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Abstract
Background: Receptors and scaffold proteins usually possess a high number of distinct binding
domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial
reasons the number of distinguishable species grows exponentially with the number of binding
domains and can easily reach several millions. Even by including only a limited number of
components and binding domains the resulting models are very large and hardly manageable. A
novel model reduction technique allows the significant reduction and modularization of these
models.

Results: We introduce methods that extend and complete the already introduced approach. For
instance, we provide techniques to handle the formation of multi-scaffold complexes as well as
receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct
generation of exactly reduced model structures. The developed methods are used to reduce a
model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations
(ODEs) to a model with 87 ODEs.

Conclusion: The methods, presented in this contribution, significantly enhance the available
methods to exactly reduce models of combinatorial reaction networks.

Background
A large problem in mathematical modeling of biochemi-
cal signal transduction networks is combinatorial com-
plexity [1]. Due to the occurrence of receptors and scaffold
proteins with high numbers of binding domains and
binding partners the number of feasible molecular species
is enormous [1-5]. Many existing models evade the prob-
lem of combinatorial variety by assuming reduced, heuris-
tic network structures that focus on a restricted number of
molecular species and reactions [6-14]. Faeder et al. [15]
showed by simulation studies that in combinatorial reac-
tion networks only a relatively small part of the network
might be active which means that the concentration of

many species is negligible low. By eliminating these spe-
cies as well as the associated reactions a fairly reduced
model can be obtained. Faeder et al. [15] also showed that
the predictions of such a reduced model match those of
the complete one for the original parameter values quite
well, but that the reduced model is not predictive over a
larger range of parameter values. Even very small pertur-
bations in the parameters may result in large approxima-
tion errors. Since the real kinetic parameters are usually
unknown, these findings of Faeder et al. [15] indicate that
a heuristically derived model structure will mostly be
insufficient to approximate the dynamics of the real sign-
aling network. This result is confirmed by Conzelmann et
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al. [16] who showed, by discussing a scaffold protein with
only three binding domains, that reasonable, heuristically
derived, model reductions may lead to significant approx-
imation errors even for very small reaction networks.

An alternative approach to tackle combinatorial complex-
ity is stochastic simulation. One possibility is an agent-
based approach in which each protein is considered to be
an autonomous individual in the reaction network. This
approach restricts the number of elements that have to be
considered to the total number of protein copies, while
the number of feasible multiprotein complexes, which
can easily grow to billions [1,3], often exceeds this
number by far. However, the computational cost for that
kind of stochastic simulations can also be extremely high.
Another possibility how stochastic models can help to
reduce combinatorial complexity has been presented by
Lok et al. [17]. The enormous complexity of the stochastic
model is reduced by a new approach which incorporates
complexes and reactions only when they are needed as the
simulation proceeds [17,18]. However, it is much harder
to analyze the dynamic behavior of stochastic models or
to identify the model parameters from measurements
[18].

Another, ODE based, approach has been introduced by
Blinov et al. [19]. The modeling tool BIONETGEN allows a
rule-based model specification, which is automatically
expanded to a complete mechanistic ODE model. BIO-
NETGEN has been used to create a number of signaling
models including EGF receptor signaling and FcRI signal-
ing [20,21].

Borisov et al. [22,23] proposed an alternative approach
which adopts the point of view that the fundamental ele-
ments of signal transduction are domains instead of
molecular species [24]. Borisov et al. suggested to substi-
tute the common mechanistic network description that
includes all individual molecular species by a macrode-
scription. In this context, the term micro-state is used to
describe individual multiprotein complexes, whereas the
term macro-state refers to large sets of micro-states sharing
a certain characteristic like phosphorylation of a defined
binding domain. These macro-states correspond to
descriptive biological quantities like phosphorylation
degrees or levels of occupancy. The goal of this approach
is the generation of a dynamic ODE model describing the
concentrations of these macro-states. Borisov et al. [22]
show for instance that in the case of independent binding
domains a reduced number of ODEs is sufficient to
describe the dynamics of the macro-states accurately. This
approach has been extended by Conzelmann et al. [16]
who introduced a systematic procedural method. The
starting point of this method is a complete mechanistic
ODE model which is subsequently reduced [16]. The

reduction method bases on a hierarchically structured
state space transformation. However, Conzelmann et al.
[16] only provide a general transformation pattern for
scaffold proteins with numerous single protein ligands. If
these ligands can recruit further signaling proteins or the
considered scaffold forms a dimer, the transformation
pattern has to be extended. In this contribution, we
present these extensions that enhance the applicability of
the method to all kinds of signaling networks. Further-
more, we introduce a novel approach to directly generate
the reduced equations. This approach circumvents the
computationally expensive set-up of a full combinatorial
model and its subsequent reduction.

The Section Mathematical Prerequisites will briefly discuss
the mathematical concepts that are used. The main results
are discussed in three parts: Section Exact Model Reduction
presents the extension of the transformation pattern intro-
duced by Conzelmann et al. [16]. Section Reduced Order
Modeling of Combinatorial Reaction Networks introduces the
novel approach for directly generating reduced models.
Section Example: EGF and Insulin Receptor Crosstalk dis-
cusses the methods practical applicability and its benefits
by generating a fairly reduced model of EGF and insulin
receptor crosstalk.

Methods
Mathematical prerequisites
In this contribution, exact model reductions will be dis-
cussed, but the term exact may be misleading since the
elimination of model equations is always linked to loss of
information. A reduction can only be exact in terms of the
input/output behavior of the system which can be exactly
preserved by a reduced model. In this work, we will always
consider ODE models given in state space representation

where (t) denotes the n-dimensional vector of all

dynamic states or variables and (t) represents the m-
dimensional vector of all external input signals. The vector

(t) comprises all q output variables of the system, which

either correspond to measured quantities or more general

to all quantities of interest. The vector field  and the vec-

tor valued function  do have appropriate dimensions.

Since we assume that the output  does include all essen-

tial quantities, we are solely interested in the systems
input/output behavior. It is very essential to stress that
exact reducibility is solely determined by the system's
structure and the definition of input and output variables.
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Thus, the only way to influence exact reducibility is to
modify a system or to change the input and output varia-
bles. However, in most cases neither the model structure
nor the choice of input and output variables is discretion-
ary. Exact reduction methods should not try to influence
exact reducibility of a model but provide the information
whether a given system is exactly reducible and how it can
be reduced. The question of whether a model is exactly
reducible is closely related to the control theoretical con-
cepts of observability and controllability which will be
introduced below. In control theory models that are not
exactly reducible are called minimal realizations [25]. If a
model is no minimal realization it comprises uncontrol-
lable or unobservable states, which can be eliminated
without changing the systems input/output behavior. The
elimination of unobservable and uncontrollable states
can be achieved by a formal dissection of the model's state
space into observable and controllable, observable but
not controllable, controllable but not observable as well
as neither observable nor controllable subsystems. Such a
dissection is called Kalman decomposition [26].

Control theory provides a couple of methods that facili-
tate the separation of controllable and uncontrollable as
well as of observable and unobservable states. However, a
deficiency of these methods is that they are either devel-
oped for linear systems or they are only designed for small
nonlinear models [25], but they are not applicable to very
large nonlinear models of biological signaling cascades.

The methods we developed and present facilitate a
Kalman decomposition of combinatorial reaction net-
works. Interestingly, for the considered type of systems a
Kalman decomposition can be achieved by a linear state
space transformation that is additionally independent of
the systems parametrization or the choice of input and
output variables. Naturally, a change of the parameter val-
ues or the input and output variables can affect the
number of observable and controllable states but the pro-
posed transformation always provides a Kalman decom-
position. This statement can be verified using the
approach discussed in the Section Generality of the Method.

Mathematical characterization of processes and process 
interactions
A crucial problem in modeling combinatorial reaction
networks is the parametrization of the immense number
of reactions. Considering different signal transduction
models [10,12,20,27] and modeling techniques
[12,19,22,16,3] it becomes apparent that mostly a large
number of occurring reactions is parametrized by a rela-
tively small number of distinct kinetic parameters. How-
ever, the assumptions, which reactions are parametrized

by the same, and which by distinct parameter values, dif-
fer. From our point of view the most suggestive assump-
tion is to determine parametrization on the basis of
process interactions. Our focus is on domains of large
scaffold or receptor proteins that can be either occupied
by other proteins or can undergo post-translational mod-
ifications like phosphorylation. We define a binding proc-
ess as the sum of all reactions that change the level of
occupancy of a considered domain. Analogously, we
define a modification process as the sum of all reactions
changing the degree of modification of a domain. Two
arbitrary processes, no matter if binding or modification
processes, may be either completely independent, interact
unidirectionally or mutually. Koschorreck et al. [3] addi-
tionally discuss so-called all-or-none interactions which
represent an important border case of mutually interact-
ing processes. These different types of interactions shall be
exemplified considering a very simple example which is
taken from [28]. In this example, a receptor R is consid-
ered, which recruits the two ligands L and E. Hence, the
system comprises two binding processes. In this case, the
reaction system consists of four reversible reactions, for
which the following reaction rates can be formulated
using mass action kinetics

According to Conzelmann et al. [28] the following process
interaction types can be distinguished

• non-interacting processes

Complete independence implies that the kinetic associa-
tion and dissociation constants of one domain do not
change upon ligand binding on the other domain. Hence,
it follows for the parameters k2 = k1, k-2 = k-1, k4 = k3 and k-

4 = k-3.

• unidirectionally interacting processes

The binding of one ligand, e.g. ligand L, is not influenced
by binding of the other one. However, L binding does
change the kinetic properties of the other domain. In this
case, only the conditions k2 = k1 and k-2 = k-1 have to be ful-
filled.

• mutually interacting processes

This is the most general case. Binding of a ligand has an
influence on binding of the other ligand and vice versa. In
this case all parameters can have different values.
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In addition to these, Koschorreck et al. [3] introduce

• all-or-none interactions

All-or-none interactions are a special case of mutual inter-
actions. An mutual interaction between two processes is
called all-or-none interaction, if the reaction cycle given
by the four reactions of our example degenerates to a reac-
tion chain. In real biochemical networks such interactions
usually are given by domain phosphorylation and subse-
quent ligand binding. Mostly phosphorylation can be
considered as necessary precondition for ligand binding.
On the other side ligand binding prevents dephosphoryla-
tion of the domain for steric reasons. To realize an all-or-
none interaction in our example, one has to choose k2 = k-

2 = k3 = k-3 = 0. In this case the species R(0, E) will not occur
and the remaining reactions r1 and r4 form a reaction
chain.

As can be seen from the examples provided below as well
as from examples discussed in other publications
[22,23,16,3], the absence of interactions or the occurrence
of unidirectional and all-or-none interactions facilitate
model reduction and modularization.

