greedy decomposition of gene
expression data matrices to uncover hidden, often over-
lapping, regulatory signals and transcriptional connectiv-
ity patterns. Since the data does not have to be a time
series, one can collect data for as many different experi-
ments as possible and combine them to increase the sam-
ple size and prevent the problem of under-determination.
Principal component analysis (PCA) [22] or singular
value decomposition [23-25] and independent compo-
nent analysis (ICA)[26] can be used to determine the low-
dimensional representation of the data through decom-
posing the original data into a few regulatory signals
which explain most of the data. However, the orthogonal-
ity assumption of PCA and the statistical independency
assumption of ICA place methodological constraints on
biological signals. Network component analysis (NCA)
[27] is another matrix decomposition method, devised

Table 1: Models of Gene Regulatory Networks

Gene Network Methods Brief Descriptions

Differential Equation Models, [5-7] Require time series data, limited to small-scale networks, quantify interactions, associations 
are based on mRNA levels

Boolean Networks, [11-13] Require time series data, limited to small scale networks, associations are based on mRNA 
levels

Bayesian Networks and Graphical Models, [19-21] Measure the marginal and conditional dependencies among genes, associations are based on 
mRNA levels, learning the structure of large scale networks is highly complex

Relevance Networks [16-18] Measure the linear or nonlinear correlations among genes, associations are based on mRNA 
levels and may not be direct.

Matrix Decomposition, [27,28] Require complete knowledge of a potential connectivity network, refine and quantify the 
network using gene expression data

Supervised Methods, [35] and this paper Require partial knowledge of the connectivity network, association are based on activity 
profile of transcription factors
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specifically for gene expression data, which takes advan-
tage of available knowledge about the connectivity pat-
tern of the network. The NCA method and a two-stage
matrix decomposition model in [28] assume that the con-
nectivity matrix is fully known, and, therefore, it does not
predict any new interaction among the genes and tran-
scription factors.

In this paper we introduce a new and highly efficient
approach to the problem of gene network inference
through a simple model selection algorithm. The algo-
rithm uses gene expression data and documented tran-
scriptional connections to predict a more complete
structure of the transcriptional network. The method is
based on covariance models of the co-regulated gene sets.
We demonstrate that this approach can uncover previ-
ously uncharacterized regulatory interactions and simul-
taneously estimate the activity profiles of regulators from
the corresponding covariance matrices. Comparison with
the relevance network and GGM algorithms on two differ-
ent data sets demonstrated the advantage of using the
"gene"-"regulon" associations (the present method) over
the "gene"-"regulator" associations (relevance networks
and GGM). The proposed method outperformed both
algorithms on both data sets at a very high significance
margin with a recall value of more than 62% and preci-
sion value of 64%. We confirmed some of the predicted
interactions by experiment and literature mining.

2 Results and Discussions
2.1 Data sets
Microarray gene expression data for more than 100 arrays
representing 46 biologically distinct conditions have been
used to reconstruct the underlying large scale transcrip-
tional regulatory network of E. coli. The conditions cov-
ered a spectrum of environmental and genetic
perturbations and drug treatments. The environmental
perturbations, in addition to those described in [29]
(Data set is available at NCBI Gene Expression Omnibus
(GEO) with accession number: GSE4357-GSE4380),
included different amino acid and nucleotide additions
and limitations (NCBI GEO Series accession number:
GSE15409). After filtering the collected expression data
by a series of different criteria (removing genes with low
variance expressions across conditions, with small abso-
lute values and with low entropy profiles across condi-
tions), expression measurements of 3658 genes were used
in this study.

A second data set used in our study was published in [17]
and was obtained from Many Microbe Microarray data-
base (M3D) web site http://m3d.bu.edu. This set con-
tained expression levels of E. coli genes across 524 arrays
which resolved into 189 different experimental condi-
tions. It should be noted here that not only do these two

data sets cover very different genetic or environmental
perturbations, but they also have been collected on two
different microarray platforms: cDNA microarrays and
Affymatrix Genechips.

The connectivity matrix obtained from RegulonDB http:/
/regulondb.ccg.unam.mx[30]. This connectivity matrix
contained the connectivity pattern between 1210 genes
(we only considered genes having expression measure-
ments in our data set) and 137 transcription factors hav-
ing more than two known targets.

