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Abstract
Background: Protein-protein interactions mediate a wide range of cellular functions and
responses and have been studied rigorously through recent large-scale proteomics experiments
and bioinformatics analyses. One of the most important findings of those endeavours was the
observation that 'hub' proteins participate in significant numbers of protein interactions and play
critical roles in the organization and function of cellular protein interaction networks (PINs) [1,2].
It has also been demonstrated that such hub proteins may constitute an important pool of
attractive drug targets.

Thus, it is crucial to be able to identify hub proteins based not only on experimental data but also
by means of bioinformatics predictions.

Results: A hub protein classifier has been developed based on the available interaction data and
Gene Ontology (GO) annotations for proteins in the Escherichia coli, Saccharomyces cerevisiae,
Drosophila melanogaster and Homo sapiens genomes. In particular, by utilizing the machine learning
method of boosting trees we were able to create a predictive bioinformatics tool for the
identification of proteins that are likely to play the role of a hub in protein interaction networks.
Testing the developed hub classifier on external sets of experimental protein interaction data in
Methicillin-resistant Staphylococcus aureus (MRSA) 252 and Caenorhabditis elegans demonstrated
that our approach can predict hub proteins with a high degree of accuracy.

A practical application of the developed bioinformatics method has been illustrated by the effective
protein bait selection for large-scale pull-down experiments that aim to map complete protein-
protein interaction networks for several species.

Conclusion: The successful development of an accurate hub classifier demonstrated that highly-
connected proteins tend to share certain relevant functional properties reflected in their Gene
Ontology annotations. It is anticipated that the developed bioinformatics hub classifier will
represent a useful tool for the theoretical prediction of highly-interacting proteins, the study of
cellular network organizations, and the identification of prospective drug targets – even in those
organisms that currently lack large-scale protein interaction data.
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Background
A broad range of cellular functions are mediated through
complex protein-protein interactions, which are com-
monly visualized as two-dimensional networks connect-
ing thousands of proteins by their physical interactions.
Such a network perspective suggests that cellular effects
and functions of proteins can only be fully understood in
context with their interacting partners in a protein interac-
tion network (PIN).

The study of PINs has been made possible through recent
advancements in high-throughput proteomics that have
detected protein-protein interactions on a genome-wide
scale and have generated large amounts of interaction
data for several species including Saccharomyces cerevisiae
[3-7], Escherichia coli [8], Drosophila melanogaster [9],
Caenorhabditis elegans [10], and Homo sapiens [11,12]. The
corresponding protein interaction networks have been
made publicly accessible through open access databases
such as IntAct [13] and DIP [14].

The accumulated protein interaction data have further
supported recent protein network analyses that demon-
strated the scale-free organization of PINs, where the
majority of proteins have a low number of interactions in
the network, with a few highly-connected proteins (also
called hubs) having a significant number of interacting
partners [1,2]. Such inhomogeneous network topology
allows a PIN to be robust against random removal of pro-
tein nodes, but vulnerable to targeted removal of network
hubs [15]. In addition, previous studies have shown
defined relationships between the degree of connectivity
of proteins in PINs, their sequence conservation, and cel-
lular essentiality properties [16,17]. Those studies indi-
cated that highly-connected proteins (or hubs) represent
very attractive subjects for understanding cellular func-
tions, identifying novel drug targets, and for use in the
rational design of large-scale pull-down experiments.

Although large-scale PINs have already been experimen-
tally determined for several species (and thus represent
suitable training sets for hub-predicting bioinformatics
approaches), in general, protein interaction data are still
lacking for many organisms. Thus, several computational
approaches have been developed to predict protein-pro-
tein interactions utilizing existing bioinformatics data
such as gene proximity information [18,19], gene fusion
events [20,21], gene co-expression data [22-24], phyloge-
netic profiling [25], orthologous protein interactions [26]
and identification of interacting protein domains [27-30].
Several bioinformatics approaches have also been devel-
oped to identify hypothetical interactions between pro-
teins based on their three-dimensional structures [31,32]
or by applying text-mining techniques [33,34]. Tradition-
ally, such computational predictions have focused on the

identification of pairwise protein-protein interactions
with varying degrees of accuracy [35]; however, none of
them have been explicitly focused on predicting hypothet-
ical hub proteins.