State space transformations
The model reduction approach presented by Conzelmann
et al. [16] is based on a linear state space transformation

In this work, it is assumed that each transformation matrix
T is an invertible square matrix with real values [25]. The
transformed model equations can be deduced from Equa-
tion 3 by differentiation

Finally, the old variables  have to be replaced by the new

ones using the inverse transformation  resulting
in

In the case of nonlinear transformations, the transformed
model equations can be deduced following the same pro-
cedure. However, note that the inversion of a nonlinear
transformation can be extremely difficult.

Observability
Let us consider the linear ODE system

in which A, B and C are constant matrices of appropriate
dimensions and the initial conditions are given by

. Obviously, the variables

denoted as  do not have any influence on the output

variables . Hence, any initial states whose values for

 coincide result in identical outputs for arbitrary ini-

tial conditions . The differences in the states  can-

not be observed considering these outputs.

The number of observable states is determined by the
dimension of the so-called observability space. For linear
systems it can be calculated as

d = rank(Q) with Q = [C, C A, . . . C An-1]T (7)

The first d linearly independent rows of Q build a basis for
the observability space [25]. For d = n the system is
called observable.

These considerations imply that an unobservable system
always can be reduced without affecting the dynamics of
the output variables. In Equation 6 a reduced system
would exclusively comprise the ODEs for the state varia-

bles . Such reductions are exact with respect to the out-

put.

Controllability
Now let us consider a differently structured linear system
of the form

In this case the state variables  cannot be influenced by

the inputs. Hence, the chosen input does not allow to con-
trol the system in any desired way, why the system is said
to be uncontrollable [25]. In analogy to the considerations
about observability, there also exists a controllability
space  whose dimension as well as its basis can be
deduced from the matrix
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P = [B A B . . . An-1B] (9)

Uncontrollable systems also can be reduced without
affecting the dynamics of the output, if an additional
assumption is fulfilled. If the dynamics of the uncontrol-

lable subsystem (  in Example 8) already decayed, 

can be replaced by its steady state value which in the
regarded example corresponds to zero.

Results and discussion
Exact model reduction
Short review
Conzelmann et al. have introduced linear transformations
that realize a Kalman decomposition for models of scaf-
fold proteins and receptors with single protein ligands
[16]. The term single protein ligand indicates that one only
considers the multi domain protein and its direct binding
partners but no additional binding or modification proc-
esses at these ligands.

The model reduction procedure suggested by Conzel-
mann et al. [16] can be divided into three essential steps.

Step 1: One generates a complete mechanistic ODE
model of the considered combinatorial reaction network
using e.g. BIONETGEN or ALC [19,29]. Furthermore, one
has to define input and output variables.

Step 2: The ODE model is transformed using the pro-
posed linear transformation pattern. If the system con-

tains unobservable state variables the transformed model
equations can be written as

In analogy to Equation 6 the states  are unobservable.

Choosing an invertible transformation matrix assures that
the system's dynamics are preserved, and the original
states can be retrieved from the new ones at any time as
long as none of the transformed equations are eliminated.

Step 3: The last reduction step is the elimination of the
unobservable system states. If the model also comprises
uncontrollable states these ODEs can be replaced by the
related steady state equations. A suitable transformation
pattern that facilitates a Kalman decomposition of models
describing scaffolds with multiprotein ligands or scaffold
homodimerization is still missing. The term multprotein
ligand indicates that the direct binding partners of the con-
sidered scaffold can also recruit further proteins or scaf-
folds (see Figure 1). In the following subsections, we will
introduce and discuss transformation patterns for these
kind of systems.

Scaffolds with multiprotein ligands
Many scaffold proteins or receptors often recruit other
scaffolds which in turn can be phosphorylated and/or
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The three basic scenarios that will be discussed in the followingFigure 1
The three basic scenarios that will be discussed in the following. Figure A depicts a receptor or scaffold protein with single pro-
tein ligands, i.e. each binding domain can recruit single proteins which do not possess further binding domains. A scaffold with 
multiprotein ligands is shown in Figure B. Some of the ligands are scaffolds themselves. The last scenario additionally includes 
receptor homodimerization. Heterodimerization on the other site corresponds to the scenario depicted in Figure B.

A                    B                                  C
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bind further ligands. A prominent example is the scaffold
IRS which binds to insulin receptor and can recruit
numerous other ligands like Grb2 or PI3K [30]. We will
call scaffolds like IRS multiprotein ligands. Note that, in
general, these multiprotein ligands can either bind single
protein ligands or again other multiprotein ligands. Het-
erodimerization, as it occurs in the ErbB signaling net-
work [31], also fits into this pattern. Homodimerization,
on the other hand, will be excluded from the following
considerations. Due to the symmetry of homodimeric
complexes homodimerization has to be handled differ-
ently as will be discussed later. Scaffolds with single pro-
teins ligands as discussed by Conzelmann et al. [16] can
be considered as a special case of what we examine here.
The main difference between these multiprotein and sin-
gle protein ligand systems is the formation of long protein
chains. For this reason, we will focus on this phenomenon
and its mathematical treatment. Later we will exemplify
how branched multiprotein ligand systems can be han-
dled considering a model of EGF and insulin receptor
crosstalk.

Let us focus on a receptor protein R which provides n
binding domains. We take the assumption that each

domain i can bind an effector protein  which in turn

can recruit another effector protein  till finally 

binds . In order to reduce the number of indices we

also presume that each chain of effector proteins consists
of m proteins. Finally, we only regard binding processes
and neglect all domain phosphorylations. Thus, each
receptor domain can be either unoccupied or occupied by
a multiprotein ligand consisting of one to m proteins
which results in (m + 1)n distinct receptor complexes. Fur-
thermore, the m effectors that form the different multipro-
tein ligands for one single receptor domain can build

 distinct complexes. According to these examina-

tions the total number of feasible multiprotein species is

.

General Transformation Pattern

In analogy to the considerations made by Conzelmann et
al. [16] we require a state space transformation which
facilitates a Kalman decomposition of the reaction net-
work. The transformation pattern introduced by Conzel-
mann et al. [16] can be divided into tiers that describe
levels of occupency of different order. The concept of
using levels of occupancy as new variables is problematic
for the considered multiprotein ligand systems. The term
level of occupancy implies a certain hierarchy among the

signaling proteins, which is certainly given in the single
protein ligand scenario where one scaffold can bind
numerous other effector proteins. It is obvious that in
such reaction networks the scaffold takes up a prominent
position which suggests the consideration of its occu-
pancy levels. In a system that involves numerous scaffolds
a clear hierarchy is missing, and the question arises which
occupancy levels should be considered. In most cases, an
intuitive hierarchy will be automatically chosen. For
example, in the case of insulin signaling, it is quite sugges-
tive to choose the insulin receptor as central protein of the
cascade. Due to representational reasons we also assume
a hierarchy in our examples with R being the central pro-
tein. However, if one e.g. considers heterodimerization of
two ErbB receptors [31] it is not apparent which receptor
takes up a more prominent position than the other one.
Another problem is that the definition of occupancy levels
for multiprotein ligand systems is not as unique as for sin-

gle protein ligand systems. The quantity [R( , *, ..., *)],

which can be interpreted as an occupancy level, describes
all receptor species whose first domain is occupied by the

single protein  excluding all species in which  has

bound any further effectors or scaffolds. [R( (*), *, ...,

*)] on the other site represents an alternative type of occu-
pancy level which does not exclude the previously men-
tioned multiprotein complexes.

A more general transformation pattern is required that
avoids the implication of molecular hierarchy, and is con-
sistent with the transformation pattern introduced by
Conzelmann et al. [16]. These requirements are met by the
introduction of so-called occurrence levels. Occurrence lev-
els always refer to a certain molecular subcomplex and
correspond to the sums of all multiprotein species that
comprise this subcomplex. Thus, for each individual
molecular species one can define a respective occurrence
level. If these occurrence levels are used to replace the orig-
inal model states, this defines a linear and invertible trans-
formation. The proposed transformation pattern also
preserves the hierarchical structure of the transformation
matrix. The 0th tier of the transformation matrix, as intro-
duced by Conzelmann et al. [16], includes the overall con-
centrations of all involved signaling proteins. It
corresponds to the occurrence levels of individual pro-
teins which are a very special type of subcomplex. The 1st

tier includes the occurrence levels of all possible two pro-
tein subcomplexes. In the case of scaffolds with single pro-
tein ligands this directly corresponds to the levels of
occupancy. According to this pattern the following tiers of
the transformation matrix respectively comprise all sub-
complexes consisting of three, four and more proteins. If
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phosphorylations occur in the considered reaction net-
work the phosphate groups have to be treated as addi-
tional molecules. For example a scaffold with one
phosphorylated domain is regarded as a two molecule
complex.

For the simplified case introduced above the new trans-
formed states can be specified as follows. The 0th tier com-

prises the states [R(*, ..., *)] and [ (*)], while the first

one includes the states [R(*, ..., *, (*), *, ..., *)] as well

as . The occurrence levels that refer to all

three molecule complexes are [R(*, ..., *, (*), *, ..., *,

(*), *, ..., *)], [R(*, ..., *, (*), *, ..., *)] and

. The subsequent tiers are defined according

to this pattern, and the last tier only comprises the single

micro-state . The fact that each individual

molecular species can be uniquely linked to an associated
occurrence level suggests that the transformation is invert-
ible. This can also be proven by using the mathematical
induction as described for single protein ligands in
Conzelmann et al. [16] (data not shown).

Examples
We will analyze two different systems of receptors with
multiprotein ligands (see Figure 2). For the sake of sim-
plicity these examples solely consider chains of signaling
proteins. A more complex example is given in the Section
Example: EGF and Insulin Receptor Crosstalk. The first sys-
tem consists of six signaling proteins which bind consec-
utively to each other. In order to provide a simple
representation of the occurring complexes and the corre-
sponding occurrence levels the protein R is considered as
central receptor which binds the single protein ligand L
and a multiprotein ligand consisting of the effectors E1 to
E4. None of these proteins is assumed to be phosphor-
ylated. The second example only comprises four signaling
proteins of which three are phosphorylated.

Example 1: Six signaling proteins
We assume that E1 binding is unidirectionally influenced
by the recruitment of L. Equivalently, Ei binding is unidi-
rectionally influenced by the binding of Ei-1 to its prede-
cessor. The resulting reaction rules for this system are
given in Table 1. We take the assumption that [L] is the
input of the system. The choice of output variables is more
difficult in this example. For systems with single protein
ligands the levels of occupancy are chosen. These corre-
spond to all states included in the 1st transformation tier.
In accordance to this choice one could again take all states

of the 1st tier as output variables. For multiprotein ligands
these states correspond to the occurrence levels of all two
protein complexes. However, for many real networks also
other states might be of interest. Let us consider the insu-
lin receptor which can recruit a multiprotein ligand con-
sisting of Shc, Grb2 and SOS [30,32]. In this case, the
recruitment of SOS to a membrane bound signaling com-
plex initiates the MAPK cascade [32]. Thus, it is important
to know how many SOS proteins have bound to the recep-
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Examples for multiprotein ligand systemsFigure 2
Examples for multiprotein ligand systems. Figure A depicts a 
chain of signaling proteins without any post-translational 
modifications such as phosphorylations. All bindings are 
assumed to interact unidirectionally with each other (black 
unidirectional arrows). Figure B shows a similar system 
including domain phosphorylation. Thereby, it is assumed 
that phosphorylation and subsequent effector binding inter-
act via an all-or-none reaction. Since all-or-none interactions 
are always bidirectional they are depicted by bidirectional 
arrows. The last example is a small part of the insulin signal-
ing pathway.
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tor complex and not how many Grb2-SOS complexes
occur in the network. Hence, we will consider two types of
output variables.