2.2 Algorithm
For each transcription factor, the core regulon, consisting
of the set of known targets, is identified from the known
connectivity matrix described above. This information is
used to learn a covariance model for each transcription
factor. The covariance matrices are estimated from the
expression data of genes assigned to regulons. The gene
expression measurements of the group of K genes control-
led by a TF are treated as K realizations of an independent
random variable with the same distribution and, there-
fore, the weighted sample covariance matrix estimation
method was applied to approximate the TF's model covar-
iance matrix. Higher weight is given to those gene samples
that are exclusively controlled by the TF. The bootstrap
procedure is incorporated to increase the estimation accu-
racy of covariance model for those TFs with the low
number of known targets. Then the algorithm computes
the Gene-Regulon association score for each gene-regulon
pair using the likelihood function defined in the Method
Section. Finally, the activity profiles of transcription fac-
tors are estimated using the eigenvalue decomposition
procedure. The regulon-based methodology assumes that
the expressions of target genes vary with the activity of
their regulator, which does not have to be determined
solely by its transcript levels but can be a combination of
latent factors including abundance, modification status,
interaction with low molecular weight effectors or other
proteins.

2.3 Performance Comparison
To assess the relative performance of our algorithm, we
compared our algorithm with the relevance network
method developed in [17], and with GGM method pre-
sented in [21]. We did not include other relevance net-
work methods such as [16,18] and Bayesian networks
[19] because the method in [17] outperforms them.

Since we were interested in transcriptional regulatory
interactions (interactions between transcription factors
and their target genes), we built a network by comparing
scores for all possible pairs of transcription factor-gene
targets. To make a fair comparison, in each method for
each gene we ranked the regulators based on their associ-
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ation scores with that gene. A regulator which has the
maximum association score with a gene was assigned to
that gene. The second regulator was assigned to the gene
if the corresponding association score was greater than the
minimum of the association scores of the genes assigned
to that regulator in the first round. This procedure was
repeated and assignments were made, if warranted by the
association score, for the lower ranking regulators as well.
This procedure is different from those that use a global
threshold parameter to select the edges. Assignment of
regulators based on a global threshold for all TFs results in
a very limited number of predictions, although with a
good precision. Due to the large scale of the data, it is rea-
sonable to assume that there should be at least one regu-
lator that can explain the gene expression data of each
gene. Although, this association may not be discovered
through the dependency between the expression level of
the gene and the mRNA level of a gene coding for the tran-
scription factor, it may be discovered using gene-regulon
based association, and this is what we would like to dem-
onstrate.

We compared the prediction results of these three algo-
rithms over the set of known interactions in RegulonDB
database [30], which was compiled to a binary matrix of
interactions between 1210 genes and 137 transcription
factors. Because this data set is incomplete and there are
no negative controls, the appropriate measures to com-
pare the performance of the algorithms is recall and preci-
sion, see [Additional file 1] for the procedural details.

The results for two data sets and three algorithms is pre-
sented in Table 2. Our algorithm, which takes advantage
of gene-regulon associations rather than the gene-TF asso-
ciations, outperforms the other two algorithms. The
improvement was at least in part due to the fact that the
regulatory outcome is a result of the activity of transcrip-
tion factors and not necessarily of their levels, and the
knowledge of transcript levels of the regulators' genes is
not sufficient to predict the interactions. Both the GGM
and the relevance networks construct the relationship
between the gene target expression levels and the expres-
sion levels of genes encoding transcription factors. Such
models are confined to the cases when regulators are

members of their own regulons. However, in many cases,
if not most, transcriptional regulation of targets is not
accompanied by changes in the levels of the regulators'
transcripts, and even when it is, the changes don't have to
be correlated with the transcription of the targets. Instead,
such regulation can be captured when estimating the
activity of the transcription factors, which is the basis of
the method presented in the current study.

The second reason for outperforming the relevance net-
work algorithm is the capacity of our method to capture
condition-specific activity and the co-variance of the gene
expression profiles across different conditions. On the
other hand, the relevance network algorithm treats gene
expression levels across different conditions as ensembles
of single random variables to estimate the probability dis-
tribution for each gene, and therefore it can not account
for condition-specific activity of the genes when the sam-
ple size is not large enough. See [Additional file 1] for
more information on the comparison between the algo-
rithms.