At the same time, it is reasonable to hypothesize that hub
proteins should share certain common sequence or struc-
tural features that not only enable them to participate in
multitudes of protein interactions, but also can be utilized
for the theoretical identification of such hub proteins
without prior knowledge of the corresponding PINs.
Therefore, the goal of this study is to develop such a 'hub
predictor' (or classifier), capitalizing on experimental and
bioinformatics data available to date for proteins in sev-
eral model organisms with already-determined PINs.

We have focused the construction of the hub classifier on
Gene Ontology (GO) data, which provide functional
annotations for individual proteins using an expert
knowledge base [36-38]. The advantage of applying GO
annotation to hub prediction lies in the readily available
information for proteins in hundreds of species. Impor-
tantly, the GO annotations have been shown to reflect cer-
tain properties that can mediate protein-protein
interactions [35], but the annotation itself does not rely
on the availability of corresponding experimental data.
Thus, the GO-based hub classifier should be suitable for
predicting highly-connected proteins, even in organisms
that lack protein interaction data.

Here we present the development of such a hub protein
classifier, trained on the existing GO and protein-protein
interaction data for Escherichia coli, Saccharomyces cerevi-
siae, Drosophila melanogaster and Homo sapiens species. The
generated models were cross-validated and tested on two
external protein interaction data sets: Methicillin-resistant
Staphylococcus aureus (MRSA) 252 and Caenorhabditis ele-
gans. The developed bioinformatics approach has not
only demonstrated an improved accuracy in identifying
highly-connected PIN nodes (as compared to homology-
or protein domain-based predicting methods), but has
also shown an improved speed and a lower demand on
computational resources.

To illustrate a possible application of the developed tool,
we have used it for rationalizing a bait selection strategy
for a large-scale protein complex pull-down experiment.

Methods
Data acquisition
Protein-protein interaction data
Protein interaction data used for the training and testing
of the hub protein classifier were obtained from the IntAct
database [13] for the following species: Escherichia coli K
12 (taxonomy ID: 83333), Saccharomyces cerevisiae (taxon-
Page 2 of 14
(page number not for citation purposes)



BMC Systems Biology 2008, 2:80 http://www.biomedcentral.com/1752-0509/2/80
omy ID: 4932), Drosophila melanogaster (taxonomy ID:
7227), and Homo sapiens (taxonomy ID: 9606) (acquisi-
tion date: Sep. 25th, 2007). Two external validation data
sets were collected for protein interactions in MRSA252
(provided by the PREPARE project in Vancouver B.C. Can-
ada [39]) and Caenorhabditis elegans (obtained from IntAct
database on Sep. 25th, 2007). Table 1 lists the total
number of proteins and their interactions of the four spe-
cies in the training and testing, which have been com-
bined into a single data set for the subsequent analyses.
Similar information on the external validation sets is
shown in Table 2.

Hub proteins were identified based on their numbers of
protein interactions and their percentile ranking relative
to other proteins in the same species. Proteins of the same
species were divided into different percentile groups,
sorted by the number of protein-protein interactions in a
decreasing order (ie. higher percentile proteins have more
interactions than lower percentile proteins). It is clear that
hub proteins have more interactions than non-hubs, but
currently there is no consensus on exactly how many
interactions a hub protein should have. Often, hubs are
defined arbitrarily to have at least certain number of inter-
actions [40]. In our study, the hub selection criterion was
based on the position of a sharp turn (or inflection point)
on an accumulative protein interaction distribution plot
from each of the four species. As shown in Figure 1, the
protein interactions followed a power law distribution,
such that a sharp turn is visible around the 90th protein
percentile position on the interaction plots.

To achieve a consistent hub definition across the four
studied species, hub proteins were defined as above or
equal to the 90th percentiles of interactors; in other words,
the hubs represented the top 10 percent of highly-con-

nected interactors, and the non-hubs were consisted of the
bottom 90 percent of the proteins. Using this definition,
hub proteins were determined from each of the four PINs
individually. At the 90th protein percentile, E. coli hubs
have at least 20 protein interactions, S. cerevisiae hubs
have at least 33 protein interactions, D. melanogaster hubs
have at least 16 protein interactions, and H. sapiens hubs
have at least 13 interactions. The number of assigned hub
and non-hub classifications is shown in Table 1.