The output vector  represents the five occurrence levels

of the 1st transformation tier. The output vector  on the

other hand includes the variables [R(L, *)], [R(*, E1(*))],

[R(*, E2(*))], [R(*, E3(*))] and [R(*, E4)]. In order to

show the large influence of process interactions on exact

model reduction we additionally consider the case that k8

= k9 and k-8 = k-9. This assumption implies that E4 binding

is completely independent of all other binding processes.
Since the transformation pattern is independent of the
kinetic system properties and the chosen output variables
all mentioned cases can be handled using the same trans-
formation. It consists of six tiers that are shown in Table 2.

Due to the absence of protein production and degrada-
tion the six states of the 0th tier remain all constant. Thus,
these six ODEs can be eliminated in the considered exam-
ple. First, we will discuss the case that E4 binding is unidi-

rectionally influenced by E3 binding. In this case, our

transformation does not allow any exact reduction of the

model, neither for the output variables  nor for .

Interestingly, the transformed model equations can be
dissected into five modules, which are all unidirectionally
coupled. This model structure directly resembles the inter-
action pattern between the five considered binding proc-
esses. In fact each of the modules describes one of these

y1

y2

y1 y2

Table 1: Reaction rules describing the Example depicted in 
Figure 2A. 

R(0, *) + L G R(L, *) k1, k-1
R(0, 0) + E1(*) G R(0, E1(*)) k2, k-2
R(L, 0) + E1(*) G R(L, E1(*)) k3, k-3
E1(0, 0) + E2(*) G E1(E2(*)) k4, k-4
R(*, E1) + E2(*) G R(*, E1(E2(*))) k5, k-5
E2(0, 0) + E3(*) G E2(E3(*)) k6, k-6
E1(*, E2) + E3(*) G E1(*, E3(*)) k7, k-7
E3(0, 0) + E4 G E3(E4) k8, k-8
E2(*, E3) + E4 G E2(*, E4) k9, k-9

The kinetic parameters are specified behind the rules.

Table 2: Hierarchical transformation that realizes a Kalman decomposition for the example system depicted in Figure 2A. 

[R(*, *)] = [R(0, 0)] + [R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, 0)] + [R(L, E1)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[E1(*)] = [E1(0)] + [E1(E2)] + [E1(E3)] + [E1(E4)] + [R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, E1)] + [R(L, E2)] + [R(L, E3)] + [R(L, 

E4)]
[E2(*)] = [E1(E2)] + [E1(E3)] + [E1(E4)] + [E2(0)] + [E2(E3)] + [E2(E4)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[E3(*)] = [E1(E3)] + [E1(E4)] + [E2(E3)] + [E2(E4)] + [E3(0)] + [E3(E4)] + [R(0, E3)] + [R(0, E4)] + [R(L, E3)] + [R(L, E4)]
[E4(*)] = [E1(E4)] + [E2(E4)] + [E3(E4)] + [E4(0)] + [R(0, E4)] + [R(L, E4)]

[R(L, *)] = [R(L, 0)] + [R(L, E1)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[R(*, E1(*))] = [R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, E1)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]

[E1(E2(*)] = [E1(E2)] + [E1(E3)] + [E1(E4)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[E2(E3(*))] = [E1(E3)] + [E1(E4)] + [E2(E3)] + [E2(E4)] + [R(0, E3)] + [R(0, E4)] + [R(L, E3)] + [R(L, E4)]
[E3(E4(*))] = [E1(E4)] + [E2(E4)] + [E3(E4)] + [R(0, E4)] + [R(L, E4)]

[R(L, E1(*))] = [R(L, E1)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[R(*, E2(*))] = [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, E2)] + [R(L, E3)] + [R(L, E4)]

[E1(E3(*)] = [E1(E3)] + [E1(E4)] + [R(0, E3)] + [R(0, E4)] + [R(L, E3)] + [R(L, E4)]
[E2(E4(*))] = [E1(E4)] + [E2(E4)] + [R(0, E4)] + [R(L, E4)]

[R(L, E2(*))] = [R(L, E2)] + [R(L, E3)] + [R(L, E4)]
[R(*, E3(*))] = [R(0, E3)] + [R(0, E4)] + [R(L, E3)] + [R(L, E4)]

[E1(E4(*)] = [E1(E4)] + [R(0, E4)] + [R(L, E4)]

[R(L, E3(*))] = [R(L, E3)] + [R(L, E4)]
[R(*, E4(*))] = [R(0, E4)] + [R(L, E4)]

[R(L, E4(*))] = [R(L, E4)]

The new states correspond to the occurrence levels of different subcomplexes. The transformation can be structured in different tiers. The 
previously discussed case of single protein ligand systems can be considered as border case of the underlying transformation pattern. The 
transformation is independent of the chosen output variables as well as the kinetic properties of the reaction network. However, another choice of 
output variables may lead to a higher or lower number of observable states. The same holds true for varying kinetic parameters. For given input and 
output signals the kinetic properties determine whether states are observable and/or controllable. Furthermore, the kinetic parameters also define 
whether the model equations can be modularized or not. In the considered example the system does not comprise unobservable states and can be 
divided into five modules if k8 ≠ k9 and k-8 ≠ k-9. If k8 = k9 and k-8 = k-9 the system can be reduced to ten ODEs.
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five processes. However, the modules differ in size and
structure.

The first module which describes the recruitment of L to
the receptor only consists of one differential equation.
The second, third, fourth and fifth module comprises two,
three, four and five states, respectively. Another nice prop-
erty of the transformed system is the concurrently
achieved modularization of the kinetic parameters. For
instance, the L binding module only contains the param-
eters k1 and k-1. In addition to k1 and k-1, the second mod-
ule comprises all parameters that describe binding of E1 to
R but no others. This special hierarchical structure is very
advantageous for parameter estimation.

Measurements of the transient behavior either of the

states  or  facilitate a stepwise identification of the

kinetic model parameters module by module.

Taking the assumption that the association of E3 and E4 is

independent of all other occurring binding processes the
structure of the fifth module changes. The state E3(E4(*))

is not controllable any more, since the respective binding
process can neither be directly nor indirectly influenced

by changes in the L concentration. If  is the output vec-

tor of the system the output variable E3(E4(*)) is deter-

mined by the steady state equation of the respective ODE.
The remaining four states of the fifth module are not
observable and can be simply omitted. Thus, the model
can be exactly reduced to ten ODEs. The situation changes

if one considers the output vector . The choice of differ-

ent output variables does not affect controllability of a
system. Thus, the state E3(E4(*)) is still uncontrollable

and the respective ODE can be replaced by its steady state
equation. However, all model states are observable in this
case, and thus no further equation can be eliminated. An
exactly reduced model in this case would comprise four-
teen ODEs.

Example 2: Domain phosphorylation
As a second example we consider a similar receptor R. In
contrast to the previously considered example the recep-
tor's intracellular domain has to be phosphorylated in
order to bind the effector protein E1. Phosphorylation is
considered to be a necessary precondition for E1 binding,
while bound E1 preserves the receptor domain from
dephosphorylation due to steric reasons. This corre-
sponds to a so-called all-or-none interaction as it has been
introduced by Koschorreck et al. [3]. E1 also has to be
phosphorylated in order to recruit E2, which prevents

dephosphorylation of E1. We do not consider binding of
further effector proteins. The reaction rules for this system
are given in Table 3.

Again the concentration [L] is considered as the input of
the system. The states [R(L, *)], [R(*, P)], [R(*, E1)], [R(*,

E1(P))] and [R(*, E2)] are chosen as ouput variables .

Since the system also comprises six different processes the
transformation pattern again consists of six different tiers
that are depicted in Table 4. Due to the absence of protein
production and degradation the three states of the 0th tier
remain all constant. Thus, these three ODEs can be elimi-
nated.

In this example, the transformed model equations can be
dissected into three unidirectionally coupled modules
including all five output variables, and one additional
module comprising the two unobservable states [R(L,
E1(P))] and [R(L, E2)]. All model states are controllable.
Thus, this example shows that the existence of all-or-none
interactions facilitate significant model reductions.
Although the considered system comprises the same
number of molecular processes than the previously
regarded one, even the complete mechanistic model
already consists of a lower number of ODEs. Additionally,
the system comprises two unobservable states, which
allows for a further model reduction.

Homodimerization of receptors and scaffolds
Homodimerization of receptors and scaffold proteins is
quite common in signal transduction networks. For
instance, homodimers occur in the ErbB signaling net-
work as described by Citri et al. [31].

Homodimerization is additionally characterized by a
number of unique features having a strong impact on
model reduction which justifies a separate and detailed
discussion. Due to their symmetric configuration the
number of distinguishable homodimers is much lower
than of equally large heterodimers. If one considers a
receptor monomer which forms n distinct monomeric

y1 y2

y1

y2

y

Table 3: Reaction rules describing the Example depicted in 
Figure 2B. 

R(0, *) + L G R(L, *) k1, k-1
R(0, 0) G R(0, P) k2, k-2
R(L, 0) G R(L, P) k3, k-3
R(*, P) + E1(*) G R(*, E1(*)) k4, k-4
E1(0, 0) G E1(0, P) k5, k-5
R(*, E1) G R(*, E1(P)) k6, k-6
E1(*, P) + E2 G E1(*, E2) k7, k-7

The kinetic parameters are specified behind the rules.
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multiprotein complexes there exist  feasible

homodimers. Heterodimerization of two different recep-
tors, which both form n monomeric species, leads to n2

feasible heterodimers. However, the indistinguishability
of symmetric receptor dimers not only has the positive
effect of reducing the number of ODEs compared to het-
erodimers. It also leads to non-intuitive kinetic system
properties, which will be discussed below.

We will consider a receptor R with n distinct binding
domains. Furthermore, we presume that R can form
homodimers. These homodimers shall be decipted as R(*,
..., *).R(*, ..., *). Due to the symmetry of the dimers one
cannot distinguish between R(L, 0, ..., 0).R(0, ..., 0) and
R(0, ..., 0).R(L, 0, ..., 0). Hence, we reach an agreement
that the receptor with more occupied domains will always
be noted first.

