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Abstract
Background: Many biological processes are mediated by dynamic interactions between and
among proteins. In order to interact, two proteins must co-occur spatially and temporally. As
protein-protein interactions (PPIs) and subcellular location (SCL) are discovered via separate
empirical approaches, PPI and SCL annotations are independent and might complement each other
in helping us to understand the role of individual proteins in cellular networks. We expect reliable
PPI annotations to show that proteins interacting in vivo are co-located in the same cellular
compartment. Our goal here is to evaluate the potential of using PPI annotation in determining SCL
of proteins in human, mouse, fly and yeast, and to identify and quantify the factors that contribute
to this complementarity.

Results: Using publicly available data, we evaluate the hypothesis that interacting proteins must be
co-located within the same subcellular compartment. Based on a large, manually curated PPI
dataset, we demonstrate that a substantial proportion of interacting proteins are in fact co-located.
We develop an approach to predict the SCL of a protein based on the SCL of its interaction
partners, given sufficient confidence in the interaction itself. The frequency of false positive PPIs can
be reduced by use of six lines of supporting evidence, three based on type of recorded evidence
(empirical approach, multiplicity of databases, and multiplicity of literature citations) and three
based on type of biological evidence (inferred biological process, domain-domain interactions, and
orthology relationships), with biological evidence more-effective than recorded evidence. Our
approach performs better than four existing prediction methods in identifying the SCL of
membrane proteins, and as well as or better for soluble proteins.

Conclusion: Understanding cellular systems requires knowledge of the SCL of interacting
proteins. We show how PPI data can be used more effectively to yield reliable SCL predictions for
both soluble and membrane proteins. Scope exists for further improvement in our understanding
of cellular function through consideration of the biological context of molecular interactions.

Background
Life at the cellular level of organization can be represented
as an intricate and dynamic system of interactions among
molecules. Proteins are fundamentally involved in all cel-
lular processes, with many of their functions transduced

through pairwise or multivalent interactions with other
proteins. Discovering and modelling this network of pro-
tein-protein interactions (PPIs) has long been a goal of
functional biology. Eukaryotic cells contain a number of
physical compartments, across and within which their PPI
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networks are organised and structured. Each type of com-
partment provides a unique physiological environment
within which specialized functions are carried out. To
interact, proteins (or any other molecules) must necessar-
ily share a common subcellular location (SCL), or an
interface between physically adjacent SCLs, at least tran-
siently or conditionally. Thus identifying the compart-
ment(s) within which each protein is located,i.e. its SCL,
is an important step in understanding its specific role in
cellular physiology, and indeed in modelling this physiol-
ogy more generally.

Both experimental and computational approaches have
been applied to identify the SCL of proteins. Each has its
own advantages and limitations. Experimental
approaches are direct but typically time-consuming,
expensive, potentially subject to artefact, and do not
project the full range of biological complexity [1], whereas
computational methods are potentially faster and more-
general, may be less-accurate [2], and ultimately require
empirical validation.

Recent studies based on high-throughput technologies
have confirmed that interacting proteins tend to be
located within the same compartment, or in physically
adjacent compartments, in human [3-5], fly [6] and yeast
[7,8]; Schwikowski et al. report that 76% of interactions in
their yeast PPI set are between proteins located in the
same SCL [7], while a review of human PPIs based on
public databases and literature curation found 52% to
involve co-located proteins plus others involving adjacent
compartments [9]. These studies strengthen the assertion
that a pair of interacting proteins is more likely to be co-
located in the eukaryotic cell.

For decades, molecular biologists have discovered indi-
vidual protein interactions using low-throughput tech-
niques, accumulating low-coverage but high-quality PPI
data. More recently these methods have been adapted,
and new methods devised, to survey PPI on a more global,
proteome-wide scale. However, these high-throughput
methods have been reported to have high rates of false
positives (FPs), and concerns exist that experimental con-
ditions in these assays may not accurately reflect cellular
physiology [6,10-13]. A high FP rate in PPI would of
course undermine the utility of PPI data in predicting SCL,
and consequently in modelling cellular physiology.

To improve the quality of PPI data, additional criteria
have been examined including discovery by different ana-
lytical technologies, e.g. yeast two-hybrid (Y2H) assays
and co-immunoprecipitation (co-IP) [13] or different
affinity-purification protocols [14], co-expression of
mRNAs [13,15], synthetic lethality [13,15], presence of
homologs that interact in other species (interologs) [16]
or of protein domains known to interact [16], and com-

mon functional annotation as reflected in keywords from
Gene Ontology [17]. Statistical confidence can be
assigned to interactions [15], and details of the local PPI
network may be used to distinguish between true and
false interactions [18]. von Mering and colleagues con-
cluded that "as many complementary methods as possible
should be used" to increase coverage and improve relia-
bility [13]. Computationally derived features can be
applied as well, e.g. the presence and nature of targeting
and sorting signals, protein motifs, and transmembrane
organization [19-22]. These criteria can be combined,
weighted, and used in prediction tools, including in the
prediction of SCL [22]. However, much remains to be
done in extending these or similar approaches beyond
yeast and human, e.g. to systems where more or different
subcellular compartments may be recognised and PPI net-
works are less well-characterised; and to deal better with
the approximately 20% of cellular proteins that are mem-
brane-localised, hence less well-suited to study using most
high-throughput experimental technologies. For this, it is
necessary to identify, understand and quantify the indi-
vidual factors that contribute to complementarity among
different analytical and computational approaches.

Here we examine the contribution of six such factors to
the inference of SCL from public PPI data in human,
mouse, fly and yeast. We generate a high-confidence data-
set for each species, and use it to test whether PPIs are in
fact co-located: six publicly available PPI datasets were
evaluated and integrated, while SCL information was
obtained from Gene Ontology (GO) annotations in Uni-
Prot. To reduce the effect of false positive PPIs we generate
six subsets of our data, each supported by a different line
of evidence: three related to the evidence type itself
(number of supporting detection methods, literature, and
data sources), and three based on inferred biology (simi-
larity of biological process, domain interactions, and
interologs). We develop four alternative strategies and
algorithms for using these PPI data to predict SCL, draw-
ing explicitly on these six lines of evidence singly and in
combination. Considering membrane and non-mem-
brane proteins separately, we test these strategies against a
set of newly released, manually curated SCL data not pre-
viously available to us, and compare the performance of
our method to four previously published SCL prediction
methods.

Results and discussion
1. PPI data comparisons on proteins and interactions 
among databases
Inconsistency of annotation systems for newly discovered
proteins at the different protein-sequence databases often
results in different identifiers being assigned to the same
protein [23]. To facilitate consistency in protein annota-
tion, UniProt was launched in cooperation with three
major protein sequence databases: Swiss-Prot, TrEMBL
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and PIR [24]. For consistent integration of different PPI
databases, we mapped identifiers (IDs) used by each data-
base to the corresponding UniProt accession number
(AC), giving us a standard identifier over our integrated
dataset.

After standardization, a number of identifiers in each
database remained unmapped to UniProt AC; we omitted
these proteins from our integrated dataset. Redundant,
divergent and convergent entries were also removed. With
the human and mouse data, this process resulted in a sub-
stantial loss of proteins from some sources (for example,
in BIND, DIP and HPRD, between 23–47% of human and
mouse proteins were removed), while other resources
showed much smaller reductions in protein number (4–
6%). In the fly and yeast data, fewer proteins were redun-
dant, or failed to map to UniProt ACs; only 4–8% of fly
proteins and 0.2–7% of yeast proteins were removed
across databases. Many of these difficulties in mapping
Genbank Identifiers, NCBI Reference Sequence (RefSeq)
ACs, and Protein Sequence Database (PSD) identifiers
unambiguously to UniProt ACs were due to changes in
annotation convention at the public databases, and/or
from intrinsic complexity of the data, and highlight a con-
tinuing issue with integration among protein sequence
databases (Fig. 1a).

Removal of unmapped proteins and resolution of redun-
dant proteins resulted in the removal of 12% of PPIs from
BIND, 5% from IntAct, 11% from DIP, 6% from MINT,
12% from MPPI and 12% from HPRD. As expected from
the results of protein mapping described above, PPI num-
bers for human and mouse were substantially reduced
from the BIND, DIP and HPRD data. For example, in
BIND, 42% of human PPIs and 37% of mouse PPIs were
removed, while in DIP, 34% of human PPIs and 65% of
mouse PPIs were removed (Fig. 1b).

2. Biases among PPI databases
We compared several properties of PPI datasets across
databases to search for substantial biases in these data.
Parameters considered include the number and overlap of
proteins and PPIs recorded in databases, literature cita-
tions attributed to PPIs, and experimental methods for
PPI detection. We consider these factors important to
establish the independence of the data contained in each
resource, hence the quality of our confidence measures.
For example, our measure of the multiplicity of records in
databases would be undermined if the multiple entries
actually represent a single observation from one paper
that had been shared among databases that frequently
exchange data http://imex.sourceforge.net/, whereas if
they had been identified from different papers they would
represent independent observations. For this and other
measures of confidence, analysis of overlapping PPIs and
literature provides an important measure of reliability. To

inspect this overlap, we interrogated the intersections of
PPIs and PMIDs collected among databases, and com-
pared the types of experimental methods used to discover
PPIs.