Figure 2 illustrates the subsequent steps involved in the
development of the hub protein classifiers and their cor-
responding bioinformatics analyses.

Gene Ontology (GO) data
Each protein obtained from the IntAct database was iden-
tified by a unique UniProt accession number, which ena-
bled a fast collection of GO annotation data from the
Uniprot Retrieval System [37,41] (Uniprot protein data
obtained on Oct. 1st, 2007). The complete UniProt pro-
tein annotation pages were downloaded as flat texts,
which were then parsed by PERL scripts to extract the GO
annotations in the three categories: biological process,
molecular function, and cellular component. Because
each GO term could be assigned to a different level of the
annotation hierarchy, we established a fixed general GO
level that represented all of the specific GO terms of the
proteins in the study. This general GO annotation level
was determined based on the GO slim project, which pro-
vides a list of generic GO terms on which many bioinfor-
matics analyses can be performed [42]. Importantly, the
GO slim generic terms provided a reasonable number of
protein 'predictors' for a machine learning method to
effectively operate. The tool 'map2slim' [43] was used to
map specific GO terms to the 'GO slim' generic terms (GO
annotation files were obtained from [44] on Oct. 17th,

Table 1: A summary of protein interaction and GO annotation data used in the training and testing of the hub classifiers.

Training/Testing set E. coli S. cerevisiae D. melanogaster H. sapiens total of 4 species

# of proteins 2860 5397 6935 6592 21784
# of hubs (10% of total proteins) 286 535 628 620 2069
# of non-hubs (90% of total proteins) 2574 4862 6307 5972 19715
# of protein interactions 13888 37167 19994 19115 90164
minimum # of interactions per hub 20 33 16 13

# of proteins with at least one GO term 1378 4738 5931 5097 17144
# of proteins without any GO term 1482 659 1004 1495 4640
% of proteins with at least one GO term 48.18% 87.79% 85.52% 77.32% 78.70%

# of different GO terms – process 30 41 48 49 50
# of different GO terms – function 21 37 38 37 40
# of different GO terms – component 4 27 31 29 35
# of different GO terms – total 55 105 117 115 125

The top table lists the protein interactions and hubs in each of the four species, and the bottom part of the table lists the number of unique GO 
terms for each annotation category.
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2007; GO format-version: 1.2, GO date: 16:10:2007
16:19, GO revision: 5.514; GO slim format-version: 1.2,
GO slim date: 01:10:2007 16:53, GO slim revision:
1.682). This generic version of GO slim contained 53
[biological process] terms, 42 [molecular functions] terms
and 37 [cellular component] terms.

Table 1 and 2 list the number of GO slim terms used to
annotate the proteins in each species and the number of
the proteins with or without a GO annotation term.

All protein interaction data and GO annotations were
stored in a local MySQL database for fast data searching
and reporting.

Hub protein classification by boosting trees
To train models that classify a protein as a hub or a non-
hub, the protein interaction data from the four species
were combined into a single data set (90,164 interactions
involving 2,069 hubs and 19,715 non-hubs). A four-fold
cross-validation strategy was used in which four non-over-
lapping testing sets (25% of the total protein set), and
four training sets (75% of the total protein set) were uti-
lized for building the hub classifiers. Each training and
testing set maintained the same hub to non-hub (1:9)
ratio. In addition, the proteins in the training sets have
maintained the same distribution of GO annotation terms
as the proteins in the testing sets. Figure 3 illustrates the
distribution of each of the 125 GO terms, represented by
the percentage of proteins with this term in the training
sets vs. the testing sets of the four cross-validation sam-
ples. A high correlation R2 values of 0.9981 ~0.9983 indi-

cated an equal GO distribution between the training and
testing sets. It is also shown that the majority of the GO
terms were associated with less than 10% of the proteins
in a given data set.

We focused the machine-learning effort on hub classifica-
tion by applying boosting trees, which is one of the best
methods for classifying complex data and providing inter-
pretable results [45]. The training and testing of the hub-
predicting classification trees were performed on 125 GO
terms as predictor variables by using the boosting tree
application as implemented in STATISTICA version 8
[46]. The input data were formatted as tables of binary
data, where each column represented a GO term variable
(1 = present, 0 = absent) and each row represented a sam-
ple protein.