2.4 Network reconstruction
We applied the proposed method to a large-scale gene
expression data set to evaluate its capacity to recover
known regulatory interactions and predict new ones. We
ignored any TF assignments with a very small number (<
5) of known interactions. We assigned to each gene a reg-
ulator based on the maximum probability of association
calculated using the proposed algorithm presented in the
methods section. When we limited the number of associ-
ations for each gene to one, the algorithm was able to
recover the correct association for 86% of the genes with
known interaction, i.e., 1044 genes out of 1210 genes
were associated with their known regulators. When two
regulators were assigned to genes, an additional 542
known interactions were recovered, which included
known interactions for 26 genes that were not in the set of
1044. That increased the percentage of genes with correct
associations to 88%, and this implies that for 74% of
genes, i.e. for 516 out of 696 genes having two or more
regulators, both predicted regulators were correct.

Table 2: Comparison of recall(Precision) (%), rounded to the closest integer, for the model selection algorithm, relevance network and 
graphical gaussian model on two large-scale microarrays data sets.

Methods

Data sets Model selection algorithm (this paper) Relevance Network GGM

Our data set 44 (43) 8 (6) 3(3)

Data set in [17] 62 (64) 20 (16) 3(2)
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In addition to recovering known interactions, the algo-
rithm discovered new, un-annotated interactions. Some
of the discovered interactions could be independently
confirmed. For example, the algorithm predicted two tar-
gets of ArgR, hisJ and artJ, which were not among known
interactions in the RegulonDB database, but have been
recently reported in the literature [31]. For this particular
TF, 21 out of 27 known interactions in regulonDB were
recovered.

We specifically focused on the structure of the Lrp regu-
lon. Lrp is a global transcription factor and a mediator of
leucine response. It is believed that Lrp controls the
expression of hundreds of genes directly or indirectly[32],
although only 55 known Lrp targets were annotated in the
RegulonDB at the time of this study. Overall, 85 genes
were predicted to be Lrp targets. By using transcriptional
data obtained on an Lrp knock-out mutant [32], we con-
firmed that 52 genes were differentially expressed in the
knock-out strain. Using chromatin immuno-precipita-
tion(IP), we found that Lrp binds to the upstream regions
of at least 45 out of the 52 differentially expressed genes,
including several new predicted targets such as ompT,
dppA, eco, pntA, pntB, csiE, sdaB sdaC, yhjE and ygdH, most
of which were also verified using a qPCR experiment
(Table 3). Thus, the algorithm discovered 10 new targets of
the transcription factor Lrp that could be confirmed by a
biological experiment. In addition, limited evidence in
the literature suggests that sdaBC and pntAB are also likely
Lrp targets [33,34]. pntAB is also among predicted targets
for lrp in [17]. Our results also indicated that Lrp controls
expression of the leuABC operon. Although according to
RegulonDB there is no interaction between Lrp and the
leuABC operon, it has been previously reported that Lrp

does regulate this operon [33]. Overall, this rate of discov-
ery of true Lrp targets is higher than any previously
reported discovery rate of confirmed targets for any regu-
lator by a discovery algorithm.

2.5 Activity of regulators
The principal eigenvector of the covariance matrix com-
puted from the set of genes controlled by each regulator
was assumed to be a good and biologically sound approx-
imation of the activity profiles of the regulators. We pro-
ceeded to evaluate this assumption by examining the
estimated activity levels of transcription factors in individ-
ual conditions and by comparing the eigenvector-derived
profiles with the activity profiles calculated by the Net-
work Component Analysis, a state of the art connectivity
matrix decomposition technique proposed in [27]. (Note,
the activity levels of TFs are the relative activities of TFs in
each condition with respect to a reference sample.)

We determined that the eigenvector-derived profiles of
regulators' activity fully recapitulate NCA profiles. Figure
1 illustrates this point on several characteristic profiles
(some conditions in which the activity level of the TF was
significant are indicated).