2.1 Intersections of PPIs among PPI databases
Despite similar objectives and approaches among PPI
databases [25], each resource follows its own process for
identifying relevant literature and extracting interaction
data. To analyse the heterogeneity of PPI collections, we
examined PPIs that are common among databases. For all
the species considered, most PPIs are recorded in only one
database (Fig. 1c). About 85% of human and mouse, 31%
of fly and 41% of yeast PPIs in our dataset exist in only
one database. No human PPI was common to all six data-
bases that contain human data, and no mouse PPI was
common to all five databases that contain mouse data.
However, around 30% of fly and 20% of yeast PPIs were
common to all four databases that contain PPIs from
those species (BIND, IntAct, DIP and MINT). The greater
overlap in fly and yeast PPIs is a consequence of the large-
scale interaction studies published for these species
[6,26,27]. For fly, the large-scale interaction map of Giot
et al. [6] identified around 20,000 protein interactions,
including 4700 high-confidence interactions, which
appeared in all four relevant PPI databases, while Form-
stecher et al. [28] detected 2300 interactions that are refer-
enced in IntAct, BIND and DIP. Three large-scale PPI
maps of yeast have also been incorporated into the four
relevant databases [29-31].

2.2 Intersections of literature cited for PPIs
To examine the literature shared in common by these
databases, we used PubMed identifiers (PMIDs), which
are unique identifiers for biomedical literature, as a proxy
for journal articles. We found little overlap of PMIDs
among these six PPI databases. Articles which are cited in
only one database covered 87% of human, 89% of mouse,
96% of fly and 73% of yeast PPIs (Fig. 1d). Across all these
species, only 1–3% of papers are referenced by more than
three different databases; thus the curation and retrieval
systems of these databases differ significantly with respect
to this outcome. Interestingly, although at the time of
analysis the fewest papers were cited for fly, its interaction
data were more numerous than for any other species (Fig.
1d), reflecting the dominance of large-scale proteome-
wide interaction studies for this species.

2.3 Supporting methods for PPIs among databases
We categorized PPI-detection methods into classes based
on the terminology provided by the Protein Standards Ini-
tiative (PSI) Molecular Interaction (MI) vocabulary [32]
(Fig. 1e). The four main classes are Biophysical assay
(MI:0013), Biochemical assay (MI:0401), Protein com-
plementation assay (MI:0090), and Imaging techniques
(MI:0428); we collected other methods (e.g. Experimental
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detection, MI:0045) into an Others class. The supporting
method most frequently identified in these data was pro-
tein complementation, within which yeast two-hybrid
(Y2H) methods [33] were the most frequently cited: more
than 90% of fly PPIs were identified by Y2H methods

(MI:0018 and MI:0398). The next most-frequent methods
were biochemical, including affinity techniques [34].

Most PPIs in these databases have been identified using
complementation assays, reflecting the continuing domi-

Comparison of PPI databasesFigure 1
Comparison of PPI databases. (a) Numbers of proteins in each PPI database. The bars indicate, for each of the four spe-
cies, the total number of unique proteins in the six databases (DBs) before (BF: black) and after (AF: grey) standardization of 
identifiers (IDs). (b) Numbers of PPIs in each database before (black) and after (grey) ID standardization. (c) Numbers of PPIs 
present in one, two, three, or four or more databases after redundancy reduction. Human PPIs have been accessioned into all 
six databases, mouse PPIs into five, and fly and yeast PPIs into four. The counts include homo- as well as hetero-dimeric inter-
actions. (d) Numbers of PPIs for which one, two, or three or more distinct literature items are cited as evidence. (e) Numbers 
of PPIs supported by the four high-level experimental approaches. For a-e: H (human), M (mouse), F (fly) and Y (yeast).
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nance of Y2H techniques for high-throughput PPIs deter-
mination. Individual exceptions exist, e.g. a large
proportion of human and mouse PPIs in the BIND data-
base identified by biophysical methods, where x-ray crys-
tallography (MI:0114) alone represents around 30% of all
PPIs; this reflects the inclusion in BIND of data from struc-
tural studies of protein complexes. Given the doubts that
currently exist about the rate of FP predictions in high-
throughput data [35], the substantial contribution of Y2H
studies to these public databases requires us to filter the
data in generating a high-confidence PPI dataset, and
thereafter to remain cautious in using such sets for infer-
ring SCL.

2.4 Summary of bias analysis
Given the low degree of overlap among PPI sets from dif-
ferent databases especially for human and mouse, it
appears worthwhile to integrate data from multiple
resources to maximize coverage of the interactome.
Although for fly and yeast more PPIs are common to more
databases (Fig. 1c), the actual overlap in the underlying
literature is much lower (Fig. 1d). For human and mouse,
overlap of protein sets among these databases does not
equate to a high proportion of overlapping PPIs: most
interactions are unique to a single database. The situation
is different for the yeast and fly data, where significant
high-throughput or genome-wide PPI analysis has
resulted in a greater proportion of interacting pairs
present in several databases (Fig. 1c,d).

With the latter species especially, approaches that base
confidence in a PPI on its co-occurrence in separate data-
bases are misdirected, as presence in multiple databases
reflects the accession of a few papers reporting large-scale
studies, rather than truly independent observations of the
interaction captured from unrelated literature.

3. Comparison of data on subcellular location
3.1 Coverage of GO Cellular Component annotations in the PPI 
dataset
To investigate subcellular location, we extracted from Uni-
Prot the GO Cellular Component (CC) annotations for
proteins in our dataset. To optimize reliability of the
annotation, GO terms with evidence codes IC (Inferred by
Curator), IEA (Inferred from Electronic Annotation), ISS
(Inferred from Sequence or Structural Similarity), NAS
(Non-traceable Author Statement), ND (No biological
Data available), and NR (Not Recorded) were not
included due to the uncertain provenance of these anno-
tations (see Methods, Section 1.3). GO is an ongoing
project, and the assignment of terms to proteins can be
subjective: for example, some proteins are annotated with
a more-general term higher in the GO hierarchy, whereas
others are annotated with lower-level, more-specific
terms. For consistency, we collapsed all CCs for each pro-
tein to the parent terms in our definition of cellular com-

partments. In this way we associated proteins to one or
more of 15 compartments (Methods, Section 2.1).

After sorting GO terms according to evidence codes and
collapsing terms, 32% of human proteins, 43% of mouse
proteins, 9% of fly proteins and 73% of yeast proteins in
our combined dataset are associated with one or more GO
CC terms. For these four species respectively there are
17%, 27%, 2% and 71% heterodimeric interactions in
which each partner has at least one GO CC term (Fig. 2a).
In about half of these interactions (9%, 12%, 1% and 40%
respectively), each interacting protein is associated with
exactly one GO CC term, i.e. is annotated as being located
in only one of our high-level cellular compartments.

To assess the potential for PPI-based inference to uncover
new subcellular location information, we identified het-
erodimeric PPIs in which only one interacting partner
(but not both) is annotated with at least one GO CC term.
In these four species we found 8830, 1239, 5775 and
5727 heterodimeric PPIs that satisfy this criterion. These
are our potential prediction sets, and contain 3280, 783,
2998 and 1406 unique proteins that lack SCL annotation.
The missing SCL annotation could potentially be inferred
from the known location of the interaction partner(s)
(Additional file 1).

3.2 Cellular compartments enriched for proteins with GO CC 
annotations
In our combined data set, we examined the distribution of
proteins according to their annotated subcellular loca-
tions. The most frequent annotations are for location in
the nucleus, cytoplasm, plasma membrane and extracellu-
lar region (Fig. 2b). Across all species, 40–50% of proteins
with multiple SCL annotations have locations annotated
in both nucleus and cytoplasm. Additionally, around 10–
20% of multiply located proteins in the three morpholog-
ically complex eukaryotes are annotated with locations in
the cytoplasm and plasma membrane, while for yeast
13% of multiply located proteins are located in the cyto-
plasm and mitochondrion.