Four classifiers were built (one for each of the four train-
ing sets) and compiled in the C++ language under Linux.
In addition to the four testing sets in the cross-validation
study, the best of the four hub classifiers has been vali-
dated on two external data sets, which were consisted of
experimentally-determined PINs in MRSA252 and C. ele-
gans. The classifier predicted each protein in the data sets
as either a hub or a non-hub, and the classification statis-
tics were calculated as the following:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Accuracy = (TP + TN)/(TP + TN + FP + FN)

PPV (Positive Predictive Value) = TP/(TP + FP)

NPV (Negative Predictive Value) = TN/(TN + FN)

, where TP = True Positive, FP = False Positive, TN = True
Negative, and FN = False Negative.

A useful output feature of the boosting tree method is the
relative predictor importance, which measures the average
influence of a predictor variable on the prediction out-
come over all of the trees [45]. The most important predic-
tor is assigned a value of 100, and the other variables are
scaled accordingly.

Comparison of the hub classifiers with other existing 
protein interaction prediction approaches
To further assess the performance of the hub classifier
against other existing approaches for predicting hub pro-
teins, we applied three different types of bioinformatics
methods to construct hypothetical PINs in MRSA252,
where hub proteins were determined by the number of
predicted pairwise protein-protein interactions.

Table 2: A summary of protein interaction and GO annotation 
data used in the external validation of the hub classifiers.

External validation set MRSA252 C. elegans

# of proteins 133 2890
# of hubs (10% of total proteins) 13 276
# of non-hubs (90% of total proteins) 120 2614
# of protein interactions 2401 4594
minimum # of interactions per hub 45 7

# of proteins with at least one GO term 109 2403
# of proteins without any GO term 24 487
% of proteins with at least one GO term 81.95% 83.15%

# of different GO terms – process 27 46
# of different GO terms – function 19 34
# of different GO terms – component 5 22
# of different GO terms – total 51 102

The top table lists the protein interactions and hubs in each of the 
two species, and the bottom part of the table lists the number of 
unique GO terms for each annotation category.
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Hypothetical PIN – pathway maps
The first type of hypothetical PIN represented the known
protein-protein interactions available for MRSA252. A
total of 513 protein interactions were manually extracted
from the pathway maps in the KEGG database [47]
(acquisition date: May 3rd, 2006).

Hypothetical PIN – orthologous interactions
The second type of PIN was constructed based on known
protein-protein interactions between orthologs from
three other species: Helicobacter pylori, Saccharomyces cere-
visiae, and Escherichia coli. The experimental PIN in H.
pylori was obtained from the BIND database [48] (acquisi-
tion date: Aug. 11th, 2005). Two sources were used to
build the S. cerevisiae PIN: the BIND database (acquisition
date: Aug. 11th, 2005) and Gavin's study [6] (acquisition
date from the IntAct database [13]: Feb. 7th, 2006). We
extracted the E. coli PIN in Butland's study [8] from the
IntAct database [13] (acquisition date: Apr. 13th, 2006).

2656 protein sequences in MRSA252 were obtained from
the RefSeq databases at NCBI [49] (acquisition date: Feb.
4th, 2006). The orthologs of the interacting proteins from
each of the above species were identified in MRSA252 by
using the program InParanoid [50] (version 1.35). If a
pair of MRSA252 proteins whose orthologs interacted in
one of the three species, the pair was assigned as an inter-
acting protein pair. A total of 3258 protein interactions
were predicted for this type of MRSA252 PIN reconstruc-
tion.