Kinetic properties
Dimerization is a molecular process such as ligand bind-
ing, and dimerization can influence or can be influenced
by all other processes within the considered network. The
most simple theoretic case one can analyze is that receptor
homodimerization is completely independent of all other
processes. In order to achieve this independence one has
to parametrize all dimerization reactions adequately. This
requires to distinguish between the formation of mirror
symmetric dimers and non-mirror symmetric dimers. The
reason for this discrimination is that reactions describing
the formation of non-mirror symmetric dimers have to be
parametrized by a twofold higher kon value than those of
mirror symmetric dimers.

The reason for this duplication of the kon value can be elu-
cidated considering the reaction rates. Let us take the
assumption that the two concentrations [R(X1, ..., Xn)]
and [R(Y1, ..., Yn)] are equal. The rates for the considered
two reactions comprise the terms [R(X1, ..., Xn)]2 and
[R(X1, ..., Xn)]·[R(Y1, ..., Yn)], respectively. According to
the collision theory for chemical reactions these terms are
measures for the likelihood of a collision of two reactants
in the system. Due to our assumption that the concentra-
tions of both species are equal, the evaluation of both
terms leads to exactly the same numerical result. However,
the likelihood for the formation of a non-mirror symmet-
ric dimer is twofold higher than that for mirror symmetric
ones. This becomes apparent if one considers the collision
probability for both cases. In the second case the number
of molecules that may collide is twofold higher than in
the first one.

Not only the dimerization process itself and therefore the
dimerization reactions have to be treated differently. Due
to the symmetry of homodimers one also has to be careful
in parametrizing ligand binding and modification reac-
tions. Let us again assume that binding of the ligand L is
completely independent of all other processes. Note, that
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Table 4: Hierarchical transformation for the example system depicted in Figure 2B.

[R(*, *)] = [R(0, 0)] + [R(0, P)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, 0)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E1(*)] = [E1(0)] + [E1(P)] + [E1(E2)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E2(*)] = [E1(E2)] + [E2(0)] + [R(0, E2)] + [R(L, E2)]

[R(L, *)] = [R(L, 0)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, P(*))] = [R(0, P)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]

[E1(P (*)] = [E1(P)] + [E1(E2)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1(P))] + [R(L, E2)]

[R(L, P(*))] = [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, E1(*))] = [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]

[E1(E2(*)] = [E1(E2)] + [R(0, E2)] + [R(L, E2)]

[R(L, E1(*))] = [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, E1(P (*)))] = [R(0, E1(P))] + [R(0, E2)] + [R(L, E1(P))] + [R(L, E2)]

[R(L, E1(P (*)))] = [R(L, E1(P))] + [R(L, E2)]
[R(*, E2(*))] = [R(0, E2)] + [R(L, E2)]

[R(L, E2(*))] = [R(L, E2)]

The new states correspond to the occurrence levels of different subcomplexes. The transformation can be structured in different tiers. The 
previously discussed case of single protein ligand systems can be considered as border case of the unterlying transformation pattern.
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this is a completely theoretic assumption in order to illus-
trate the occurring problems regarding the most simple
scenario. Furthermore, let k1 and k-1 be the kinetic param-
eters describing the association and dissociation of L with
a receptor monomer

Here, one has again to distinguish two cases, namely
binding of L to a completely unliganded dimer and bind-
ing to a single liganded one. According to our assumption
dimerization shall not have any effect on ligand binding.
Hence, each receptor molecule of a dimer behaves exactly
the same way as a monomeric receptor does, which indi-
cates that an unliganded dimer has a twofold higher kon
value than a single liganded or a monomeric one. The
same rationale also implies that the koff value for a double
liganded dimer is twofold higher than for a single lig-
anded one. Thus, the reactions have to be parametrized as
follows

The realization of process interactions either between two
binding or modification processes or between dimeriza-
tion and some other processes is straight forward. If
dimerization has an influence on L binding, Reaction 12
will be parametrized by k1 and k-1, while the parameters k2
and k-2 will be used for the Reactions 13 and 14. However,
one still has to account for the twofold higher association
constant of Reaction 13 and the twofold higher dissocia-
tion constant of Reaction 14. The neglect of these addi-
tional factors corresponds to a mutual interaction
between the two ligand binding processes within a dimer.

General transformation pattern
The general transformation for systems that include
homodimerization follows exactly the same pattern as
introduced for scaffolds with multiprotein ligands. It is
hierarchically structured whereas the different tiers of the
transformation comprise occurrence levels of one, two,
three or higher molecule complexes. However, one has to
be careful, since some of the species concentrations have
to be counted twice. Let us consider the occurrence level
of a receptor ligand complex, which we will depict as [R(L,
*, ..., *).*]. This accumulated quantity comprises mono-
meric as well as dimeric species, namely [R(L, *, ..., *)],

[R(L, *, ..., *).R(0, *, ..., *)] and [R(L, *, ..., *).R(L, *, ...,
*)]. Observe, that the species R(L, *, ..., *).R(L, *, ..., *)
include two receptor ligand complexes and therefore has
to be counted twice. Consequently, the considered occur-
rence level is defined as

The invertibility of the transformation matrix suggested
here can again be proved using mathematical induction.

Example
As an example we will analyze homodimerization of the
EGFR receptor which will be called R in the following. In
addition to the dimerization process we also consider EGF
binding and receptor phosphorylation. EGF binding and
receptor dimerization are assumed to interact mutually.
This assumption is in accordance with thermodynamic
constraints [33,28], and also fits to experimental data pre-
sented by Odaka et al. and Lemmon et al. [34,35]. Further-
more, we assume that dimerization influences receptor
phosphorylation, since the receptors of a dimer phospho-
rylate each other mutually. In analogy to the experimental
results of Gherzi et al. [36] for insulin signaling this inter-
action is expected to be an unidirectional one. The reac-
tion rules which describe this system are given in Table 5.

The reaction system comprises 14 receptor species and the
ligand EGF. The transformation of these states according
to the proposed general transformation pattern is shown
in Table 6. Since the concentration of extracellular EGF is
considered as model input the transformation does not
include the overall concentration of EGF. The most sug-
gestive choice of output variables in this example are the
three occurrence levels of the 1st transformation tier,
namely [R(EGF, *).*], [R(*, P).*] and [R(*, *).R(*, *)].
These outputs correspond to the total number of liganded
EGF binding domains, the total number of phosphor-
ylated intracellular receptor domains as well as the
number of receptor dimers.

Due to the absence of production and degradation, the
overall concentration of EGFR stays constant and the
respective ODE can be eliminated. The remaining 13
transformed model equations can be dissected into three
modules. The first module consists of four ODEs and
describes EGF binding as well as receptor homodimeriza-
tion. It comprises the model states [R(EGF, *).*], [R(*,
*).R(*, *)], [R(EGF, *).R(*, *)] and [R(EGF, *).R(EGF,
*)]. The second module describes receptor phosphoryla-
tion and contains six ODEs, while the remaining three
ODEs for [R(*, P).R(*.P)], [R(EGF, P).R(*, P)] and
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Table 5: Reaction rules for the considered example of EGFR dimerization. 

R(0, *) + EGF G R(EGF, *) k1, k-1
R(0, *).R(0, *) + EGF G R(EGF, *).R(0, *) 2k2, k-2
R(EGF, *).R(0, *) + EGF G R(EGF, *).R(EGF, *) k2, 2k-2
R(0, X1) + R(0, X1) G R(0, X1).R(0, X1) k3, k-3
R(0, X1) + R(0, X2) G R(0, X1).R(0, X2) 2k3, k-3
R(EGF, X1) + R(0, X1) G R(EGF, X1).R(0, X1) k4, k-4
R(EGF, X1) + R(0, X2) G R(EGF, X1).R(0, X2) 2k4, k-4
R(EGF, X1) + R(EGF, X1) G R(EGF, X1).R(EGF, X1) k5, k-5
R(EGF, X1) + R(EGF, X2) G R(EGF, X1).R(EGF, X2) 2k5, k-5
R(*, 0) G R(*, P) k6, k-6
R(*, 0).R(*, 0) G R(*, P).R(*, 0) 2k7, k-7
R(*, P).R(*, 0) G R(*, P).R(*, P) k7, 2k-7

Herein the identifiers Xn also indicate that the related domains can be in various states as the identifier * does. However, all domains with the 
identifier Xn within one rule have to be in the same state. If two different identifiers Xi and Xj occur within one rule the respective domains are not 
allowed to be in the same state.

Table 6: Hierarchical transformation for the example system. 

[R(*, *).*] = [R(0, 0)] + [R(EGF, 0)] + [R(0, P)] + [R(EGF, P)] + 2 [R(0, 0).R(0, 0)] 
+ 2 [R(EGF, 0).R(0, 0)] + 2 [R(0, P).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)] 
+ 2 [R(EGF, P).R(0, 0)] + 2 [R(EGF, 0).R(0, P)] + 2 [R(0, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, 0)] + 2 [R(EGF, P).R(0, P)] + 2 [R(EGF, P).R(EGF, P)]

[R(EGF, *).*] = [R(EGF, 0)] + [R(EGF, P)] + [R(EGF, 0).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)] 
+ [R(EGF, P).R(0, 0)] + [R(EGF, 0).R(0, P)] + 2 [R(EGF, P).R(EGF, 0)] 
+ [R(EGF, P).R(0, P)] + 2 [R(EGF, P).R(EGF, P)]

[R(*, *).R(*, *)] = [R(0, 0).R(0, 0)] + [R(EGF, 0).R(0, 0)] + [R(0, P).R(0, 0)] + [R(EGF, 0).R(EGF, 0)] 
+ [R(EGF, P).R(0, 0)] + [R(EGF, 0).R(0, P)] + [R(0, P).R(0, P)] 
+ [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(0, P)] + [R(EGF, P).R(EGF, P)]

[R(*, P).*] = [R(0, P)] + [R(EGF, P)] + [R(0, P).R(0, 0)] + [R(EGF, P).R(0, 0)] + [R(EGF, 0).R(0, P)] 
+ 2 [R(0, P).R(0, P)] + [R(EGF, P).R(EGF, 0)] + 2 [R(EGF, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, P)]

[R(EGF, P).*] = [R(EGF, P)] + [R(EGF, P).R(0, 0)] + [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, P)]

[R(EGF, *).R(*, *)] = [R(EGF, 0).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)] + [R(EGF, P).R(0, 0)] 
+ [R(EGF, 0).R(0, P)] + 2 [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, P)]

[R(*, P).R(*.*)] = [R(0, P).R(0, 0)] + [R(EGF, P).R(0, 0)] + [R(EGF, 0).R(0, P)] + 2 [R(0, P).R(0, P)] 
+ [R(EGF, P).R(EGF, 0)] + 2 [R(EGF, P).R(0, P)] + 2 [R(EGF, P).R(EGF, P)]