We applied a previously published method [36] based on
hydrophobicity to predict soluble, secreted and integral
membrane proteins, then examined the distribution of
proteins in these three classes across compartments.
About 93% and 88% of proteins from the PPI datasets
with annotated locations in the nucleus and cytoplasm
respectively were predicted to be soluble. The background
proportion of soluble intracellular proteins across whole
proteomes is usually around two-thirds [37], suggesting
that soluble proteins participating in PPIs are enriched in
the nucleus and cytoplasm in these organisms. This appar-
ent enrichment may reflect biological reality, and/or be a
consequence of the bias of protein complementation
assays (in particular, Y2H) which favor soluble proteins.
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Subcellular location of proteins and PPIsFigure 2
Subcellular location of proteins and PPIs. (a) Numbers of proteins with at least one Gene Ontology (GO) term for cellu-
lar component (CC). For each species, the six bars from left to right represent the numbers of proteins (1) in our in-house 
dataset (purple), (2) with at least one GO CC (orange), (3) with a GO CC term after filtration based on evidence code (4) with 
a GO term after collapse of terms (green), (5) with only one GO term (blue), and (6) with multiple GO terms (grey). Bars (5) 
and (6) are numbers after filtration based on evidence and collapse of GO terms. (b) Proportional distribution of protein num-
bers according to cellular compartment. Proteins are counted once in each annotated location; those with multiple locations 
have been counted a corresponding number of times. The bar on the far left represents overall proportion of compartment. 
The other three bars represent soluble (left), soluble secreted (middle), and membrane (right) proteins. GO CC terms were 
recorded after quality filtration and collapse. (c) For each species, numbers of co-PPIs in the three most-abundant CC loca-
tions. Both interacting proteins are required to have least one GO CC term. For a-c: CMV (cytoplasmic membrane-bound ves-
icle), Cyt (cytoplasm), End (endosome), ER (endoplasmic reticulum), ExM (extra cellular matrix), ExR (extra cellular region), 
Gol (golgi apparatus), LP (lipid particle), Lys (lysosome), Mel (melanosome), Mit (mitochondrion), Nuc (nucleus), Per (peroxi-
some), PM (plasma membrane), SV (synaptic vesicle).
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As described in Section 2.3, Y2H is a major source of PPIs
in these datasets.

As expected, over half of the proteins annotated as located
in the plasma membrane were predicted to be alpha-heli-
cal and integral to the membrane. Proteins annotated as
located in the extracellular region were largely predicted
to be either secreted or membrane proteins. In some cases,
an integral membrane protein may be annotated as extra-
cellular because a significant part of it has been detected
there experimentally. Proteins in the endoplasmic reticu-
lum (ER) were predicted as secreted or membrane pro-
teins (Fig. 2b), likely reflecting the role of this organelle in
the co-translational translocation of proteins in the secre-
tory pathway: classically secreted proteins and alpha-heli-
cal membrane proteins are synthesized in the ER [38].

4. Enrichment of co-located PPIs in cellular compartments
We were interested in locations enriched for pairs of inter-
acting proteins where each protein within a pair is anno-
tated with that location (co-located PPIs, subsequently
referred to as co-PPIs). For PPIs with proteins co-located
in two or more compartments, we scored a co-PPI for each
shared compartment. Most (48–58% across species) co-
PPIs were located in the nucleus (Fig. 2c). The second
most common place where interacting pairs of proteins
were found to be located was the cytoplasm in all four
species. The third most common location observed was
the plasma membrane in human, mouse and fly, and the
mitochondrion in yeast. One reason why interacting pro-
teins are abundant in the nucleus is that large numbers of
proteins so far have been examined in this organelle [39].

5. Co-location of PPIs in reference and random sets
We examined the degree to which interacting proteins are
likely to share the same compartment, and compared this
incidence of co-location to that computed for the same
PPI set with randomized GO CC annotations. We first fil-
tered GO CC terms based on evidence codes, then col-
lapsed to higher-level GO CC terms representing fifteen
subcellular locations (see Methods, Section 2.1).

Our combined dataset contains 1860 proteins and 3298
PPIs in human, 780 proteins and 740 PPIs in mouse, 461
proteins and 540 PPIs in fly, and 3837 proteins and
16110 PPIs in yeast. This reference dataset for each species
is composed of PPIs that are non-redundant, het-
erodimeric interactions in which both interacting partners
have at least one annotated GO CC term. The proportion
of co-PPIs was calculated in the reference set in each spe-
cies. Across the four species, in 57–69% of PPIs both inter-
acting proteins share at least one GO CC term in common
(Table 1).

To test whether these observed frequencies of co-PPIs
could occur by chance (given the data), we randomly

shuffled GO CC terms for proteins in the reference set
while keeping interacting pairs intact, and calculated co-
PPI frequencies in these random sets. The latter propor-
tions (32%, 36%, 41% and 38% for human, mouse, fly
and yeast respectively: Table 1) are substantially smaller
than in the original data. This strongly suggests that the
observed frequencies of co-location would not arise by
chance.

6. Co-location of interacting proteins high-quality datasets
To determine the likely efficacy of using PPI networks to
improve the inference of SCL (e.g. by reducing FP rate), we
investigated strategies for extracting subsets of the data
that have higher proportions of co-PPIs. To this end we
established a number of high-quality PPI datasets, and
compared co-PPI frequencies in these sets to those
observed in the reference and random sets described
immediately above (Section 5). This allowed us to test the
proposition that many PPIs in which the protein interac-
tors are annotated as occurring in different SCLs are in fact
false positive interactions.

6.1 Evidence used to extract supported subsets of PPI data
The occurrence of false positives in PPI data has been
widely reported [10-13], and FP interactions are doubt-
lessly present in our reference datasets. To generate a PPI
dataset of the highest possible quality, we assessed six
lines of additional evidence that might add confidence
that PPIs are indeed true positives. We examined how
interacting pairs of proteins are supported by the follow-
ing six lines of evidence:

i. similarity of GO Biological Process (BP) terms, as repre-
sented by the BP score [40];

ii. presence of domains known to participate in domain-
domain interactions (DDIs) [41];

iii. knowledge of equivalent interactions between
orthologs (interologs) in alternative species [42,43];

iv. accession into multiple databases;

v. support by more than one literature reference; and

vi. discovery using multiple experimental detection meth-
ods.

The final three types of supporting evidence (iv-vi) are dif-
ferent approaches to estimating whether multiple inde-
pendent observations underlie a given PPI, but are not
necessarily independent of each other. Entries in multiple
databases might reference the same paper; interactions
supported by multiple citations might represent a single
original observation referred to in an additional context,
or replicate a result using the same experimental method
Page 7 of 20
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and therefore potentially suffer the same likelihood of FP
prediction as the original discovery; and multiple experi-
mental methods might be used within a single laboratory
or paper but nonetheless be based on the same construct
re-used in different methodological contexts. Keeping
these caveats in mind, we examined the usefulness of
these evidence types as proxies for multiple independent
observations.

(i) Interactions supported by BP score
A biological process can be considered to be a series of
functions or events. Many of these events involve PPIs,
and it can be imagined that two interacting proteins are
likely to participate in the same biological process (BP).
Ewing and colleagues [3] found that shared GO BP anno-
tations are significantly enriched in sets of interacting pro-
teins. To assess the similarity of GO BP terms between
interacting partners in our data, we used FSST, a local ver-
sion of the web-based GOTaxExplorer http://gotax.bio
inf.mpi-inf.mpg.de/avail.php[40] to calculate the seman-
tic similarity of BP terms for pairs of interacting proteins.
FSST compares the occurrence of GO terms against expec-
tation based on their frequency in the database [40]. Low-
est common ancestor (LCA) terms are selected for all
combinations of GO terms assigned to interacting pro-
teins, and a score is computed based on a combination of
the Resnik [44] and Lin [45] measures. We consider PPIs

with a BP score over 0.70 to be supported by evidence of
shared biological process.

(ii) Interactions supported by DDI
A protein interaction requires physical contact and/or
chemical reaction between subsets of amino acid residues
in two or more protein molecules. These contacts or reac-
tions are thought to be largely mediated by structural
domains: domain-domain interactions (DDIs) underpin
PPIs. We used iPfam, a subset of the Pfam database of pro-
tein domains and families, as our source of interactions
between Pfam domains that have a representative struc-
ture deposited in Protein Data Bank (PDB) [46]. We
obtained Pfam domain predictions from UniProt for our
protein sequences, then consulted iPfam to identify sets of
potentially interacting domains in the domain architec-
tures of the interaction partners. If at least one known DDI
pair was present, that PPI was considered to be supported
by DDI evidence.

(iii) Interactions supported by interologs
It has been proposed that pairs of interacting proteins are
often conserved across species [42]. For a given interacting
pair in one species (e.g. human), if orthologs are present
in another species (e.g. mouse) and form an interaction
pair there, then that second interaction pair (in this exam-
ple, the pair in mouse) is referred to as the interolog of the
interaction pair in human [47]. Lehner and Fraser [48]

Table 1: Co-located PPIs in reference and evidence-supported subsets

PPI sets Human Mouse Fly Yeast

Total 
PPI (#)

Co-PPI 
(#)

Co-PPI 
(%)

Total 
PPI (#)

Co-PPI 
(#)

Co-PPI 
(%)

Total 
PPI (#)

Co-PPI 
(#)

Co-PPI 
(%)

Total 
PPI (#)

Co-PPI 
(#)

Co-PPI 
(%)

Reference 
sets
Known 
locations

3298 2115 64% 740 512 69% 540 310 57% 16110 9693 60%

Randomized 
locations

3298 1045 32% 740 268 36% 540 220 41% 16110 6118 38%

Subsets
BPscore 366 (11%) 308 84% 79 (11%) 68 86% 65 (12%) 63 97% 3387 

(21%)
3177 94%

DDI 512 (16%) 368 72% 158 
(21%)

130 82% 49 (9%) 46 94% 806 (5%) 671 83%

Interologs 134 (4%) 114 85% 73 (10%) 56 77% 22 (4%) 20 91% 256 (2%) 234 91%
DB 581 (18%) 426 73% 105 

(14%)
82 78% 264 (49%) 123 47% 9579 

(59%)
5943 62%

Method 378 (15%) 280 74% 110 
(16%)

75 68% 27 (5%) 24 89% 2879 
(20%)

2329 81%

PMID 281 (9%) 213 76% 56 (8%) 46 82% 23 (4%) 21 91% 1706 
(11%)

1462 86%

Union of 
subsets
Biological 
evidence 
type (BIO)

838 (25%) 642 77% 253 
(34%)

207 82% 101 (19%) 94 93% 3825 
(24%)

3508 92%

Recorded 
evidence 
type (EVI)

793 (23%) 583 74% 216 
(30%)

161 75% 295 (54%) 149 51% 9733 
(60%)

6087 63%

* The proportion of the reference set covered by total PPIs in each subset is indicated in parentheses.
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constructed a human protein interaction map based on
conserved interactions among worm, fly and yeast. We
obtained ortholog information from the Inparanoid data-
base [49] and identified interologs among human,
mouse, fly and yeast. An interaction was considered to be
supported by interolog evidence if an interolog was identified
in at least one other of these species.