Hypothetical PIN – interacting domains
The third type of MRSA PIN was predicted based on pro-
tein domain-domain interactions. First, the presence of
Pfam domains [51] in each of the 2656 MRSA252 pro-
teins was determined by scanning the Pfam domain pro-
files (version 19.0) with the program HMMER [52]
(version 2.3.2). Second, domain-domain interaction data
were acquired from two sources: InterDom [53] (version:

Accumulative protein interaction distribution plotsFigure 1
Accumulative protein interaction distribution plots. a) E. coli, b) S. cerevisiae, c) D. melanogaster, d) H. sapiens. On each 
plot, the (x, y) coordinate of the sharp turn or the inflection point is shown.
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1.2) and iPfam [54] (version: 19.0). If a pair of MRSA252
proteins contained interacting domains according to one
of the two sources, the pair was assigned as an interacting
protein pair. A total of 11,608 protein interactions were
predicted based by this method.

Validating the prediction on an experimental MRSA252 PIN
The experimental MRSA252 PIN provided by the PRE-
PARE project contained interaction data for 133 proteins
and was used as the external validation set for measuring
the prediction performance of the hub classifier and the
different types of hypothetical PINs.

We have compared the prediction results in two different
ways. In the first type of comparison, both the hub classi-
fier and the combined hypothetical PINs classified the
133 MRSA proteins as hubs or non-hubs, while the same
133 proteins were also classified as hubs or non-hubs
based on the experimental results provided by PREPARE.
In the case of the hub classifier, hubs and non-hubs were
reported explicitly from the prediction program. In the
cases of hypothetical and experimental PINs, hubs were
defined as above or equal to the 90th percentile of proteins
ranked by the number of interactions (same criterion as
the hub classifier). The following classification statistics

A flow chart of the development of the hub protein classifiers and their corresponding bioinformatics analysesFigure 2
A flow chart of the development of the hub protein classifiers and their corresponding bioinformatics analyses.
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were calculated: sensitivity, specificity, accuracy, PPV and
NPV.

In the second type of comparison, we compared ranked
lists of proteins based on their 'hub-likeness' property. In

the case of the hub classifier, the proteins were ranked
based on the differences between predicted hub probabil-
ities and non-hub probabilities as computed by the boost-
ing tree method. In the case of the hypothetical and
experimental PINs, the proteins were ranked by their

Distribution of GO annotation terms between the training and testing sets in the four cross-validation samplesFigure 3
Distribution of GO annotation terms between the training and testing sets in the four cross-validation sam-
ples. Each point on a graph represents the percentage of proteins annotated with a given GO term in the training set (x-axis), 
and the percentage of proteins annotated with the same GO term in the testing set (y-axis). All four plots were fitted with lin-
ear regression lines, with high R2 values of 0.998. This indicates an equal distribution of the GO terms between the training and 
testing sets of the four samples.
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numbers of protein interactions. The ranked lists were
compared to the list of proteins ranked by the number of
experimental interactions in MRSA252 by using a Spear-
man rank order correlation as implemented in STATIS-
TICA 8.

Validating the prediction on an experimental C. elegans PIN
In addition to MRSA252, we have tested the hub protein
classifier on an external set of protein interaction data in
C. elegans. The same procedure was applied to determine
hub prediction statistics, as described above.

Test of significance
To test the hub protein classifier against a null hypothesis,
which claims there is no difference of GO term distribu-
tion between hubs and non-hubs, we have randomized
the protein interaction data in the following ways. Firstly,
the same 5445 proteins in the testing set (25% of the total
protein set consisted of the four species) for the hub clas-
sifier were used in the construction of a randomized data
set. Secondly, 10% of those proteins were randomly
assigned as hubs, while the other 90% of proteins were
randomly assigned as non-hubs. Thirdly, the GO terms
originally associated with those proteins were randomly
distributed within the data set. The combination of the
above two randomization methods ensured that there was
no significant difference in GO term distribution between
the hub and non-hub proteins. Finally, the hub classifier
was used to predict hubs and non-hubs in the rand-
omized data set, and prediction statistics were obtained.

Simulation of protein bait selections and network coverage
The effectiveness of protein bait selections assisted by the
hub classifier has been simulated by using yeast protein-
protein interaction data determined by protein-complex

pull-down and mass spectrometry experiments, available
from Gavin's study [6]. One major goal of such large-scale
experiments is to maximize the number of protein inter-
actions identified by using a small set of proteins as 'baits'
to pull down their interactors (preys). Therefore, it is cru-
cial to select protein baits based on properties that will
produce the best network coverage, as measured by the
ratio between the number of protein interactions identi-
fied by an experiment and the total number of interac-
tions in an organism.