[R(EGF, *).R(EGF, *)] = [R(EGF, 0).R(EGF, 0)] + [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(EGF, P)]
[R(*, P).R(*, P)] = [R(0, P).R(0, P)] + [R(EGF, P).R(0, P)] + [R(EGF, P).R(EGF, P)]

[R(EGF, P).R(*, *)] = [R(EGF, P).R(0, 0)] + [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, P)]

[R(EGF, *).R(*, P)] = [R(EGF, 0).R(0, P)] + [R(EGF, P).R(EGF, 0)] + [R(EGF, P).R(0, P)] 
+ 2 [R(EGF, P).R(EGF, P)]

[R(EGF, P).R(EGF. *)] = [R(EGF, P).R(EGF, 0)] + 2 [R(EGF, P).R(EGF, P)]
[R(EGF, P).R(*, P)] = [R(EGF, P).R(0, P)] + 2 [R(EGF, P).R(EGF, P)]

[R(EGF, P).R(EGF, P)] = [R(EGF, P).R(EGF, P)]

The new states also correspond to the occurrence levels of different subcomplexes. Due to the symmetric structure of the recptor dimers some 
species have to be counted twice. For instance the macroscopic state [R(EGF, *).*] is an aggregation of all species that comprise a subcomplex 
consisting of one receptor and one EGF molecule. The two micro-states [R(EGF, 0).R(0, 0)] and [R(EGF, 0).R(EGF, 0)] obviously fit into this pattern. 
However, the state [R(EGF, 0).R(EGF, 0)] has to be counted twice since the regarded subcomplex also occurs twice in this species. Furthermore, the 
transformation can be structured in six different tiers.
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[R(EGF, P).R(EGF, P)] form the third unobservable mod-
ule. Since all states are controllable the model can be
reduced by omitting the three unobservable states. This
reduced model then comprises ten ODEs.

Generality of the method
Nearly more important than the introduced method and
the algorithm to exactly reduce a model is the question
about its limitations. In this context, one has to distin-
guish between the limitations of exact reducibility and of
the described reduction method. As we mentioned earlier
the model structure as well as its input and output varia-
bles are mostly not discretionary. If a considered system is
a minimal realization due to these characteristics it is
impossible to find or develop any method which allows
to exactly reduce this model. From our point of view this
is no limitation of the method but of exact reducibility in
general. It is difficult to make a descriptive but general
statement under which conditions a combinatorial reac-
tion network model is exactly reducible or not. However,
one can state that retroactive effects as well as feedbacks
can strongly reduce the number of eliminable states. If at
least one of the binding or modifications processes that
are of interest is directly or indirectly affected by all other
considered processes the chances to reduce such a system
exactly are very low. From a mathematical point of view
one can make much more general statements. Control
theory provides numerous techniques which allow to
check any system for observability or controllability. If all
model states are observable and controllable the applica-
tion of our method is not convenient instead one should
alternatively use an approximative reduction technique
like proposed by Koschorreck et al. [3]. One possibility is
to check for local observability or controllability of the
reduced models by analyzing the linearized model equa-
tions

with ,  and  ∈

�n,  ∈ �m. If all states of the linearized model are con-
trollable and observable this proves that at least at the

considered operating point ( , ) all states are

required to accurately describe the systems behavior and
that the model is not exactly reducible. The system is said
to be locally controllable at the operating point if the rank
of the matrix P (see Equation 9) is n [25]. Accordingly, the
system is said to be locally observable if the rank of the
matrix Q (see Eqnation 7) is n [25]. However, using this
analysis method one has to be aware of the fact that con-
trollable and observable nonlinear system states might

loose controllability and/or observability at individual
operating points [25]. A matrix rank of n proves that the
considered system cannot be exactly reduced. At least at
the chosen operating point all states are controllable and
therefore affect the system's input/output behavior. If a
model still comprises uncontrollable or unobservable
states, the rank of the related matrix will be smaller than n
for all considered operating points. However, if the matrix
rank is lower than n this is no proof that the system is
exactly reducible and still comprises uncontrollable or
unobservable states. It is also possible that the system was
linearized at an unpropitiously chosen operating point.
Hence, it might be necessary to repeat the test at several
operating points. A matrix rank smaller than n for numer-
ous operating points highly suggests the further existence
of uncontrollable or unobservable states in the nonlinear
system. However, it is no proof.

After having discussed the limitations of exact reducibility
in general, we also want to address the limitations of our
method. A limitation of an exact reduction method is it
does not facilitate the reduction of an exactly reducible
model. Unfortunately, it is not possible to generally prove
that our method has or has not such limitations. How-
ever, each model that has been reduced using our method
can be linearized and checked for local observability and
controllability. If the rank of the corresponding P and Q
matrices is n all unobservable and uncontrollable system
states have been eliminated.

All examples discussed in Conzelmann et al. [16] as well
as the examples discussed above have been checked for
further uncontrollable or unobservable states using this
approach. In all cases, the reduced models proved to be
minimal realizations even for varying input and output
variables. However, there exists an interesting border case,
in which a model can be further reduced without affecting
the input/output behavior. This border case shall be dis-
cussed below.

We consider a receptor with three binding domains
whereas one extracellular domain controls the two intrac-
ellular domains in an unidirectional manner. This exam-
ple is also discussed by Conzelmann et al. [16]. However,
in contrast to the example discussed there, we presume
that the two intracellular domains are identical. Both
recruit the same effector protein E and both have exactly
the same kinetic properties. Let us further assume that the
system output is the total number of E proteins bound to
the receptor, which corresponds to the sum of both occu-
pancy levels. The proposed transformation facilitates the
elimination of the two unobservable ODEs [R(*, 1, 1)]
and [R(1, 1, 1)] (see also Conzelmann et al. [16]). In this
case, the remaining ODEs can only be dissected into two
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modules. Although the two identical domains do not
interact with each other their ODEs are coupled due to the
fact that both recruit the same effector. The module that
describes the two intracellular domains resembles the
symmetry of the considered system. Its equations form
two identical but coupled submodules

each describing one of the two identical binding domains.
However, note that the initial conditions do not necessar-
ily have to coincide. Under these assumptions the system

still comprises unobservable states if the vector field 

fulfills the superposition principle

In this case the system output y and its derivatives only

depend on the sum of  and 

Thus, a minimal realization of the system would be

The superposition principle is fulfilled if the operator  is

linear in . In the more general case if  does not fulfill

the superposition principle our transformation provides a
minimal realization of the system. However, note that

even for a general operator  the number of equations

can be reduced if the initial conditions of both submod-

ules are equivalent . Under this condition

both submodules are completely identical 

and therefore one of them can be eliminated and the
reduced module can be written as

However, this reduction is not due to the elimination of
unobservable states as defined above but results from the
restricted choice of initial conditions. From these consid-
erations it can be seen that except for the case of two iden-
tical linear subsystems no example has been found for
which the proposed transformation does not provide a
Kalman decomposition.

Reduced order modeling of combinatorial reaction 
networks
In the previous section, we discussed a general and sys-
tematic method that allows for significant and exact
model reductions of combinatorial reaction networks.
Now, an alternative approach shall be considered that
facilitates the direct generation of the exactly reduced
model equations. This reduced order modeling approach
is based on the close relations between controllability and
observability of a model and the process interactions of
the examined system.

Controllability, observability and process interactions
From the previously regarded examples it can be seen that
the number of observable and controllable states highly
depends on the occurring process interactions. The ques-
tion is whether the qualitative information about process
interactions can give clues about the observability and
controllability of a reaction network, or maybe even facil-
itate a direct translation to reduced model equations.
Controllability and observability as well as process inter-
actions provide information about interactions within the
considered system, however, at different levels of abstrac-
tion.

Controllability and observability are properties of an
ODE system, and both of them characterize the ODE cou-
plings with respect to the system inputs and outputs. All
observable states exert a certain influence on at least one
of the output variables. On the other hand a state is said
to be controllable, if it can be influenced either directly or
indirectly by one of the system's input variables.

Process interactions describe the regarded system at a dif-
ferent level of abstraction. However, they also provide
information about which processes can influence other
processes and which can be influenced by other processes.
Controllability and observability are closely related to the
definition of input and output variables, respectively. In
accordance to this definition at the ODE level, one can
also formally define input and output processes at the
process level. A connection between the two abstraction
levels is given by the occurrence levels we previously intro-
duced as a state space representation for combinatorial
reaction networks. These coordinates allow a direct
assignment of model states to specific molecular proc-
esses.
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Each occurrence level like e.g. [R(*, ..., *, Ei, *..., *)] can be
directly assigned to its respective process, namely Ei bind-
ing to R. Analogously, occurrence levels of higher tiers like
[R(E1, E2, E3, *, ..., *)] can be linked with three different
processes. All processes that are related to the chosen out-
put variables are said to be output processes, and all proc-
esses that can be directly assigned to the input variables
analogously correspond to the input processes. This direct
link between model variables and processes facilitates the
unique translation of all input and output variables to a
set of input and output processes. Let us consider an
example and presume that the concentration of E1 is
regarded as input variable while [R(*, E2, *, ..., *)] and
[R(*, *, *, E4, E5, *, ..., *)] are output variables. In this case
E1 binding to R is an input process, and E2, E4 and E5 bind-
ing to R are output processes.

Furthermore, we can formally introduce process controlla-
bility and process observability. A process shall be called
process controllable if it is either directly or indirectly
influenced by one of the input processes. Analogously, a
process will be called process observable if it directly or
indirectly affects one of the output processes. In contrast
to controllability and observability of an ODE model, the
respective system properties at the process level can be
analyzed in a very simple way by considering the process
interaction graph. In this graph processes are regarded as
nodes, while process interactions are represented as
directed edges. This definition of an interaction graph is
very similar to that proposed by Klamt et al. [37]. A proc-
ess P is process controllable if the interaction graph com-
prises a directed path from one of the input processes to
the process P. The same process is observable if there exists
a directed path from P to one of the output processes.

A relation between the controllability and observability
concepts at the different abstraction levels can also be
approved. Process controllability suggests that all states
that are assigned to this process are influenced and there-
fore controllable. Process observability on the other hand
indicates that the respective occurrence level of the 1st tier
is observable. State variables that describe occurrence lev-
els of higher tiers, as [R(E1, E2, E3, *, ..., *)], are only
observable if the related processes all jointly affect at least
one of the output processes. Thus, we have found a way to
predict whether a certain state might be observable or con-
trollable by considering the process interactions. Note,
that this technique provides a conservative appraisal
which in some cases will classify states as controllable or
observable although they are not.

Reduced order modeling technique
The enormous complexity of most real signal transduc-
tion networks often impedes the application of common
model reduction techniques discussed in literature as well

as the previously proposed model reduction concept. New
alternative techniques are required that allow the direct
generation of reduced model equations. The already
introduced concepts of process interactions, interaction
graphs as well as process controllability and observability
serve as a basis for the following considerations. The fun-
damental idea is that at the macroscopic level a mathe-
matical description of a certain process merely requires
the incorporation of those other processes that exert some
influence on the considered one. A detailed specification
of the method will be given in the following and is struc-
tured in nine elementary steps. Each step will be illus-
trated considering the example shown in Figure 3.