Several conditions in our data set were expected to elicit
transcriptional responses mediated by the activities of
known regulators. Indeed, we found that in all conditions
with well-studied and understood transcriptional
responses, the identity of the most active TF matched our
expectations. For example, in the experiment to measure
transcriptional response to the addition of the amino acid
arginine, transcription factor ArgR appeared to be the
most active TF. Similarly, TrpR was the most active TF in

Table 3: New targets of Lrp which were confirmed using qPCR (the fold enrichment values with '*' are from ChIP-chip)

Gene name Fold transcript change Fold IP enrichment Lrp Activity Function

ompT 8.5 2.8 Positive DLP12 prophage; outer membrane protease VII

eco 1.8 2.3 Negative ecotin, serine protease inhibitor

dppA 1.6 3.4 Positive dipeptide transporter

pntA 1.6 2.8 Positive pyridine nucleotide transhydrogenase, alpha subunit

artP 1.7 4 Negative arginine periplasmic transport system

sdaC - 1.9 Positive predicted serine transporter

yhjE 1.5 6.9 Negative putative transporter

csiE - 2.1* Negative stationary phase inducible protein

ygdH - 2* Positive unknown
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the condition when tryptophan was added to the
medium, and LexA was the most active TF under condi-
tions of UV and Gamma treatment Fig. 1.

In almost all conditions, we were able to identify more
than one active transcription factor. When we considered
a transcription factor to be active at a significance level of
5% (the z-score corresponding to each activity level was
calculated from the background distribution estimated
from all activity levels), on average 13 TFs were active per
condition in our data set (11 – in the Affymetrix data set).
The distribution of the number of active TFs across the

conditions is shown in Fig. 2. The number of transcription
factors active in a minimal growth medium as compared
to rich medium was the highest, followed by the transi-
tion from exponential to stationary phase of growth, dur-
ing which the cells are known to undergo massive
regulatory re-programming, followed by sodium azide
treatment, which results among other things in interrupt-
ing the electron flow chain. Among the amino acid effects,
addition of isoleucine appeared to stimulate the highest
number of TFs, whereas addition of threonine or gluta-
mate appeared to have no or very little effect on the regu-
lators. The smallest number of differentially active

Activity profile of ArgR, TrpR, Lrp and LexAFigure 1
Activity profile of ArgR, TrpR, Lrp and LexA. Several conditions in our data set were expected to elicit transcriptional 
responses mediated by the activity of known regulators. We found that in all conditions with well-studied and understood 
transcriptional responses, the identity of the most active TF matched our expectations. For example, in an experiment which 
was conducted to measure transcriptional response to addition of the amino acid arginine, transcription factor ArgR appeared 
to be the most active TF. Similarly, TrpR was the most active TF in the condition when tryptophan was added to the medium, 
and LexA was the most active TF under conditions of UV and Gamma treatment.
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transcription factors was observed in the comparison of
chemostat cultures grown at different dilution rates
("WildTypeGrowth").

Not only did we find that more than one TF appeared to
be active in any given condition, but also that many TFs
were likely to be mediating transcriptional responses in
multiple conditions (Fig. 3). Given that the conditions in
our study were enriched by perturbations of amino acid,
nucleotide and DNA metabolism, it was not surprising
that the list of most frequently active regulators included
ArgR, GcvA, CysB, MetR/MetJ, DeoR, PurR, LexA. What we
found surprising was that the transcription factor TrpR,
the main transcriptional regulator of genes involved in

tryptophan biosynthesis, appeared to be the most respon-
sive regulator in a sense that it was not only among the top
responsive TFs to different conditions, but also its activity
level was higher than those of other TFs (the method
allowed comparison of the activity levels of various regu-
lators across a uniform scale; see the scale on Y axis in Fig.
1). Tryptophan is the scarcest amino acid in the cell; it is
plausible that many perturbations, including those that
don't affect tryptophan metabolism directly, may result in
biologically significant fluctuations in the size of the
amino acid pool. Despite the absence of any apparent bias
in the Affymetrix data set [17], the frequency of OxyR
activity (OxyR activates hydrogen peroxide induced
genes) dwarfed the frequencies of all other factors: OxyR

A number of active regulators varies across conditionsFigure 2
A number of active regulators varies across conditions. The number of transcription factors active in minimal growth 
medium as compared to rich medium was the highest, followed by the transition from exponential to stationary phase of 
growth, during which the cells are known to undergo massive regulatory re-programming, and then sodium azide treatment, 
which results, among other things, in an interruption of the electron flow chain. Among the amino acid effects, addition of iso-
leucine appeared to stimulate the highest number of TFs, whereas addition of threonine or glutamate appeared to have no or 
very little effect on the regulators. The smallest number of differentially active transcription factors was observed in the com-
parison of chemostat cultures grown at different dilution rates ("WildTypeGrowth").
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was active in almost thrice as many conditions as the next
most frequently active regulator.