In our simulation experiments, 18,028 interactions,
involving 2551 proteins from Gavin's yeast data set
(acquisition date from the IntAct database [13]: Feb. 7th,
2006), were hypothetically treated as the total number of
protein interactions in Saccharomyces cerevisiae. To simu-
late the bait selection process, we selected a subset of pro-
teins (ranged from 5% up to 100% of the 2551 yeast
proteins) as baits and calculated the number of interac-
tions such baits would "pull-out" from the yeast interac-
tion data set and computed the overall network coverage.
Two selection criteria were used. In one simulation, the
baits were randomly selected from the total pool of the
yeast proteins. In the other simulation, the baits were
selected from the pool of hub proteins predicted by the
hub classifier.

In addition to the bait selection strategy described above
(referred to as one-round selection), we simulated the net-
work coverage results by applying a second round of selec-
tions. In this type of selection, baits were divided into two
sets: one-third as the first round of baits, and two-thirds as
the second round of baits. The first-round baits were cho-
sen by either random selection or by hub prediction. The
second round of baits was selected from the most abun-

Table 3: Prediction performance of the hub classifier in the combined data set of the four species

Hub classifier (# of nodes in each tree = 15, FN: FP penalty = 1:1.9, total # of trees = 187)

Training
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 13381 1405 36.51% 90.50% 85.37% 28.75% 93.14%
hub 986 567

Testing
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 4415 514 28.10% 89.57% 83.75% 22.00% 92.25%
hub 371 145

All
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 17796 1919 34.41% 90.27% 84.96% 27.06% 92.91%
hub 1357 712

The observed vs. predicted hubs and non-hubs and their corresponding classification statistics are shown for the best classifier based on the 
training, testing and all (training + testing) data sets
Page 8 of 14
(page number not for citation purposes)



BMC Systems Biology 2008, 2:80 http://www.biomedcentral.com/1752-0509/2/80
dant preys pulled down by the first round of baits. Such
an approach is also referred to as the "name your friend"
method and has been applied to maximize the effective-
ness in vaccinations against infectious diseases [55,56], as
well as in some protein complex experiments [8].

Results and Discussion
Prediction performance of the hub prediction classifier
One prediction model was constructed for each of the
four cross-validation samples; therefore, a total of four

hub classifiers were generated. The executable files of the
classifiers were complied by the Gnu C++ compiler in
Linux. The classifier programs used a list of query proteins
and their corresponding GO term occurrences as the input
file, and produced the same list of the proteins with hub
prediction results and probability scores. The running
time was only a few seconds for predicting hubs from over
21,000 proteins on a 3.0 GHz Pentium D personal com-
puter.

Table 4: Hub prediction comparison of the classifier and the hypothetical PINs in MRSA252.

Hub classifier

observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 109 11 30.77% 90.83% 84.96% 26.67% 92.37%
hub 9 4

Hypothetical PIN – pathway maps
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 111 9 0.00% 92.50% 83.46% 0.00% 89.52%
hub 13 0

Hypothetical PIN – orthologous interactions
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 110 10 23.08% 91.67% 84.96% 23.08% 91.67%
hub 10 3

Hypothetical PIN – interacting domains
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 117 3 0.00% 97.50% 87.97% 0.00% 90.00%
hub 13 0

Combined hypothetical PIN – (pathway maps + orthologous interactions)
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 110 10 23.08% 91.67% 84.96% 23.08% 91.67%
hub 10 3

Combined hypothetical PIN – (pathway maps + orthologous interactions + interacting domains)
observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV
non-hub 108 12 7.69% 90.00% 81.95% 7.69% 90.00%
hub 12 1

The prediction performance of the hub classifier is compared to that of the hypothetical PINs in MRSA252. The classification statistics is reported.

Table 5: Comparing ranked lists of hub-likeness properties between the classifier and the hypothetical PINs in MRSA252.