Step 1: Definition of all proteins, binding domains as well
as binding and modification processes that shall be
included to the model.

Example: In the considered example the model will com-
prise the molecules A, B, C and D with their binding
domains as depicted in Figure 3A. The occurring processes
are usually labelled or numbered like indicated in Figure
3A. In the example we consider eight different processes,
namely binding of A to B (process 1), phosphorylation of
B at different domains (processes 2, 3 and 7), binding of
C to B (process 4), phosphorylation of C at two distinct
domains (processes 5 and 6) as well as binding of D
(process 8).

Step 2: In a second step one has to define all occurring
process interactions and whether these are uni- or bidirec-
tional. These process interactions have to be consistent
with both measured kinetic data of the involved proteins
and the thermodynamic constraints as discussed in Ederer
et al. and Conzelmann et al. [38,28]. These constraints for
instance highly restrict the possible occurrence of unidi-
rectional interactions. Nature can only realize unidirec-
tional interactions at the expense of energy [28]. Since a
mathematical model requires a complete definition for all
interactions, mostly fragmentary knowledge has to be
completed by assumptions.

Example: In Figure 3A the occurring process interactions
of the example are indicated by arrows. The processes (1,
2), (1, 3), (3, 7), (4, 5) and (4, 6) are assumed to interact
unidirectionally. This assumption is in accordance with
the mentioned thermodynamic constraints since phos-
phorylation consumes energy rich ATP [28]. The processes
(3, 4) and (7, 8) are regarded as all-or-none interactions
which by definition are mutual ones. All other processes
do not interact directly.

Step 3: The interaction pattern of the system has to be
translated into an interaction graph. As mentioned before
the labelled or numbered processes are nodes and the
Page 15 of 25
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occurring interactions are represented by directed edges
(arrows) pointing to the process which is influenced.

Example: The interaction graph for the considered exam-
ple is depicted in Figure 3B.

Step 4: One defines input and output processes according
to the considered system stimulations as well as available
measurements or research interests. If for instance the
external ligand concentration is considered as input the
related input process is ligand binding. If one is interested
in receptor phosphorylation all phosphorylation proc-
esses at the receptor have to be chosen as output proc-
esses. The goal of generating a model that accurately
describes the output processes at a macroscopic level
necessitates the further inclusion of all other processes
that are process observable.

Example: In the example we choose process 1 an input
and the processes 2, 3, 5 and 8 as output processes. The
output processes are marked by grey circles in Figure 3B.

Step 5: The interaction graph can be divided into output
subgraphs. An output subgraph contains all nodes from
which a specific output node can be reached following the
directed edges. The most simple way of finding an output
subgraph is to invert the directions of all arrows in the
interaction graph and to start at one output process. Fol-
lowing the arrows one marks all processes that are directly
connected with the output process. Afterwards one marks
all other processes that are directly linked with the previ-
ously found processes. This procedure is repeated until
one either reaches dead end processes or the number of
marked processes does not increase anymore. The so
found output subgraph comprises all processes, which are
process observable considering the chosen output proc-
ess. If a node does not occur in any output subgraph the
corresponding process cannot influence any of the output
processes and can be completely omitted in the following.
Finally, one has to eliminate redundant information, i.e.
subgraphs which are completely comprised in other big-
ger subgraphs. In principle one also can analogously
define input subgraphs and determine which processes
are uncontrollable. In this case one does not have to invert
the directions of the interaction arrows. One simply uses
the original directed graph, starts at an input process and
performs exactly the same procedure as described for out-
put processes. However, uncontrollable but observable
processes cannot simply be eliminated from further con-
sideration. Uncontrollability merely allows for steady
state assumptions at the ODE level.

Example: The graph shown in Figure 3B can be divided
into four output subgraphs as shown in Figure 3C. In this
example process six does not influence any of the consid-
ered output processes and can be omitted in the following
considerations. The subgraph for output process three is
completely comprised in two other subgraphs and there-
fore can be eliminated. In this example there only exists
one input subgraph that comprises all processes.

Step 6: Each of the output subgraphs describes an auton-
omous signaling path, which can be modeled separately.
Note, that the first five steps are independent of the used
modeling approach. For instance, one can also generate
stochastic models on the basis of the derived output sub-
graphs. However, we will focus on ODE models now.
Hence, the next step is to create complete mechanistic
ODE models for each subgraph. Processes not being part
of a subgraph are not included in the respective model.

Example: This step shall be exemplified considering the
smallest subgraph of the example system that comprises
the processes 1 and 2. The mathematical model is given by

Exemplification of the developed reduced order modeling techniqueFigure 3
Exemplification of the developed reduced order modeling 
technique. The considered example is very similar to the pre-
viously discussed insulin example. Only the interaction pat-
tern is a bit different. The depicted steps of the reduced 
order modeling technique are explained in the text.
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in which the rates r1 and r2 describe the binding of A to the
scaffold protein B (process 1), and the rates r3 and r4
describe the phosphorylation of B (process 2).

Step 7: The model equations have to be transformed to
new more convenient coordinates, which allow to elimi-
nate redundant information still included in the sub-
graphs. This redundancy is due to the fact that some
processes are comprised in several subgraphs. A suitable
choice of new coordinates is given by the previously intro-
duced occurrence levels. Note, that we highly recommend
to choose always the transformation patterns discussed in
the previous sections since these guarantee that the redun-
dant information can be eliminated. However, we also
want to state that there exist numerous other transforma-
tions that also would allow to eliminate the redundant
information.

Example: As an example we again consider only the
smallest subgraph of the system which comprises the
processes 1 and 2. The first tier in this example includes
the overall concentrations of the molecules A and B

The next tier comprises the first order occurrence levels,
which are given by

In this example there only occurs one further tier describ-
ing the second order occurrence levels, namely

[B (A, P)] = [B (A, P)]. (26)

Processes that are not included in the currently considered
subgraph are simply omitted since they are not observa-

ble. If the sub-model still contains unobservable states
these can also be eliminated at this stage of the procedure.

Step 8: The proposed transformation allows to dissect the
model equations of each subgraph into modules like
shown above. These modules are characterized by unidi-
rectional communication with other modules. Processes
which directly or indirectly interact mutually form one
module. If some processes are included in more than one
subgraph, the models of these subgraphs will contain
identical modules. Multiple copies of modules can be
eliminated and the remaining modules can be merged to
a complete model.

Example: For instance, the transformed ODEs for the dis-
cussed smallest subgraph do have a special structure. The
variables [A(*)] and [B(*, *)] are constant and equal their
initial concentration. The corresponding ODEs are not
required. Additionally, the ODE for [B(A, *)] does not
depend on [B(*, P)] and [B(A, P)], which is due to the uni-
directional process interaction between A binding to B
and phosphorylation of B. Hence, the remaining three
ODEs can be divided into two modules. One module only
comprises the ODE for [B(A, *)], which describes the
dynamics of process 1. The second module comprises the
other two ODEs, which describe the dynamics of process
2. The ODEs deduced from the two remaining output sub-
graphs shown in Figure 3C, can be divided into six more
modules as indicated in Figure 3D. Each box represents a
set of ODEs. The modules are labelled with the process
numbers which are described by the appropriate ODEs.
Two copies of module (1) and one of module (3,4) can be
eliminated here. The resulting model, which consists of
only 22 ODEs, is schematically shown in Figure 3. A com-
plete mechanistic model of the exemplified network
would comprise 77 ODEs of which three can be elimi-
nated due to mass conservation relations.

Step 9: In a last step one can take a steady state assump-
tion for all uncontrollable states that are still part of the
reduced model. Note that this step is not obligatory and
in some cases can be problematic since the steady state
equations have to be solved. If it is possible it is advanta-
geous to solve these equations analytically. However, in
many cases an analytic solution might be unfeasible and
the steady state equations have to be solved numerically
in the step of numerical integration which then necessi-
tates a DAE (Differential Algebraic Equation system)
solver.

Example: In the regarded example all states are controlla-
ble and therefore no steady state assumptions can be
made.

The main advantage of the proposed method is the direct
generation of a reduced, but exact, system of equations,
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circumventing a unsuitable large model of full combina-
torial complexity. Admittedly, the number of equations
that has to be set up in step six mostly include redundant
information about processes which can be observed at
numerous outputs. However, the absolute number of
ODEs that have to be generated is usually much lower
than if a complete mechanistic model is created. In the
considered example one only has to set up 27 ODEs using
the described procedure. A complete combinatorial
model would comprise 77 states. The method has to be
slightly modified if one of the output variables is a higher
order occurrence level which is not contained in any of the
submodels. Let us assume that one of the output variables
in the example is [B(*, P(*), P(*), *)] which describes
both process 2 and process 3. Since none of the three sub-
graphs depicted in Figure 4C comprises both processes
simultaneously the quantity [B(*, P(*), P(*), *)] will not
be a state of the reduced 22 ODE model. This problem can
be overcome by the fusion of two subgraphs. This will
necessarily increase the number of ODEs that has to be
generated as well as the final size of the reduced model.
However, the number of ODEs would still be smaller than
77. Furthermore, the inclusion of production and degra-
dation into the mathematical model necessitates another
extension of this method. The same holds true if the
regarded system includes multifunctional protein binding
domains, i.e. that certain binding domains are involved in
several binding processes. Both cases shall be discussed in
the following. Note, that these problems do not occur if a
the method described in Section Exact Model Reduction is
used.

Multifunctional protein binding domains
Multifunctional protein binding domains are domains
which can recruit more than one binding partner. A typi-
cal example is the effector protein Grb2 that can either
bind to several ErbB receptors as well as to the adaptor
protein Shc [39]. A constellation like this can lead to prob-
lems with the reduced order modeling approach intro-
duced above. The problem occurs if such a
multifunctional binding domain is part of two or more
output subgraphs as shown in Figure 3C.

The probably most simple example to illustrate the occur-
ring problem is a scaffold protein R which provides two
binding domains. Both of these domains shall recruit the
effector protein E which possesses one binding domain.
The binding domain of E is a multifunctional one since it
can bind to both R domains. If we assume that the two
binding processes of the regarded system are completely
independent and that both are considered as output proc-
esses, the system can be divided into two subgraphs. These
subgraphs are somehow degenerated since both only
comprise a single node. According to the reduced order
modeling approach both binding processes can be mod-

eled separately. However, the problem is that the binding
domain of the effector E is involved in both processes.
This is a typical crosstalk situation. Since the number of
effector proteins E and therefore the number of E binding
domains is limited, the recruitment of E to one receptor
domain reduces the concentration of unbound effector
and therefore has an indirect influence on the other bind-
ing process.