The correlation analysis of TFs activity profiles revealed
that the activity profiles of almost half of the transcription
factors considered in this study are correlated with one
another. Some global regulators such as CRP, IHF, FNR
were correlated with more than 10 TFs. However, some
local regulators, such as OmpR, PhoP, and EnvY, also
showed a high degree of correlation with other TFs. Figure
S1 [see Additional file 2] shows the network view of cor-
relation between transcription factors. The existence of the
edge between two TFs indicates that the correlation
between their activity profiles is above a threshold value
of 0.70. Such similarities may indicate a certain degree of
regulatory redundancy, i.e. different regulators controlling
subsets of overlapping genes. Indeed, when we examined
to what extent the correlations between the profiles are
indicative of TFs regulating common genes, we observed
that transcription factor pairs with high correlation regu-
late common genes with higher probability than TF pairs
with low correlations. 55% of TF pairs with correlation

above 0.70 appeared to have common targets, compared
to 20% of TF pairs with correlation less than 0.70.

However several transcription factors, including LexA,
GcvA, SoxR, DsdC and FadR, did not show high degree of
correlation with other TFs, even though they were rela-
tively responsive in a high number of conditions in the
study.

2.6 Network refinement
Based on the two expression data sets, covering regulatory
states for almost all genes in the genome, each gene
(operon) was assigned a transcription factor(s) that was
likely to control the expression of that gene. To this end,
the present algorithm was applied to both data sets. For
each data set, every gene was assigned three top-ranking
regulators with the highest probabilities of association,
calculated using equation (3). If a gene had the same reg-
ulator(s) predicted from both sets, the regulatory associa-
tion between the gene and regulator(s) was deemed true
and cataloged for the purpose of network refinement. This
resulted in a list of 1719 genes associated with at least one

Frequency of condition-specific activity for top regulatorsFigure 3
Frequency of condition-specific activity for top regulators. Many TFs were likely to be mediating transcriptional 
responses in multiple conditions. Given that the set of conditions in our study was enriched by those in which metabolism of 
various amino acids or nucleotides was directly or indirectly perturbed and by conditions causing DNA damage, it was not sur-
prising that the list of most frequently active regulators included ArgR, GcvA, CysB, MetR/MetJ, DeoR, PurR, LexA.

0

2

4

6

8

10

12

14

TF Name

A
rg

P
A

rg
R

G
cv

A
M

et
R

D
sd

C
Tr

pR
S

ox
R

B
et

I
C

ys
B

G
at

R
D

eo
R

Le
xA

M
al

I
M

et
J

P
ur

R
Q

se
B

B
ae

R
Fa

dR
G

ad
W

Lr
hA

C
ue

R
D

na
A

Le
uO

M
ng

R
M

pr
A

N
ag

C
P

dh
R

Ty
rR

A
sn

C
C

us
R

D
ha

R
E

nv
Y

G
ad

E
Ic

lR
Is

cR
M

ar
R

Td
cA

Td
cR

To
rR

A
ga

R

N
um

be
r 

of
 C

on
di

tio
ns
Page 8 of 12
(page number not for citation purposes)



BMC Systems Biology 2009, 3:39 http://www.biomedcentral.com/1752-0509/3/39
regulator [see Additional file 3]. 779 genes out of 1719
had no previously characterized regulatory interactions.
The existence of consensus regulators (predicted using
two completely independent data sets) for this number of
genes is statistically significant. Only 167 genes would
have been expected to have a consensus regulator if the
assignments in one of the sets had been done at random.