Hub prediction methods correlation coefficient

Hub classifier 0.320523
Hypothetical PIN – pathway maps 0.108682
Hypothetical PIN – orthologous interactions 0.27396
Hypothetical PIN – interacting domain -0.291846
Combined hypothetical PIN – (pathway maps + orthologous interactions) 0.23882
Combined hypothetical PIN – (pathway maps + orthologous interactions + interacting domains) -0.011494

The ranked protein lists based on hub-likeness properties, produced by either the classifier or the hypothetical PINs, has been compared to that of 
the experimental PIN in MRSA252. The coefficient of Spearman rank order correlation is reported with p-value < 0.05.
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Overall, the classification statistics were consistent
between the training and testing sets for the four classifi-
ers. Within the training sets, the sensitivity of the classifi-
ers ranged from 33.33% ~36.51%, the specificity ranged
from 90.50% ~90.94%, and the accuracy ranged from
85.21% ~85.58%; PPV (positive predictive value) varied
from 27.40% ~29.12%, and NPV (Negative predictive
value) varied from 92.86% ~93.14%. Within the testing
sets, the sensitivity ranged from 25.87% ~30.89%, the
specificity ranged from 89.45% ~91.09%, and the accu-
racy ranged from 83.75% ~85.37%; PPV varied from
21.51% ~26.71% and NPV varied from 92.04% ~92.61%.
The classification statistics on the best of the four hub clas-
sifiers is shown in Table 3.

We have further validated the prediction accuracy of the
best hub classifier in the external MRSA252 data set. As
indicated in Table 4, in comparison to the other protein
prediction methods, the hub classifier has the highest pre-
diction statistics, with 30.77% sensitivity, 90.83% specifi-
city, 84.96% accuracy, 26.67% PPV and 92.37% NPV. The
next best hub prediction result was achieved by the hypo-
thetical MRSA PIN based on orthologous interactions. On
the other hand, the results from the predicted PINs of
pathway maps and interacting domains were poor as
none of them had any true positives.

In the other comparison, we correlated a ranked list of
proteins based from their 'hub-likeness' (determined
from either the hub classifier or the hypothetical PINs) to
that of the experimental MRSA PIN. As shown in Table 5,
the hub classifier had a correlation coefficient of 0.32 –
highest among all other methods. The next best correla-
tion was achieved by the hypothetical PIN of orthologous
interactions.

In addition to MRSA252, the hub protein classifier has
achieved comparable prediction results in the C. elegans

validation data set, with 32.97% sensitivity, 86.84% spe-
cificity, 81.70% accuracy, 20.92% PPV and 92.46% NPV,
as shown in Table 6.

The prediction statistics of the hub classifier on the rand-
omized data set are summarized in Table 7. The result
shows that the hub classifier was not able to achieve a sig-
nificant hub prediction when the GO terms and protein
hubs were randomly assigned. The prediction only
reached 11.43% sensitivity and 8.39% PPV in the rand-
omized set, compared to 28.10% sensitivity and 22.00%
PPV in the testing set before the randomizations. The spe-
cificity and NPV were comparable before and after the
randomizations, due to the inherited 1:9 ratio between
the number of hubs and non-hubs. Therefore, it is easier
to make a correct prediction on non-hub proteins than
hub proteins. The comparison of the prediction results
between the testing set and the randomized set indicates
that hub proteins have a distinct distribution of GO terms,
which contributed to the predictability of the hub classi-
fier.

Overall, the hub classifier built on the Gene Ontology
annotations achieved high specificity and NPV, but had
lower than expected sensitivity and PPV. We attribute this
to the lack of GO annotations for certain proteins in the
training sets, as the level of annotations varied among the
four species. For instance, S. cerevisiae had the highest per-
centage of the proteins with GO annotations (87.8%),
while only 48.2% of the proteins in E. coli had any GO
annotation. Therefore, the performance of the current hub
classifier primarily relied on the number of GO annota-
tions available for each species. We expect the sensitivity
value of the hub classifier to be improved when more
annotation data become available for the four species in
the training sets.

Table 6: Hub prediction result in C. elegans.

observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV

non-hub 2270 344 32.97% 86.84% 81.70% 20.92% 92.46%
hub 185 91

The prediction performance of the hub classifier was validated, based on the experimental PIN in C. elegans.