One possible solution for this problem is to merge all out-
put subgraphs that share such multifunctional binding
domains. This approach has the drawback that the
number of equations that have to be generated in the sixth
step of the modeling procedure can be significantly
increased. Alternatively, one can formulate the reaction
rates for both subgraphs independently. However, all spe-
cies which are simultaneously involved in both submod-
els have to be balanced in one joint ODE. If the first
subgraph of the regarded example is translated into a reac-
tion rate one has to consider only the rate

r1 = k1 [R(0, #)] [E] - k-1 [R(E, #)]. (27)

In this representation the identifier # indicates that the
real scaffold protein offers further binding domains but
that the resulting combinatorial complexity is neglected.
The second subgraph can be described by the reaction rate

r2 = k2 [R(#, 0)] [E] - k-2 [R(#, E)]. (28)

An ODE model is obtained by balancing all occurring spe-
cies. Since the species E is involved in both submodels one
has to create one joint ODE for [E]. Note that species like
R(0, #) and R(#, 0) are considered to be completely differ-
ent molecules. The resulting ODE model is given by

Following this procedure one does not have to consider
the complete combinatorial complexity of the network.
One also has to use a joint transformation which in this
case is given by

d R
dt

r
d R E

dt
r

d R
dt

r
d R E

dt
r
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This means that occurrence levels can be composed of spe-
cies from both submodels like [E(*)] in the regarded
example.

This simple modification or extension of the proposed
modeling approach facilitates its application to a larger set
of reaction systems. It will also be of great importance in
modeling the crosstalk between EGF and insulin receptor
discussed below.

Production and degradation
A process that has been completely neglected in the pre-
ceding considerations which, however, plays a crucial role
in many real signal transduction networks is production
and degradation of signaling proteins. This process
increases or decreases the number of available proteins. A
quite simple way of modeling production and degrada-
tion, which we will adopt here, is the assumption of a con-
stant production rate and a degradation rate which is
proportional to the concentration of the degraded species.
In many cases ubiquitin is used as marker for controlled
degradation as for example shown for ErbB1 receptors
[31]. A still unanswered question in this context is
whether the whole signaling complex is degraded or only
the ErbB receptor while the associated adaptor proteins
are recycled.

For the sake of simplicity we take a number of assump-
tions. First, the considerations shall be focused on produc-
tion and degradation of the regarded receptor or scaffold
protein and its complexes. The individual receptor protein
R shall be produced with a constant rate and all receptor
species are presumed to have a natural decay rate. All
other adaptor and effector proteins are neither produced
nor degraded. If a receptor complex is degraded all bound
adaptor proteins shall be recycled to the cytosol. Further-
more, we take the assumption that if the receptor is
marked by ubiquitination its degradation rate is modu-
lated. This change of the degradation rate from natural
decay to ordered degradation can be considered as a proc-
ess interaction. Ubiquitination has a direct influence on
degradation. It is quite obvious that all processes that
involve one of the R binding domains are affected by the
considered production and degradation.

Theoretically, degradation can be considered as a process
which sets the kon values of all R binding domains to zero
and all koff values to infinity. All other effects caused by
degradation are indirect effects. Note that if one takes the
assumption that a complex is degraded with all its bound
adaptor proteins all processes that modify or enlarge the
R complex are directly influenced. All these interactions
are unidirectional ones, which can be simply introduced
in the process interaction graph. Production and degrada-
tion is one additional node in this graph which is influ-

enced by ubiquitination and affects numerous other
processes.

Example: EGF and insulin receptor crosstalk
Finally, the discussed methods shall be used to generate a
reduced model of EGF and insulin receptor crosstalk. We
will compare a complete mechanistic description of this
crosstalk and an exactly reduced version.

Model definition
In a first step it shall be defined which molecules and
processes are included to the model and what assump-
tions are made concerning the process interactions. Since
a complete mechanistic model that is still manageable
shall also be generated the considerations will be limited
to a small part of the real signaling network. For instance
only the EGF receptor (EGFR) will be taken into account
and the other three ErbB receptors shall be neglected. Sim-
ilar simplifications were made by many other modelers in
the past years [12,10,27]. In order to avoid an unmanage-
able combinatorial explosion of feasible EGF receptor
species only two intracellular domains will be modeled.
According to Schulze et al. the EGF receptor possesses
among others six potential residues for Grb2 and also six
residues for Shc binding [40]. Hence, we consider one
binding domain for each of these two effector proteins.
Concerning the insulin receptor family we will focus on
the insulin receptor (IR) and exclude potential crosstalk
with the insulin-like growth factor receptor (IGFR) and
the insulin related receptor (IRR) [41]. Again we restrict
the considerations to two intracellular IR domains,
namely one for Shc and one for IRS [30].

EGFR provides an extracellular binding domain that
recruits EGF [31,42]. Furthermore, the receptor mono-
mers can form homodimers after being activated by the
ligand. This dimerization induces phosphorylation of
numerous intracellular domains [43-45]. According to
thermodynamic constraints [33,28], EGF binding and
receptor dimerization have to interact mutually fulfilling
the Wegscheider conditions. A mutual interaction is also
suggested by experimental data [46,47].

Phosphorylation can be unidirectionally influenced like
discussed for the insulin receptor by Gherzi et al. [36].
Analogously, EGFR dimerization is assumed to unidirec-
tionally influence EGFR autophosphorylation of the
regarded intracellular domains. A direct interaction
between EGF binding and phosphorylation is not pre-
sumed to occur. After the two intracellular domains are
phosphorylated one of them recruits Grb2 and the other
Shc [40]. The interaction between receptor phosphoryla-
tion and subsequent effector binding shall be an all-or-
none interaction. Furthermore, it is also known that Shc
can be phosphorylated after having bound to EGFR [39].
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Shc binding is thought to unidirectionally affect Shc phos-
phorylation. The phosphorylated Shc protein can also
recruit Grb2 [39]. Grb2 possesses an additional domain
which recruits the adaptor protein SOS. SOS is a guanine
exchange factor (GEF) which can activate the membrane
bound small G-protein Ras by effecting the exchange of
GDP for GTP [48,49].

Active RasGTP in turn initiates the MAP kinase cascade.
Phosphorylated ERK which is a component of the MAP
kinase cascade stimulates a serine/threonine phosphor-
ylation of SOS resulting in dissociation of the Grb2-SOS
complex [50,49]. Thus, we take the assumption that the
Grb2-SOS binding is not influenced by Grb2 association
to phosphorylated EGF receptor or phosphorylated Shc.
However, if SOS is phosphorylated by ERK, which is con-
sidered as additional input signal, the Grb2-SOS complex
dissociates. Here we assume a mutual interaction between
SOS phosphorylation and Grb2-SOS binding.

The insulin receptor consists of two constitutively dimer-
ized monomers and is activated exclusively by ligand
binding without further oligomerization [30]. Due to the
dimeric structure of the insulin receptor two insulin bind-
ing domains will be included to the model. According to
the thermodynamic constraints and experimental results
these two domains have to interact mutually [51]. Ligand
binding is assumed to unidirectionally influence the
phosphorylation of the two regarded intracellular
domains [36,28]. Shc is assumed to bind with other
kinetic parameters to IR than to EGFR. However, Shc

phosphorylation, Grb2 binding to phosphorylated Shc
etc. is parametrized like in the case of EGFR. In order to
reduce the complexity of the network numerous binding
domains of the scaffold IRS are neglected. The model only
accounts for IRS binding to the phosphorylated insulin
receptor, subsequent IRS phosphorylation and binding of
the Grb2-SOS complex. In order to reduce the complexity
of the model, receptor internalization and degradation is
also neglected for both IR and EGFR.

All considered molecules, processes and process interac-
tions are also depicted in Figure 4. The reaction rules gen-
erating this complete mechanistic model are depicted in
Table 7.

Complete mechanistic model vs. exactly reduced model
A complete mechanistic model of the described network
of EGF and insulin receptor crosstalk comprises 42,956
reactions and 5,182 ODEs. According to the assumed
process interactions the complete network can be para-
metrized by 68 kinetic parameters which can be seen in
Table 7. The exact numerical value of these parameters
does not play an important role in this context. The main
purpose of this model is to illustrate the possibilities
offered by the new reduction methods. Hence, the model
equations are normalized to relative concentrations. The
overall concentration of the considered components
EGFR, IR, Shc, Grb2, SOS and IRS are set to 100 percent.
The kinetic parameters are chosen such that the model
qualitatively shows the expected behavior. We will focus
on time plots of the quantities [IR(*, *, SOS(*), *)], [IR(*,

The shown part of the EGF and insulin receptor network is modeledFigure 4
The shown part of the EGF and insulin receptor network is modeled. The process interactions are depicted by arrows. Black 
arrows represent uni- and bidirectional interactions, while grey arrows describe all-or-none interactions. A complete mecha-
nistic model of this network comprises 5,182 ODEs, while the exactly reduced one consists of only 87 ODEs.
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Table 7: Reaction rules for the considered example of EGF and insulin receptor crosstalk.