(iv) Interactions supported by presence in multiple databases
Each PPI database has its own literature retrieval system,
its own criteria for identifying and accepting PPIs, and dif-
ferent human experts who extract and curate PPI informa-
tion from the literature. It is thus reasonable to suppose
that PPIs accepted into multiple databases are those sup-
ported by broader or less-equivocal evidence. We consider
that PPIs accessioned into more than one PPI database to
be supported by presence in multiple databases.

(v) Interactions supported by literature
Several assessment systems for true positive interactions
employ literature as supporting evidence. Rual et al. [4]
extracted a core interaction set of PPIs mentioned in more
than one item of literature (e.g. journal article). PubMed
assigns each item a unique PubMed identifier (PMID). We
asked whether, over all databases, a PPI is associated with
only one, or more than one, PMID and in the latter case
consider an interaction to be supported by literature. No
special consideration was given to possible overlap of
authors or institutions among multiple literature sources.

(vi) Interactions supported by experimental detection methods
PPIs observed under different experimental methods
show low FP frequencies. Several interaction networks
have been described based on the assumption that PPIs
supported by different methods may be assigned as true
positives [12,13,50]. For example, von Mering and col-
leagues [13] found that interactions supported by more
than one method are more likely to be true positives than
those supported by a single method, while Sprinzak et al.
[12] report that the more detection methods used to iden-
tify PPIs, the higher the frequency of true positive interac-
tions. We collapsed the PSI-MI descriptions of method to
the high-level categories presented earlier, and consider
PPIs annotated as identified by more than one high-level
method to be supported by experimental detection methods.

6.2 Coverage of reference PPIs by subsets supported by 
additional lines of evidence
Using each of these lines of evidence in turn, we created six
subsets from each of the four species-specific reference sets.
Each of these 24 subsets was constituted from only those
PPIs supported by one of the lines of evidence described
above. We then observed the proportion of co-PPIs
(number of co-PPIs/number of PPIs) in each subset. The
number of proteins, and observed and expected propor-
tions of co-PPIs, in each subset are presented in Table 1.

For 22 of the subsets, the proportion of co-PPIs vis-à-vis
the parent reference set was increased; the exceptions were
multiple database evidence in fly, and for multiple exper-
imental methods in mouse. A higher proportion of co-
PPIs in a subset than in the parent reference set implies
that use of that evidence type can improve the inference of
SCL. Note that this proportion places an upper bound on
the degree of improvement that can be expected in simi-
larly supported PPI sets where the location of one protein
is unknown. An obvious initial question is which types of
evidence are most efficacious in improving the inference
of SCL.

(i) Interactions supported by BP score
We found that PPIs in which the interacting proteins are
annotated participants in similar biological processes
have higher rates of co-PPI than in the corresponding ref-
erence sets (Table 1). These subsets exhibit the highest
proportion of co-PPIs of all subsets, except in the case of
human PPI data, where the interolog-supported subset
has a slightly higher proportion. The proportion of co-
PPIs was increased by up to 40 percentage points in com-
parison with the reference sets, with the greatest increases
in fly and yeast. We varied the threshold for BP score, and
observed that the more-stringent the threshold, the
greater the proportion of co-PPIs, although at the expense
of reduced coverage of the parent set (see Additional file
2).

(ii) Interactions supported by DDI
Requiring each member of an interacting pair of proteins
to contain a known interaction domain increased the pro-
portion of co-PPIs by 8 to 37 percentage points across spe-
cies, compared with the corresponding reference sets.

(iii) Interactions supported by interologs
Requiring each PPI to have an interolog in at least one of
the other three species in this analysis increased the pro-
portion of co-PPIs by 8 to 34 percentage points compared
to the corresponding reference set. We did not require
supporting interologs to be present in our reference set.
Fewer than 10% of reference PPIs were supported by inter-
ologs, rendering this line of evidence the least generally
applicable.

Where annotation is available, subcellular location of
interologs is highly conserved across species. We exam-
ined co-PPIs in human for which at least one interolog has
been identified in one of the other three species in this
study, and SCL of both members of that interolog has
been annotated: 85 such interolog pairs were found. Of
these interologs, 79 (93%) are co-PPIs in the same SCL as
their human counterpart, 4 share at least one SCL annota-
tion term with their human counterpart but are not co-
PPIs in the second species (3 mouse, 1 fly), and 1 is a co-
PPI in mouse but in a different SCL than in human (see
Page 9 of 20
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Additional file 3). Thus across phyletically diverse eukary-
otes, co-PPIs (and, probably, PPIs more generally) tend to
be found in the same SCL as their interologs. These results
generalize the observation that for yeast nucleolar pro-
teins with at least one homolog in human, about 90% of
the human homologs are also nucleolar [51].

(iv) Interactions supported by presence in multiple databases
Most PPI subsets accepted for inclusion in multiple data-
bases show between 62–78% of co-PPIs. The exception is
for fly, where the predominance of a few large-scale Y2H
studies accepted into multiple PPI databases resulted in a
lower proportion of co-PPIs when compared with the fly
reference set. In yeast, another organism with many high-
throughput studies, only a very small increase in co-PPIs
(62% from 60%) was observed. This indicates that the
presence of a PPI interaction in multiple databases is a
reliable indicator of quality only where the curated PPI
data are not dominated by large-scale studies. In time, as
more high-throughput studies are released for more
organisms, this line of supporting evidence may become
increasingly less appropriate as a means of establishing
data quality.

We also considered PPIs which were generated at least one
time in a small-scale manner. We define small-scale stud-
ies to be those for which the corresponding literature item
(e.g. article) reports fewer than 10 PPIs (counts based on
our in-house database). For this subset the proportion of
co-PPIs is dramatically increased in fly and yeast,
although the coverage of PPIs is greatly reduced. For
human and mouse, however, restricting the analysis to
small-scale studies did not significantly change the co-PPI
proportion (see Additional file 4).

(v) Interactions supported by literature
When PPIs are required to have support from two or more
unique PMIDs, the proportion of co-PPIs increases by 12–
34 percentage points compared with values for the corre-
sponding reference set. These increases compare favorably
to those in the subsets supported by presence of interologs
(above) except for human, where the increase is only 60%
as great. Coverage, however was higher than observed for
interolog-supported subsets.

(vi) Interactions supported by detection methods
PPIs identified using at least two high-level experimental
detection methods showed a high proportion of co-PPIs
(68–89%) in comparison with the corresponding refer-
ence sets. Biochemical assay methods (MI:0401) remain
more widely applied than those based on protein comple-
mentation (MI:0090) such as yeast-two-hybrid (Y2H),
although Y2H has been used in many studies and large-
scale analyses (see Additional file 5).

7. Co-location of PPIs in unions of supported subsets
The above results demonstrate that use of additional lines
of evidence almost always yields higher-quality interac-
tion data as assessed by proportion of co-PPIs, and suggest
strongly that some or all of these approaches might be
mobilized in predicting the SCL of interacting proteins
whose location is not already known or annotated. With
few exceptions, however, requiring additional evidence
greatly decreases the coverage, assessed as a fraction of
known PPIs (Table 1). In an attempt to improve coverage
(while preserving quality), we investigated the relation-
ship between coverage and co-PPI proportion in unions
of subsets (Table 1). We tested the union of biological evi-
dence type (BIO: BPscore∪DDI∪interologs), and the
union of recorded evidence type (EVI: DB∪PMID∪meth-
ods). The subsets supported by biological evidence type
always showed a higher proportion of co-PPI than is seen
for the subsets supported by recorded evidence type (3–42
percentage points higher, Table 1), indicating that these
lines of evidence provide greater enrichment of co-located
PPIs in our data sets. We also tested combinations involv-
ing both biological and recorded evidence types (results
not shown).

For each of the four species, the union of biological evi-
dence type yielded co-PPI proportions intermediate
among those of the constituent approaches individually,
but with a 3 (yeast) to 23 (mouse) percentage point
improvement in coverage vis-à-vis the best single consist-
ent approach. The union of recorded evidence type
approaches likewise gave co-PPI proportions intermediate
among those of the corresponding constituent
approaches, and a 14 (human) to 50 (fly) percentage
point improvement in coverage. Quality or coverage (not
both simultaneously) could be further increased by opti-
mising the combination of biological and recorded evi-
dence type.