Table 7: Hub prediction result in the randomized data set.

observed predicted non-hub predicted hub sensitivity specificity accuracy PPV NPV

non-hub 4285 644 11.43% 86.93% 79.78% 8.39% 90.36%
hub 457 59

The prediction performance of the hub classifier was tested on the null hypothesis that there is no difference of GO term distribution between 
hubs and non-hubs.
Page 10 of 14
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Table 8: Top 20 important GO term predictors.

GO ID GO name GO Type predictor importance

GO:0005730 nucleolus cellular component 100
GO:0003723 RNA binding molecular function 97
GO:0005515 protein binding molecular function 96
GO:0006412 translation biological process 95
GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process biological process 90
GO:0006996 organelle organization and biogenesis biological process 89
GO:0030246 carbohydrate binding molecular function 87
GO:0005840 ribosome cellular component 86
GO:0005777 peroxisome cellular component 85
GO:0009719 response to endogenous stimulus biological process 82
GO:0007049 cell cycle biological process 81
GO:0004871 signal transducer activity molecular function 77
GO:0005654 nucleoplasm cellular component 77
GO:0008219 cell death biological process 75
GO:0006118 electron transport biological process 73
GO:0006259 DNA metabolic process biological process 73
GO:0050789 regulation of biological process biological process 73
GO:0006950 response to stress biological process 72
GO:0005811 lipid particle cellular component 71
GO:0008135 translation factor activity, nucleic acid binding molecular function 70

Network coverage of different bait selection strategies in protein complex pull-down experiments, simulated in Saccharomyces cerevisiaeFigure 4
Network coverage of different bait selection strategies in protein complex pull-down experiments, simulated in Saccharomyces 
cerevisiae.
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GO term predictor importance
An indicator of the contribution of each GO term used in
the boosted trees classifiers was provided by the relative
importance of predictors in the training output. The impor-
tance value ranged from 0 to 100, where 100 indicated
that a predictor had the most influence on the hub predic-
tion outcome, and 0 meant a predictor had the least influ-
ence. The top 20 GO annotation terms that were likely to
be shared among hub proteins are listed in Table 8.

The top GO terms included several annotations such as
'RNA binding', 'translation', and 'ribosome', commonly
used to annotate ribosomal proteins, which were often
identified as the top interacting proteins in other experi-
ments [6,8]. The list of important predictors indicated that
hub proteins tend to participate in several common cellu-
lar processes, including translation, nucleotide metabo-
lism, organelle biogenesis, cell cycle, signal transduction,
cell death, and electron transport.

Applying hub classifier to protein bait selection
The bait selection strategy, assisted by the hub classifier,
was simulated in the experimental PIN of Saccharomyces
cerevisiae. In the case of one-round selection, choosing
baits that were predicted as hubs by the classifier has
greatly increased the network coverage in comparison to
random selection. For instance, as illustrated in Figure 4,
when 15% of total proteins were selected as baits based on
the result of the hub classifier, 42.39% of the network cov-
erage was achieved. On the other hand, only 26.53% of
the network coverage was generated by the random bait
selection.

In the case of the two-round selection, the network cover-
age produced by either random or hub bait selection has
shown a great improvement from the one-round selec-
tion. The hub bait selection performed slightly better than
random in the two-round selection.

The results suggest that the hub classifier is a useful tool
for selecting baits and prioritizing proteins for protein
interaction experiments. Although it was not explored in
the present study, we expect that the hub classifier can also
assist in the identification of highly-interacting proteins in
pathogens as potential drug targets.

Conclusion
We have studied the available interaction and Gene
Ontology data for proteins in Escherichia coli, Saccharomy-
ces cerevisiae, Drosophila melanogaster and Homo sapiens
genomes. By utilizing the boosting trees classification
method, we have shown that highly-connected proteins
in the studied PINs share certain common GO terms; this
observation enabled the development of a hub classifier
capable of distinguishing hub proteins from non-hubs.

This classifier has improved accuracy for hub prediction
relative to other traditional approaches for protein inter-
action prediction. It is anticipated that the hub classifier
can serve as a useful tool to identify highly-interacting
proteins in species without any available protein interac-
tion data, with potential applications in optimizing pro-
tein pull-down experiments and identifying new drug
targets against pathogens.

Availability
The source code and executable program of the hub clas-
sifier is freely available for download at: http://
www.cnbi2.com/hub/
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