We incorporated the operon information to further refine
the set of regulatory interactions. The consensus regulator
for an operon was chosen as a common regulator of genes
in the same operon, as predicted on the basis of both data
sets. This resulted in a list of potential regulator(s) for
each operon [see Additional file 4], with many already
confirmed or highly plausible regulatory interactions. For
example, dinI and dinP are known targets of LexA, but not
among the known interactions set used in this study. Also,
yafNOP, yebB, yebG, yigN, and yjjB-dnaTC-yjjA were pre-
dicted to be LexA targets. yafNOP is a neighboring operon
of dinB with a weak but significant score for a LexA bind-
ing site in its promoter region. Regulatory regions of yebG,
yigN and yebB contain high scoring LexA binding sites. The
possibility that dnaT and dnaC, two genes involved in
DNA replication, are under LexA control is intriguing, and
warrants further experimentation.

Overall, even though the two data compendia appeared to
be substantially different as far as dominant activity pro-
files are concerned, transcriptional profiles of as many as
1407 genes and 773 multigene operons could be
explained at least in part by the activity of the same regu-
lator(s) in both data sets. This result implies that, pro-
vided a sufficiently diverse collection of experimental
conditions, the method will converge on true transcrip-
tional regulators of any given gene in a genome, including
regulators themselves [see Additional files 1 and 5].

3 Conclusion
Genome-wide transcriptional data allow for systematic
analysis of regulatory patterns of gene expression. These
patterns are at least in part determined by interactions
between transcription factors and their cognate target
genes. Accurate prediction of such interactions, which is
essential for understanding phenotypic outcomes of
genetic and environmental perturbations, depends on the
quality of models capturing essential regulatory features
and on their underlying assumptions. One such feature is
that the transcriptional activity of co-regulated genes
should sufficiently absorb in itself the activity of their
common regulator. Moreover, the information about
transcriptional activity of the known co-regulated genes (a
core regulon) should also be sufficient for discovering
new target genes, whose transcriptional activity signifi-
cantly co-vary with the activity of the core regulon mem-
bers.

We introduced an effective approach to predict interac-
tions between regulators and genes through a simple
model selection algorithm. The algorithm takes advantage
of both gene expression data and the knowledge of known
gene-TF associations to simultaneously discover new
interactions between regulators and genes and to estimate
the activity profiles of the regulators. The proposed
approach, unlike other methods, associates the expression
of genes in a regulon with the activity of transcription fac-
tors rather than with the expression levels of genes encod-
ing for the transcription factors. We demonstrated that
incorporation of information about the activity profiles of
transcription factors allows for a reliable identification of
many known as well as previously uncharacterized regula-
tory interactions, which could not be achieved by meth-
ods solely relying on gene expression associations. We
should mention that the power of a regulon-based associ-
ation framework presented in this paper and of the super-
vised inference method [35] relies on the prior
information about known interactions between genes and
transcription factors: without such information these
supervised algorithms are not applicable. However, with
the help of ChIP-chip and ChIP-sequencing technology, it
should be possible to obtain sufficient amount of data to
seed a de novo interactivity matrix, which can be used in
combination with gene expression data to construct a reli-
able gene regulatory network by means of these super-
vised learning methods.

4 Methods
We consider the gene regulation process as an input-out-
put model where the transcription rate (output product)
is controlled through the activity level of the group of spe-
cialized transcription factors. We assume, given the activ-
ity of regulators, that this process is approximately linear,
although the dynamic behavior of this biological process
can be much more complex. In the linear model

e represents a vector of gene expression measurements
across m conditions, S is a m × k matrix of the k regulators'
activities and c is a sparse vector that represents the inter-
action between the gene and regulators. We assume S and
c are both unknown and  is an m elements vector of ran-
dom noise with zero mean and covariance matrix of 2I.

The fact that the expression level of genes is controlled by
only a few regulatory nodes makes the resulting network,
and therefore c, sparse. Furthermore, the direct measure-
ment of the regulators' activity is a challenging and expen-
sive, if not an impossible, task. Therefore, one does not
have access to S, the activity profiles of regulators. The
objective is to estimate the activity profiles of the regula-
tors that control transcription (initiation) of groups of

e Sc= + ε, (1)
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genes. At the same time, we also wish to provide for each
gene the set of regulators that can explain the observed
gene expression data.