8. Formalization and evaluation of prediction method
To evaluate more formally the potential benefit of using
PPI data to predict SCL, we formalized several variants of
our approach, then evaluated these variants on the spe-
cies-specific reference sets, the six subsets described above,
and selected unions of subsets (Table 2). Recall that all
protein interactors are consistently annotated with a GO
CC term based on UniProt, and that redundant PPIs have
been removed. Our four variants, DISCRETE, MERGED,
COMMON and MAJORITY, differ in the GO CC termset
associated with each protein.

Consider dataset D consisting of five proteins (A-E) and
five PPIs, with an interaction denoted by the colon (:) and
"true" SCLs (in parentheses) based on UniProt:

A (nuc) : B (nuc)
Page 10 of 20
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A (nuc) : D (nuc+cyto)

B (nuc) : C (nuc)

B (nuc) : D (nuc+cyto)

D (nuc+cyto) : E (nuc)

Note that X : Y is equivalent to Y : X. First, we select at ran-
dom one protein from each PPI in D and temporarily
mask its annotated location. We denote these proteins
using the prime ('), and the resulting dataset as D':

A' (--) : B (nuc)

A' (--) : D (nuc+cyto)

B' (--) : C (nuc)

D' (--) : B (nuc)

E' (--) : D (nuc+cyto)

We then proceed as follows for the four variants (DIS-
CRETE, MERGED, COMMON and MAJORITY). In the
DISCRETE variant, we simply replace the masked GO CC
term with the known location of the interaction partner:

A' = nuc from B (nuc)

A' = nuc+cyto from D (nuc+cyto)

B' = nuc from C (nuc)

D' = nuc from B (nuc)

E' = nuc+cyto from D (nuc+cyto)

To evaluate the performance of the method, we then com-
pare these newly assigned term(s) with the true GO CC
term(s) from dataset D.

By contrast, in the MERGED variant (given dataset D and
the randomized dataset D' as above), for each masked
protein (not PPI) in turn, the GO CC term(s) are assigned
based on the union of SCLs annotated for all its interac-
tion partner(s) in dataset D':

A' : B and A' : D; from B (nuc) and D (nuc+cyto), A' =
nuc+nuc+cyto = nuc+cyto

B' : C; from C (nuc), B' = nuc

D' : B and D' : E; from B (nuc) and E (nuc), D'= nuc+nuc
= nuc

E' : D; from D (nuc+cyto), E' = nuc+cyto

As above, we then compare these newly assigned term(s)
with the true GO CC term(s) from dataset D.

In the COMMON variant, when a protein interacts with
more than one other protein only those SCLs common to
all its interaction partners are used to replace the masked
terms. There are two possible cases:

1- if a protein interacts only with one other protein, the
GO CC terms assigned to it come from the SCL annotated
for that partner, as for the DISCRETE variant above; or

2- if a protein interacts with multiple partners, we assign
the intersection of the partners' GO terms:

A' : B and A' : D; from B (nuc) and D (nuc+cyto), A' = nuc

The latter decision comes about because nuc is the only
term common to the SCL annotations of both B and D.

MAJORITY differs in using only those GO CC terms
present in annotations of at least half of the interacting
partners of a protein. Using this method, assignments for
B', D' and E' are identical to those in COMMON, but

A' : B and A' : D; from B (nuc) and D (nuc+cyto), A' =
nuc+cyto

Although this outcome happens to be the same as for
MERGED in this simple case, the reason is different (had
an additional interaction A' : C (nuc) been present, we
would infer A' = nuc under MAJORITY and A' = nuc+cyto
under MERGED).

Obviously, further variants of arbitrary complexity could
be developed, for example incorporating weighting of
terms and/or based on machine-learning approaches or
network analysis.

To evaluate these variants, we calculate accuracy from the
counts of true (T) and false (F) predictions:

Accuracy = T/(T+F)

To penalise variants for potential over-prediction, we cal-
culate both a permissive and a strict accuracy. For permis-
sive accuracy (PA), a true prediction is scored for a protein
if-and-only-if (iff) the true and predicted termsets have at
least one term in common. A false prediction is scored iff
no term from the prediction termset is found in the true
termset. For strict accuracy (SA), a true prediction is scored
iff the true and predicted termsets are identical; a false pre-
diction is scored in all other cases. Our permissive calcu-
lations of true and false predictions are equivalent to the
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scoring scheme used previously to evaluate overall SCL
prediction [2].

We evaluated the above four variants of our approach for
each of four species using the reference datasets and sub-
sets. Values for PA and SA are presented in Additional file
6. Over the datasets for human, mouse, fly and yeast the
highest PA was often observed with the variant MERGED,
while COMMON often demonstrated the highest SA.
Here we discuss in detail only the results for human
(Table 2); in the next section we evaluate our approach
using the human union set and compare the results to the
performance of four publicly available SCL prediction
methods.

With human PPIs, PA values ranged from 0.64–0.85 for
the DISCRETE variant of our approach, 0.72–0.86 for
MERGED, 0.65–0.85 for COMMON, and 0.68–0.86 for
MAJORITY (Table 2). For all variants, PA was higher in the
subsets than in the reference dataset. The corresponding
SA values fall between 0.35–0.58 for DISCRETE, 0.26–
0.55 for MERGED, 0.40–0.57 for COMMON, and 0.34–
0.56 for MAJORITY variants, and likewise are higher in
subsets than in the parent reference set (Table 2). The
COMMON variant usually performed as well as or better
than the other variants, although at the cost of about 10%
reduction in number of predictions, a consequence of the
requirement that all protein interactors be annotated with
at least one GO CC term in common.

Predicting the location of integral membrane proteins
poses a particular challenge for sequence-based computa-
tional approaches [2]. We applied the MemO pipeline
[36], which reports the consensus prediction among sev-

eral methods, to identify and annotate transmembrane
proteins in our various datasets, and used PPIs involving
a predicted transmembrane protein as input into our four
variant approaches. Overall, PA values for membrane pro-
teins were slightly lower than for the whole reference set
and subsets. PA values for transmembrane proteins
ranged from 0.50–0.76 for the DISCRETE variant, 0.61–
0.79 for MERGED, 0.53–0.77 for COMMON, 0.58–0.79
for MAJORITY (Table 2). For all variants, PA was higher in
subsets than in the reference set except for PMID and DB
subsets in the MERGED variant. As observed for PA, the
SA values for membrane proteins are substantially lower
as well (Table 2), indicating that, in general, predicting the
SCL is more difficult for membrane proteins than for sol-
uble proteins.

Returning to the issue of false predictions: it is important
to appreciate that in some cases a pair of proteins that
actually interact in vivo may correctly be annotated as
located in different subcellular locations. This will be the
case, for instance, for trans-membrane proteins that are
embedded, in part, within a cellular membrane (e.g. the
nuclear membrane) but possess one or more domains
that extend into the adjacent compartment (e.g. the cyto-
plasm) and interact with a protein there. Our reference
dataset contains 61 pairwise interactions between a Type I
membrane protein and a soluble protein (see Additional
file 7); many of the soluble proteins are annotated as
located in the compartment (e.g. the cytoplasm) physi-
cally adjacent to the membrane in question (e.g. the
nuclear membrane). These may (at least in principle) be
true interactions, but according to the rules above are not
identified as true positives. In the absence of a dependa-
ble, automated way to account for physical adjacency

Table 2: Evaluation of prediction method variants on human reference and supported subsets

PPI sets DISCRETE MERGED COMMON MAJORITY

PA SA PA
(M)

SA
(M)

PA SA PA
(M)

SA
(M)

PA SA PA
(M)

SA
(M)

PA SA PA
(M)

SA
(M)

Reference 0.64 0.35 0.50 0.27 0.72 0.26 0.62 0.23 0.65 0.40 0.53 0.32 0.68 0.34 0.58 0.27
BPscore 0.84 0.56 0.76 0.46 0.86 0.55 0.79 0.42 0.85 0.57 0.77 0.47 0.86 0.55 0.79 0.43
Interologs 0.85 0.58 0.70 0.46 0.84 0.54 0.69 0.42 0.83 0.57 0.67 0.45 0.84 0.56 0.69 0.45
DDI 0.72 0.46 0.65 0.43 0.75 0.43 0.70 0.42 0.72 0.48 0.66 0.49 0.74 0.45 0.69 0.44
PMID 0.76 0.46 0.60 0.28 0.76 0.42 0.60 0.27 0.74 0.45 0.56 0.30 0.76 0.43 0.59 0.28
Method 0.74 0.38 0.61 0.29 0.76 0.37 0.63 0.27 0.73 0.41 0.58 0.32 0.75 0.38 0.62 0.29
DB 0.73 0.37 0.53 0.25 0.74 0.35 0.61 0.26 0.71 0.40 0.57 0.30 0.73 0.37 0.59 0.28
ALL 0.74 0.42 0.61 0.35 0.78 0.38 0.69 0.33 0.74 0.45 0.64 0.40 0.76 0.41 0.67 0.36
BIO 0.77 0.49 0.67 0.43 0.79 0.45 0.71 0.38 0.77 0.50 0.67 0.45 0.78 0.47 0.70 0.41
EVI 0.74 0.37 0.55 0.25 0.75 0.34 0.62 0.25 0.71 0.41 0.57 0.30 0.74 0.37 0.61 0.27

ALL: Union of all subsets (BPscore ∪ Interologs ∪ DDI ∪ PMID ∪ Method ∪ DB)
BIO: Union of biological evidence type subsets (BPscore ∪ Interologs ∪ DDI)
EVI: Union of recorded evidence type subsets (PMID ∪ Method ∪ DB)
M: Interactions involving an integral membrane protein
The permissive accuracy (PA) and strict accuracy (SA) were calculated for all variants (DISCRETE, MERGED, COMMON and MAJORITY) for all 
interactions, and for interactions involving an integral membrane protein (M).
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within the cell, the permissive and strict accuracy values
reported for our approach may be too conservative.