IR(0, 0, *, *) + Ins G IR(I, 0, *, *) k1, k-1
IR(0, 0, *, *) + Ins G IR(0, I, *, *) k1, k-1
IR(I, 0, *, *) + Ins G IR(I, I, *, *) k2, k-2
IR(0, I, *, *) + Ins G IR(I, I, *, *) k2, k-2
IR(0, 0, 0, *) G IR(0, 0, P, *) k3, k-3
IR(I, 0, 0, *) G IR(I, 0, P, *) k4, k-4
IR(0, I, 0, *) G IR(0, I, P, *) k4, k-4
IR(I, I, 0, *) G IR(I, I, P, *) k5, k-5
IR(*, *, P, *) + Shc(*) G IR(*, *, Shc(*), *) k6, k-6
IR(I, I, Shc(0), *) G IR(I, I, Shc(P), *) k7, k-7
IR(*, *, Shc(P), *) + Grb2(*) G IR(*, *, Grb2(*), *) k8, k-8
IR(*, *, Grb2(0), *) + SOS(0) G IR(*, *, SOS(0), *) k9, k-9
IR(*, *, Grb2(0), *) + SOS(P) G IR(*, *, SOS(P), *) k10, k-10
IR(*, *, SOS(0), *) G IR(*, *, SOS(P), *) k11, k-11
IR(0, 0, *, 0) G IR(0, 0, *, P) k12, k-12
IR(I, 0, *, 0) G IR(I, 0, *, P) k13, k-13
IR(0, I, *, 0) G IR(0, I, *, P) k13, k-13
IR(I, I, *, 0) G IR(I, I, *, P) k14, k-14
IR(*, *, *, P) + IRS(*) G IR(*, *, *, IRS(*)) k15, k-15
IR(I, I, *, IRS(0)) G IR(I, I, *, IRS(P)) k16, k-16
IR(*, *, *, IRS(P)) + Grb2(*) G IR(*, *, *, Grb2(*)) k17, k-17
IR(*, *, *, Grb2(0)) + SOS(0) G IR(*, *, *, SOS(0)) k9, k-9
IR(*, *, *, Grb2(0)) + SOS(P) G IR(*, *, *, SOS(P)) k10, k-10
IR(*, *, *, SOS(0)) G IR(*, *, *, SOS(P)) k11, k-11
Shc(0) G Shc(P) k18, k-18
Shc(P) + Grb2(*) G Shc(Grb2(*)) k8, k-8
Shc(Grb2(0)) + SOS(0) G Shc(SOS(0)) k9, k-9
Shc(Grb2(0)) + SOS(P) G Shc(SOS(P)) k10, k-10
Shc(SOS(0)) G Shc(SOS(P)) k11, k-11
Grb2(0) + SOS(0) G Grb2(SOS(0)) k9, k-9
Grb2(0) + SOS(P) G Grb2(SOS(P)) k10, k-10
Grb2(SOS(0)) G Grb2(SOS(P)) k11, k-11
SOS(0) G SOS(P) k19, k-19
IRS(0) G IRS(P) k20, k-20
IRS(P) + Grb2(*) G IRS(Grb2(*)) k17, k-17
IRS(Grb2(0)) + SOS(0) G IRS(SOS(0)) k9, k-9
IRS(Grb2(0)) + SOS(P) G IRS(SOS(P)) k10, k-10
IRS(SOS(0)) G IRS(SOS(P)) k11, k-11
ER(0, *, *) + EGF G ER(E, *, *) k21, k-21
ER(*, 0, *) G ER(*, P, *) k22, k-22
ER(*, P, *) + Shc(*) G ER(*, Shc(*), *) k23, k-23
ER(*, Shc(0), *) G ER(*, Shc(P), *) k24, k-24
ER(*, Shc(P), *) + Grb2(*) G ER(*, Grb2(*), *) k8, k-8
ER(*, Grb2(0), *) + SOS(0) G ER(*, SOS(0), *) k9, k-9
ER(*, Grb2(0), *) + SOS(P) G ER(*, SOS(P), *) k10, k-10
ER(*, SOS(0), *) G ER(*, SOS(P), *) k11, k-11
ER(*, *, 0) G ER(*, *, P) k25, k-25
ER(*, *, P) + Grb2(*) G ER(*, *, Grb2(*)) k26, k-26
ER(*, *, Grb2(0)) + SOS(0) G ER(*, *, SOS(0)) k9, k-9
ER(*, *, Grb2(0)) + SOS(P) G ER(*, *, SOS(P)) k10, k-10
ER(*, *, SOS(0)) G ER(*, *, SOS(P)) k11, k-11
ER(E, *, *) + ER(0, *, *) G ER2(E, *, *, 0, *, *) k27, k-27
ER(0, *, *) + ER(0, *, *) G ER2(0, *, *, 0, *, *) k28, k-28
ER(E, *, *) + ER(E, *, *) G ER2(E, *, *, E, *, *) k29, k-29
ER2(0, *, *, *, *, *) + EGF G ER2(E, *, *, *, *, *) k30, k-30
ER2(*, 0, *, *, *, *) G ER2(*, P, *, *, *, *) k31, k-31
ER2(*, Shc(0), *, *, *, *) G ER2(*, Shc(P), *, *, *, *) k32, k-32
ER2(*, P, *, *, *, *) + Shc(*) G ER2(*, Shc(*), *, *, *, *) k23, k-23
ER2(*, Shc(P), *, *, *, *) + Grb2(*) G ER2(*, Grb2(*), *, *, *, *) k8, k-8
ER2(*, Grb2(0), *, *, *, *) + SOS(0) G ER2(*, SOS(0), *, *, *, *) k9, k-9
ER2(*, Grb2(0), *, *, *, *) + SOS(P) G ER2(*, SOS(P), *, *, *, *) k10, k-10
ER2(*, SOS(0), *, *, *, *) G ER2(*, SOS(P), *, *, *, *) k11, k-11
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*, *, SOS(*))], [EGFR(*, SOS(*), *).*] and [EGFR(*, *,
SOS(*)).*].

The complete mechanistic model can be generated by BIO-
NETGEN or other similar rule-based modeling tools. This
example was modeled using the software tool ALC [29].
ALC allows the generation of combinatorial network
models and produces output files for both MATLAB and
MATHEMATICA. One simulation run with the MATLAB inte-
grator ode15s took several hours using an Intel® Xeon™
CPU with 3.06 GHz and 2 GB main memory. The simula-
tion can be sped up by providing an analytically derived
Jacobian matrix of the ODE system. All non-zero elements
of the Jacobian matrix have been analytically calculated
using MATHEMATICA and afterwards have been exported to
MATLAB. The resulting simulation files have a size of over
13 MB, and a single simulation run still takes about half
an hour. All files required to simulate the complete reac-
tion network are provided in a ZIP-files [see Additional
file 1].

An exactly reduced version of the crosstalk model was gen-
erated using the reduced order modeling approach we
introduced above. The definition of molecules, processes
and process interactions (steps 1–3 of the method) is
already given in the previous Model definition section. The
process interaction graph corresponds to the arrows
drawn in Figure 4. In order to get comparable results for
all occurring binding and phosphorylation processes each
of them was chosen as output process (step 4). The proc-
ess interaction graph of the considered system can be dis-
sected into four subgraphs (step 5). Until now this step
has not been automatized but an automatization would
be possible. Each subgraph describes one intracellular
binding domain either of the EGF or the insulin receptor.
However, due to the multifunctionality of the Grb2 bind-
ing domain all four subgraphs comprise the Grb2-SOS
binding process as well as the serine/threonine phospho-
rylation of SOS. Consequently, the four subgraphs have to
be simultaneously modeled and all species have to be
simulantiously balanced. We use the modeling tool ALC
to model the four submodels [29]. The input file with
which ALC generates the ODEs is provided as additional
file [see Additional file 2]. A link to a downloadable ver-
sion of ALC can be found in Koschorreck et al. [29]. The
resulting model comprises 1,826 reactions and 391 ODEs
which already is a significant reduction compared to the
complete model. A further reduction can be achieved by

transforming the model to the previously introduced
occurrence levels and subsequent elimination of redun-
dant, unobservable and uncontrollable system dynamics
(steps 7 and 8). These steps have been performed using
MATHEMATICA. The MATHEMATICA code can also be found
in the Additional files section [see Additional file 3]. The
final and exactly reduced model of the network consists of
87 ODEs, which can be divided into six unidirectionally
coupled modules. One of these modules, which consists
of four ODEs, describes EGF binding and EGFR
homodimerization. Another module specifies insulin
binding to the insulin receptor and comprises two ODEs.
Six ODEs are required to model IR phosphorylation at the
IRS domain and subsequent IRS binding. Shc binding to
EGFR as well as IR and the related domain phosphoryla-
tions form another module with a total number of 18
ODEs. The largest module consists of 32 ODEs and
describes Grb2 binding to the EGF receptor as well as to
phosphorylated Shc. The last module comprises all varia-
bles describing SOS binding and SOS phosphorylation
and consists of 25 ODEs. One simulation run of this
exactly reduced model only takes a few seconds. The size
of the simulation file is 37.4 KB [see Additional file 4]. In
Figure 5 it is shown that both models also provide exactly
the same results for the considered output variables.

Conclusion
Mathematical models of biochemical reaction networks
play an increasing role in cytological research. Most of the
underlying reaction networks are far too complex to facil-
itate an intuitive understanding. In this contribution, the
focus is on ODE based dynamic modeling of receptor
mediated signal transduction in mammalian cells like
insulin or epidermal growth factor (EGF) signaling. These
networks share some common features. Ligand binding to
a receptor triggers conformational changes that facilitate
receptor dimerization and/or phosphorylation of numer-
ous residues. The subsequent formation of multiprotein
signaling complexes on these receptors and their scaffold-
ing adaptor proteins initiates a variety of signaling path-
ways. The main problem that occurs in modeling these
networks using common modeling strategies is the enor-
mous number of feasible multiprotein species and the
high complexity of the related reaction networks. The
main contribution of this work for ODE based modeling
of signal transduction pathways is the extension and fur-
ther development of an existing model reduction tech-
nique and the introduction of a reduced order modeling

ER2(*, *, 0, *, *, *) G ER2(*, *, 0, *, *, *) k33, k-33
ER2(*, *, P, *, *, *) + Grb2(*) G ER2(*, *, Grb2(*), *, *, *) k34, k-34
ER2(*, *, Grb2(0), *, *, *) + SOS(0) G ER2(*, *, SOS(0), *, *, *) k9, k-9
ER2(*, *, Grb2(0), *, *, *) + SOS(P) G ER2(*, *, SOS(P), *, *, *) k10, k-10
ER2(*, SOS(0), *, *, *, *) G ER2(*, *, SOS(P), *, *, *) k11, k-11

Table 7: Reaction rules for the considered example of EGF and insulin receptor crosstalk. (Continued)
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Simulation results of the generated crosstalk modelFigure 5
Simulation results of the generated crosstalk model. The kinetic parameters of the model have been chosen such that the sys-
tem qualitatively shows the expected behavior. All quantities are depicted in relative concentrations. The overall concentra-
tions of all involved components have been set to 100. The displayed curves show the chosen input signals [EGF], [insulin] and 
[ERK] as well as the output concentrations [IR(*, SOS, *)], [IR(*, *, SOS)], [EGFR(*, SOS, *).*] and [EGFR(*, *, SOS).*].
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technique that allows to generate manageable reduced
models accounting for the dynamic effects of combinato-
rial complexity.

For common in- and output signals the number of unob-
servable and uncontrollable model states depends on the
occurring process interactions and is usually fairly high for
a complete mechanistic model. The elimination of uncon-
trollable and unobservable state variables can be achieved
by a linear and hierarchically structured state space trans-
formation, which additionally facilitate a modularization
of the model equations. Due to the enormous size of
many real signaling cascades the generation of a complete
mechanistic model and its subsequent reduction is not
practical. An alternative approach is directly based on the
process interaction pattern of the regarded system. All
occurring process interactions can be integrated in an
interaction graph which is subsequently dissected into
independent interaction subgraphs. This exact reduced
order modeling technique is used to generate a reduced
model of EGF and insulin receptor crosstalk. This method
allows to fairly reduce the complete mechanistic model
with 5,182 ODEs to solely 87. Simulation studies show
that the reduced model has exactly he same input/output
behavior than the complete mechanistic model.

Thus, the results of this contribution provide new and
powerful tools for dynamic modeling of combinatorial
reaction networks like they occur in signal transduction.
The introduced reduction techniques facilitate the genera-
tion of fairly reduced and modularized dynamic models.
The modular structure of the resulting models also
reduces the complexity of parameter estimation. Further-
more, the availability of an alternative reduced order
modeling approach also facilitates the handling of very
large and complex signaling networks. This property is of
immense practical relevance since most real signaling cas-
cades are too complex to be translated into a complete
mechanistic model which is subsequently reduced.
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