Here, we present an efficient algorithm, which takes
advantage of known interaction among genes and regula-
tors. Let f be a set consisting of the expression vectors of
genes known to be controlled by a single regulator f. Then,

where sf, the activity profile of the regulator f, is unknown

and cf is the interaction coefficient, which is assumed to be

a random variable with distribution (, 2). The likeli-
hood function for sf [36] is,

where

Among the set of all regulators, the correct regulator, sf,
maximizes p(eg|sf). On the other hand, to compute
p(eg|sf) the regulatory signals need not be known explic-
itly and the knowledge of the sample mean (f) and the
covariance matrix (f) corresponding to each set f is suf-
ficient for model selection. Therefore, one only needs to
estimate these sample mean and covariance matrices from
the data. The covariance matrix f, which is the covariance
matrix of gene expression data in f, can be estimated
using sample covariance matrix. Assume Ef to be the
expression measurements of genes in f, then one can
estimate the weighted covariance matrix corresponding to
regulator f by,

where Nf is the number of samples in f, i and j are ith
and jth entries of sample mean, f and wk's are weights
which sum to one.

Since we considered f's as sets of genes controlled only
by one regulator, if sf represents the true model, then the
covariance matrix f can be represented by its first rank
approximation using eigenvalue decomposition. There-
fore, ignoring the noise terms, the inverse of the covari-
ance matrix can be efficiently computed through its first

rank approximation, which not only speeds up the algo-
rithm but also reduces the effects of the noise.

where 1 and u1 are respectively the principal eigenvalue
and the principal eigenvector of the covariance matrix.
Given data sets of known TF-gene interactions one can
form the sets of f's and use equations 4,5 and 3, respec-
tively, to compute p(eg|sf) for all TFs and assign to each
gene g the regulator f that provides the maximum value.

The knowledge of regulator-gene interactions represents a
low-resolution view of molecular interactions inside a
cell. It does not provide any details about how and when
these interactions occur. Therefore, as a complement to
this information, in some biological studies, the question
might be which regulators and how they respond under
different environmental or genetic perturbations. One
way to tackle this problem is to study the activity levels of
different transcription factors across different conditions.
The principal eigenvector (eigenvector corresponding to
the largest eigenvalue) of the sample covariance matrix
(f) can be viewed as the activity profile of a regulator f.
Notice that the activity profiles of regulators are principal
eigenvectors of different covariance matrices, which nec-
essarily need not be, and, indeed they are not, orthogonal
to each other. Therefore, the estimated activity profiles are
different from those estimated by algorithms such as Prin-
cipal component analysis (PCA) [22] or singular value
decomposition [23,24] and independent component
analysis (ICA)[26] which decompose the original data
into a few regulatory signals that are orthogonal or inde-
pendent.
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Additional file 2
Supplementary Figure 1(Figure S1). Network of transcription factors 
with correlated profiles. The existence of an edge between two TFs indi-
cates that the correlation between their activity profiles is above a thresh-
old value of 0.70. Such similarities may indicate a certain degree of 
regulatory redundancy, i.e. different regulators controlling subsets of over-
lapping genes. Indeed, when we examined to what extent the correlations 
between the profiles are indicative of TFs regulating common genes, we 
observed that transcription factor pairs with high correlation regulate com-
mon genes with higher probability than TF pairs with low correlations. 
55% of TF pairs with correlation above 0.70 appeared to have common 
targets, compared to 20% of TF pairs with correlation less than 0.70.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-39-S2.pdf]

Additional file 3
TF-Gene Interactions. A set of genes with common regulators predicted 
from both data sets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-39-S3.pdf]

Additional file 4
TF-Operon Refined Interactions. A refined catalog of transcriptional 
interactions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-39-S4.pdf]

Additional file 5
Supplementary Figure 2(Figure S2). Regulatory network of transcrip-
tion factors. The consensus regulatory interactions predicted using both 
data sets. This subnetwork comprises of 101 transcription factors (nodes) 
with 118 predicted interactions (edges) among them. All interactions are 
directed from a TF-regulator toward a TF-target. 76 (66%) predicted 
interactions (red edges) were previously known and include 36 known 
auto-regulators. The remaining 42 predicted interactions (blue edges) are 
new. In addition, 13 regulators identified as targets did not have any pre-
viously identified regulators.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-39-S5.pdf]
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