The efficacy of our PPI-based approach depends on the
quality of SCL annotation. The above results make it clear
that PPI-based approaches have substantial potential as a
predictor of SCL. Nonetheless significant issues remain,
notably the tradeoff between quality and coverage.

9. Comparative evaluation of SCL prediction
We compared the performance of our SCL prediction
methods (COMMON, MAJORITY and MERGED) to four
publicly available SCL prediction methods, Proteome
Analyst [52], WolfPSORT [53], CELLO [54] and pTARGET
[55]. For this comparative evaluation we used our human
union dataset ALL (Table 2), in which PPIs have at least
one line of supporting evidence. PPIs in this set were
divided into three groups according to the membrane
organization of the interacting proteins: membrane-mem-
brane, soluble-soluble, and membrane-soluble (mixed)
interactions (see Methods, Section 4.1). Evaluation and
comparison were conducted for each group. SCLs of all
proteins in each group were predicted using our three
methods (COMMON, MAJORITY and MERGED) and
compared with the predictions of the publicly available
prediction methods.

When applied to the PPI data involving only membrane
proteins, all three variants were more accurate than any
other SCL prediction methods (Table 3). Overall, our
methods were 19–20 percentage points better than the
best public method. On PPI data involving only soluble
proteins, our variants performed as well as or better than
the others (Table 3). The accuracy of our methods was 19–
23 percentage points higher, except in comparison with
Proteome Analyst.

In addition to the above sets, we constructed a dataset of
interactions between transmembrane and soluble pro-
teins. With these data, the accuracy of our methods was
lower than the four public SCL prediction methods (Table
3) and lower than for the membrane-only and soluble-
only datasets above. We suggest that this reduced per-
formance is due to interactions among proteins from
adjacent compartments; for example, one PPI in this
group that generates incorrect predictions is an interaction
between P31785 (IL2RG: cytokine receptor common
gamma chain), localised to the plasma membrane, and its
extracellular interaction partner, P13232 (IL7: inter-
leukin-7), with an annotated location in the extracellular
region [56]. Interactions such as these between proteins
from adjacent compartments will confound our predic-
tion methods, as seen in the results for this group. As men-
tioned previously (Section 8 and Additional file 7), this
might be resolved through the combination of evidence
such as the topology of interaction domains in each pro-

tein. As expected, we also observed better performance on
the ALL subset than the reference set, and better perform-
ance on the BIO subset than on the EVI subset (see Table
3 and Additional file 8.1-3), reflecting the different pro-
portions of co-PPIs previously observed in these subsets
(Table 1).

When all PPIs are considered, our prediction methods
performed better than three of the four public methods;
Proteome Analyst showed somewhat higher PA and SA
values (Table 3). Proteome Analyst retrieves SCL informa-
tion by looking up fields of the Swiss-Prot knowledge base
and returning a prediction [52]. Because our test data are
derived from UniProt and therefore include Swiss-Prot
annotations, it is expected that Proteome Analyst would
perform well.

The existing methods were better at predicting the SCL of
soluble proteins than of membrane proteins, but our
methods showed markedly better performance when
applied to interactions between membrane proteins. The
methods that we evaluated in this study are based on the
detection of features that determine SCL, either in protein
sequences (WolfPSort, PTarget and Cello) or in protein
knowledgebase records (ProteomeAnalyst). WolfPSORT,
CELLO and pTARGET have largely been trained on solu-
ble proteins, and this is reflected in their lower PA and SA
values with membrane proteins. Proteome Analyst col-
lects features from the SWISS-PROT KEYWORDS and
SUBCELLULAR LOCATION fields of entries for proteins
with the strongest BLAST matches to the query sequences
[57]. If no protein is sufficiently similar, or if similar pro-
teins have no features in those fields, Proteome Analyst
does not return a prediction. We found few membrane
proteins annotated with specific words in the SUBCELLU-
LAR LOCATION field, and this likely explains the low cov-
erage of membrane protein predictions by Proteome
Analyst.

10. Validation on experimental data
As described above (Section 3.1), we applied our four var-
iant approaches to infer GO CC term(s) for proteins of
unknown SCL that interact with proteins of known SCL
(potential prediction set: Additional file 1). Annotation of
SCL is of course ongoing in the research community, and
72 mouse proteins (106 PPIs) without GO CC annotation
at the time we carried out this inference subsequently
received independent annotation based on experimen-
tally determined SCL and were accessioned into the LOC-
SCL section of the LOCATE database [58]. We used these
locations to validate predictions arising from our DIS-
CRETE, MERGED, COMMON and MAJORITY variant
approaches. After reassignment of GO CC terms as
described above (Section 8), 106 SCL predictions were
generated using DISCRETE, 72 using MERGED, 64 using
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COMMON and 72 using MAJORITY. Their PA and SA val-
ues are presented in Table 4.

We observed that both accuracy values were essentially
unchanged or slightly improved when compared with the
reference set. The consistency of results across unknown as
well as known data indicates that the detailed evaluation
presented in Additional file 6 is likely to represent the
actual performance of our variant methods on unknown
data more generally. A similar validation can be con-
structed using the subset of the mouse reference set for
which LOCATE annotations are available; results are pre-
sented in Additional file 9.

Conclusion
This work was designed to explore the potential use of
protein-protein interaction data in improving the predic-
tion of subcellular localisation for eukaryotic proteins. We
first evaluated the data contained in public PPI resources,
and evaluated lines of evidence that reduce the potential
for false positives in PPI data. We then developed four var-
iations of an algorithm for inferring the localisation of
proteins participating in PPIs, and evaluated these
approaches against human data of known SCL and new
experimental SCL data available for mouse proteins.
Finally, we compared the performance of our methods

with the performance of four publicly available SCL pre-
dictors, and demonstrated that our novel approach per-
forms as well as or better.

To generate a comprehensive set of PPI data, we evaluated
six publicly available PPI databases and constructed non-
redundant PPI dataset from the data contained therein.
We then collapsed and filtered GO terms for each protein
to ensure consistent information and more-reliable evi-
dence for location. We found that PPIs in human, mouse,
fly and yeast tend to be recorded in only one database;
thus combining data from multiple sources does in fact
yield a more comprehensive coverage of known PPIs. We
found that the three most-frequently annotated subcellu-
lar locations for proteins in known interactions are the
nucleus, cytoplasm and plasma membrane, except in
yeast where mitochondrion replaces plasma membrane in
third position. This analysis also demonstrated the need
for improved SCL annotation, as many protein annota-
tions carry uncertain evidence codes. After filtration by
evidence code and collapse of specific terms upward into
parent terms in the GO hierarchy as described in Results
and Discussion section 3.1, GO CC terms are available for
73% of the yeast proteins in our reference PPI datasets but
for only 43% of mouse, 32% of human and 9% of fly pro-
teins.

Table 3: Evaluation of SCL prediction methods using human union set (ALL)

PPI sets COMMON MAJORITY MERGED Proteome Analyst WolfP
SORT

CELLO pTARGET

Membrane-membrane PPI only (162)
Total # of predicted proteins 155 162 162 35 162 162 79
# of correctly predicted proteins in PA 133 140 141 21 88 99 53
# of correctly predicted proteins in SA 92 91 84 9 61 56 38
PA 0.86 0.86 0.87 0.60 0.54 0.61 0.67
SA 0.59 0.56 0.52 0.26 0.38 0.35 0.48

Soluble-soluble PPI only (807)
Total # of predicted proteins 686 803 807 411 807 807 499
# of correctly predicted proteins in PA 556 669 689 343 508 605 308
# of correctly predicted proteins in SA 350 372 314 211 320 367 193
PA 0.81 0.83 0.85 0.83 0.63 0.75 0.62
SA 0.51 0.46 0.39 0.51 0.40 0.45 0.39

Membrane-soluble PPI only (206)
Total # of predicted proteins 193 205 206 64 206 206 95
# of correctly predicted proteins in PA 75 87 92 47 121 116 56
# of correctly predicted proteins in SA 39 37 35 32 92 75 39
PA 0.39 0.42 0.45 0.73 0.59 0.56 0.59
SA 0.20 0.18 0.17 0.50 0.45 0.36 0.41

Total (1175)
Total # of predicted proteins 1034 1170 1175 510 1175 1175 673
# of correctly predicted proteins in PA 764 896 922 411 717 820 417
# of correctly predicted proteins in SA 481 500 433 252 473 498 270
PA 0.74 0.77 0.78 0.81 0.61 0.70 0.62
SA 0.47 0.43 0.37 0.49 0.40 0.42 0.40

* Numbers in the parentheses indicate total number of proteins for prediction for each category
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Concern is often expressed about the proportion of false
positives in PPI data, particularly data generated using
high-throughput techniques. We assumed, as a first
approximation, that PPIs for which the two interacting
proteins are located in different cellular compartments are
false positive interactions (we return to reconsider this
assumption later). Under this assumption, we showed
that the co-PPI frequency in our reference set for each of
the four species is 16–33 percentage points greater than
random, i.e. substantial true-positive signal exists in our
base data. We then demonstrated that the proportion of
co-PPIs could be increased by applying, one at a time, six
lines of additional supporting evidence describing the
PPIs: co-PPI proportions were increased by 8–40 percent-
age points in 21 of the 24 subsets, and by up to 36 per-
centage points with the few combinations of evidence
(union sets) that we tested. The greatest proportion of co-
PPIs was always found in union sets supported by biolog-
ical evidence type (Table 1). These improvements were
counterbalanced to some extent, however, by decreased
coverage of PPIs. We did not systematically explore fur-
ther combinations of supporting evidence types. Scope
appears to exist for the exploration of further lines of sup-
porting evidence individually and, perhaps, in combina-
tion. Adaptive approaches based on machine learning
would allow the combination of evidence types to be opti-
mised for each dataset, although potentially at the
expense of understanding specific features of the evidence
in each case.

We developed four variants of an algorithmic approach
that uses PPI data to infer protein location, and examined,
singly and in simple combinations, the contribution of
molecular (biological process, domain-domain interac-
tions, interologs) and description-centric features (acces-
sion into multiple databases, citation of multiple
literature items, support of multiple experimental detec-
tion methods) on the quality of prediction as judged by
measures of permissive and strict accuracy. We evaluated
our approach on human data (Table 2) and on a set of
experimental SCL data recently generated for mouse pro-
teins (Table 4), and demonstrated that MERGED has the
highest PA, and COMMON the highest SA.

We compared the SCL prediction capacity of the COM-
MON, MAJORITY and MERGED methods to that of Pro-
teome Analyst, WolfPSORT, CELLO and pTARGET; PA
and SA values were examined for membrane-only, solu-
ble-only, and mixed PPI subsets. Our methods always per-
formed substantially better on the membrane-only
subset, and usually better on the soluble-only subset. This
demonstrates that considering membrane organization
yields substantially better results in predicting SCL based
on PPI data.

We also applied our approach to the mouse potential pre-
diction set, inferring SCL for 783 proteins of unknown
SCL. It transpired that SCL had recently been experimen-
tally determined (independently of our work) and acces-
sioned into a later version of the LOCATE database [58]
for 72 proteins participating in 106 PPIs, allowing us to
validate a subset of our predictions against these experi-
mental data. We observed PA and SA values equal to or
slightly higher than with the much larger reference dataset
(see Additional file 9). Our MERGED method again
yielded the best PA, while COMMON and MAJORITY tied
for the best SA. We consider these results a validation of
our approach, both in broad terms and in detail, and a
strong indication that the performance against our refer-
ence sets is likely to be extensible to further eukaryotic (or
at least animal) proteins more generally.

Additional directions remain to be explored. Multiple
(non-pairwise) interactions and larger PPI networks may
offer the possibility of inferring SCL based on secondary
and tertiary as well as primary relationships. Challenges
include those related to the reliability of PPI data, the
quality of ontological annotation, tradeoffs between
inference quality and coverage, adjacency of compart-
ments and multi-molecular complexes within the cell,
contingency of interaction, post-translational modifica-
tion, and temporality of co-location. Our demonstration
in this work that reliable PPI data can complement con-
ventional experimental and computational approaches in
identifying the SCL of proteins, provides a foundation on
which these additional directions can be developed.

Table 4: Evaluation of prediction method variants using LOCSCL

PPI sets DISCRETE MERGED COMMON MAJORITY

PA SA PA SA PA SA PA SA

Reference 0.70 0.34 0.76 0.32 0.73 0.36 0.75 0.36
ALL 0.71 0.43 0.82 0.45 0.79 0.52 0.79 0.48
BIO 0.76 0.48 0.78 0.43 0.77 0.50 0.78 0.48
EVI 0.72 0.38 0.83 0.39 0.81 0.43 0.78 0.43

The four methods were applied to PPIs where one protein has a known SCL and the other SCL is unknown, generating new SCL predictions for 
the previously unlocated proteins. Permissive (PA) and strict accuracy (SA) were calculated based on the newly available SCL data for these 
proteins.
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Methods
1. Protein-protein interactions
1.1 Protein-protein interaction datasets
We obtained protein-protein interaction (PPI) data for
human, mouse, fly and yeast from six publicly available
databases: Biomolecular Interaction Network Database
(BIND: 25/06/2006) [59], Database of Interacting Pro-
teins (DIP: 02/04/2006) [60], IntAct (07/07/2006) [61],
Molecular INTeraction database (MINT: 05/2005) [62],
MIPS Mammalian Protein-Protein Interaction database
(MPPI) [63], and Human Protein Reference Database
(HPRD:13/09/2005) [64].

1.2 Standardization of identifiers
PPIs from different data sources were standardized by
matching identifiers to UniProt accession numbers (ACs).
GI numbers were mapped to UniProt ACs through PIR
[15]. The previous version of UniProt ACs was also
mapped to the most-recent version of UniProtKB release
(v 12.1). In this standardization, the following cases were
considered unmatched: (i) if identifiers match two differ-
ent proteins within a species, and (ii) if identifiers con-
verge into one accession number. In both cases, the
corresponding proteins were removed.

Four of these databases (BIND, IntAct, DIP, MINT) con-
tain protein from all four species. MPPI deals with only
mammalian protein interactions, and HPRD only human
protein interactions. In this study, we attempt to consider
only pairwise PPIs; interactions within complexes were
excluded, except (in the case of BIND) where further
experimental evidence for direct pairwise physical interac-
tion is cited. Standardization yielded 21121 non-redun-
dant (NR) human PPIs (19686 heterodimers), 3032 NR
mouse PPIs (2753 heterodimers), 31126 NR fly PPIs
(30878 heterodimers) and 23586 NR yeast PPIs (22635
heterodimers). These constitute our in-house datasets.

1.3 Reference sets
To obtain more-reliable annotation of the subcellular
location (SCL) of these proteins, their associated GO
terms (cellular component: CC) were filtered according to
evidence codes provided by the Gene Ontology Consor-
tium [65]. SCL annotation associated with the following
codes was excluded: IC (Inferred by Curator), IEA
(Inferred from Electronic Annotation), ISS (Inferred from
Sequence or Structural Similarity), NAS (Non-traceable
Author Statement), ND (No biological Data available),
and NR (Not Recorded). For consistency, GO terms were
collapsed from specific to general terms identifying the
following 15 compartments: cytoplasm (GO:005737),
cytoplasmic membrane-bound vesicle (GO:0016023),
endoplasmic reticulum (GO:0005783), endosome
(GO:0005768), extracellular matrix (GO:0031012),
extracellular region (GO:0005576), Golgi apparatus
(GO:0005794), lipid particle (GO:0005811), lysosome

(GO:0005764), melanosome (GO:0042470), mitochon-
drion (GO:0005739), nucleus (GO:0005634), peroxi-
some (GO:0042470), plasma membrane (GO:0005886),
and synaptic vesicle (GO:0008021).

After these consecutive processes, we obtained evidence-
filtered, CC term-collapsed proteins: 2584 in human,
1062 in mouse, 784 in fly, and 3951 in yeast. These pro-
teins take part in 3298 PPIs in human, 740 PPIs in mouse,
540 PPIs in fly and 16110 PPIs in yeast, in which both
interacting proteins are distinct (i.e. the pairwise interac-
tion is heterodimeric). We refer to these as our protein
and PPI reference sets for each species.

1.4 Subsets generated using additional lines of evidence
For each PPI in each of the four species-specific reference
sets described immediately above, we looked for annota-
tion in regard to six lines of supporting evidence, and on
this basis constituted a total of 24 (4 species × 6 data
types) subsets, each containing only those PPIs supported
by one of these lines of evidence. The six lines of support-
ing evidence are:

i. interaction supported by similarity of GO Biological
Process (BP) terms, as represented by the GO BP score
[40];

ii. interaction supported by the presence of one or more
domains known to participate in domain-domain interac-
tions (DDIs) [41];

iii. interaction supported by presence of an equivalent
interaction between a pair of orthologs (interolog) in
another of these four species [42,43];

iv. interaction supported by presence in multiple data-
bases;

v. interaction supported by literature; and

vi. interaction supported by experimental detection meth-
ods.

These lines of evidence are described more precisely in
Results and Discussion, Section 6.1.

2. Subcellular location and Biological process information
2.1 Subcellular location
The Gene Ontology (GO) Cellular Component (CC)
annotation terms and evidence codes for each protein
were obtained from UniProt Knowledgebase (version
12.1) to provide its SCL. To improve reliability, GO terms
with less-reliable evidence were removed from each pro-
tein, after which GO terms remaining for each protein
were collapsed into one of 15 defined locations (see
Methods, Section 1.3). A few terms (e.g. nucleocytoplas-
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mic shuttling complex) match to two different compart-
ments and were collapsed into both high-level locations
(for this example: nucleus, and cytoplasm).

2.2 Biological process
To allow us to compare the biological process annotated
for each of a pair of interacting proteins, we obtained the
Biological Process ontology (BP) from UniProt (version
12.1) and recorded the evidence code for each BP term. BP
terms were excluded according to the criteria applied to
the CC terms (Methods, Section 1.3). Both proteins in a
PPI were required to have at least one BP term each. Using
these criteria, 6462 human PPIs (2950 proteins), 1136
mouse PPIs (1086 proteins), 1819 fly PPIs (1104 pro-
teins), and 17087 yeast PPIs (3801 proteins) were availa-
ble for analysis.

For each PPI, we used FSST to compute the average
BPscore describing the similarity of GO BP terms and
accepted only scores that equal or exceed the threshold
0.70 (see Additional file 2). Schlicker et al. [40] found that
GO terms with BPscore 0.90 or greater were highly similar
in function.

3. Interologs
Orthologs were obtained from the Inparanoid database
[49]. If for an interacting pair in one species (e.g. human)
each of the interacting proteins has an ortholog in another
species (e.g. mouse) and that pair of orthologs interacts,
then that second interacting pair (in this example, the pair
in mouse) is referred to as the interolog of the interacting
pair in human [47]. In the case of one-to-many co-orthol-
ogy relationships, we considered all co-orthologs to con-
tribute to interologs. (For example: the PPI A:B has been
found in human. Protein A has ortholog A' in mouse, but
B has co-orthologs B1' and B2'. We consider both A' :B1'
and A' :B2' to be interologs of A:B. From the mouse per-
spective, A:B is the interolog of A' :B1' and equally the
interolog of A' :B2').

4. Comparative evaluation of SCL prediction
4.1 Input for SCL prediction
For comparative evaluation of SCL prediction, union set
of all human PPIs where a PPI has at least one line of sup-
porting evidence (ALL) was used. PPIs from ALL were cat-
egorized into three groups according to the membrane
organization (MO) of interacting proteins in each PPI,
resulting in three groups: 121 membrane-only PPI,
involving 162 proteins, 938 soluble-only PPI, involving
807 proteins and 305 mixed PPI involving 206 proteins.

4.2 Prediction of SCL
Prediction of SCL by three variants (COMMON, MAJOR-
ITY and MERGED) was carried out as illustrated in Section
8 of Results and Discussion. SCL of proteins in the mem-

brane-only, soluble-only, and mixed PPI groups was
assigned from interacting partners.

Proteins in each group were utilized as an input sequence
to four publicly available and scalable SCL prediction
methods: Proteome Analyst (PA-SUB 2.5) [52], WolfP-
SORT (last updated on 15/08/2007) [53], CELLO (v 2.5)
[54] and pTARGET (last updated on 05/09/2006) [55,66].
We evaluated predictions against the annotated SCL in the
union set. All public methods were run using the standard
defaults for eukaryotic protein prediction.

In Proteome Analyst, proteins which were included in the
training set of that method were not included. Because
Proteome Analyst does not stipulate a threshold for posi-
tive prediction, we considered positive predictions to be
those for which the associated probability was ≥ 90%.
With WolfPSORT, we selected the prediction with the
highest score. For CELLO, predictions with the highest
probability were collected. If a method generated equal
best predictions (i.e. two predictions with equal highest
score or probability), both predictions were accepted.

Permissive and strict accuracy were examined for all pre-
dicted SCLs from three variants and four SCL prediction
methods against SCLs of corresponding proteins in the
ALL set.

5. Independent SCL data
We obtained SCL information for mouse proteins from
the LOCATE database [58], a rigorously expert-curated
resource based on independent empirical investigation
and additional literature. In LOCATE, the SCL data gener-
ated by experimental investigation are clearly separated
from SCL annotation extracted from the literature, and it
is the experimental SCL data that we use in the validation
presented here (Section 9). LOCATE utilizes an extension
of the GO CC termset to describe additional or uncertain
(e.g. membrane-like) SCLs. After matching identifiers in
LOCATE to UniProt ACs and removing LOCATE-specific
annotation terms, 1713 (of 2068 original) proteins and
their locations (LOCSCL) remained. Of these, 83 proteins
are found in the reference set, and 72 in the potential pre-
diction set (Section 3.1). As LOCATE is not cited as litera-
ture for any protein in UniProt, we expect the SCL
information in LOCATE to be independent of UniProt
annotation.

6. Consistent annotation of detection method
PPI datasets from the resources used here (Methods, Sec-
tion 1) are frequently annotated with a description of the
method used to detect the interaction. These terms are
defined in the Protein Standards Initiative (PSI) Molecu-
lar Interaction (MI) ontology. It is known that PPI data-
base curators sometimes annotate a single detection
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method recorded in a given paper using different terms
[67], so we collapsed method annotations from the PSI-
MI Experimental Interaction Detection Method
(MI:0045) hierarchy of the PSI-MI ontology upward into
the four main high-level categories of this term: Biophys-
ical assay (MI:0013), Protein complementation assay
(MI:0090), Biochemical assay (MI:0401), and Imaging
techniques (MI:0428). Other, less-frequently cited experi-
mental methods that did not collapse to these four high-
level terms were grouped as "Others". As PSI-MI permits
multiple inheritance, any term (e.g. Bacterial display,
MI:0009) which mapped to two or more high-level cate-
gories was placed into the "Others" category. These data
were used to examine the distribution of experimental
methods for detecting PPIs across PPI databases (Results
and Discussion, Section 2.3) and using detection method
as a line of supporting evidence (Results and Discussion,
Section 6.1-vi).

Availability and requirements
Our protein and PPI datasets for the four species are avail-
able at http://bioinformatics.org.au (under Tools and
Data/Databases and Datasets), from the link "PPI – Shin
et al. (2009)". Perl scripts implementing the four variants
of our prediction method are linked from the same page.

Abbreviations
BIO: subset constituted by union of biological evidence
types; BPscore: Biological Process score; CC: Cellular
Component (hierarchy within Gene Ontology); DDI:
domain-domain interaction; EVI: subset constituted by
union of recorded evidence types; GO: Gene Ontology;
PA: permissive accuracy; PPI: protein-protein interaction;
SA: strict accuracy; SCL: subcellular location.

Authors' contributions
CJS conducted all experiments and analysed the data. CJS
and SW designed the experiments. MJD and CJS designed
and evaluated the SCL inference methods which were
implemented by CJS. MJD assisted with biological inter-
pretation. MAR supervised the project. All authors con-
tributed to writing the manuscript.

Additional material

Additional file 1
The number of PPIs according to presence of GO CC for protein and 
PPI. In heterodimeric PPIs, the two interacting proteins are different. The 
reference set for this study consists of all PPIs in which a GO CC term is 
available for each of the two interacting proteins. We identify a further set 
of PPIs for which one protein in each interacting pair has a GO CC term 
and the other one does not; this constitutes our potential prediction set. 
The remaining PPIs have no associated GO CC terms and are not inform-
ative for this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S1.pdf]

Additional file 2
Coverage and proportion of PPIs. These data are drawn from the subsets 
supported by the BPscore line of evidence.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S2.pdf]

Additional file 3
Comparison of protein SCL between interologs. The SCL of proteins in 
human PPIs was compared with location of their orthologs from mouse, 
fly and yeast interologs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S3.pdf]

Additional file 4
PPI subsets based on low-throughput experimental data. DB, Method 
and PMID subsets were generated as described in Methods section 1.4, 
based on a reference set consisting only of those PPIs detected by low-
throughput experimental methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S4.pdf]

Additional file 5
Numbers of PPIs annotated with PSI-MI experimental detection meth-
ods. These data are drawn from the subsets supported by the experimen-
tal detection methods line of evidence, for the four species under 
consideration.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S5.pdf]

Additional file 6
Evaluation of prediction method variants on reference and supported 
subsets for human, mouse, fly and yeast. The permissive accuracy (PA) 
and strict accuracy (SA) were calculated for all variants (DISCRETE, 
MERGED, COMMON and MAJORITY) for all interactions, and for 
interactions involving an integral membrane protein (M).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S6.pdf]

Additional file 7
Interactions between Type I integral membrane proteins and soluble 
intracellular proteins in human. The PPIs in adjacent compartments 
(Type I integral membrane proteins and soluble intracellular proteins) are 
listed for human; only domains present as interacting pairs in the iPfam 
subset are included.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-28-S7.pdf]

Additional file 8
Evaluation of SCL prediction methods using human reference set and 
subsets. SCL prediction methods, including three variants of our approach 
(COMMON, MAJORITY, MERGED) and four existing methods were 
compared using the human reference set (REF) and two different unions 
of subsets (BIO and EVI).
Click here for file
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