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Abstract
Background: Light and carbon are two important interacting signals affecting plant growth and development. The
mechanism(s) and/or genes involved in sensing and/or mediating the signaling pathways involving these interactions are
unknown. This study integrates genetic, genomic and systems approaches to identify a genetically perturbed gene
network that is regulated by the interaction of carbon and light signaling in Arabidopsis.

Results: Carbon and light insensitive (cli) mutants were isolated. Microarray data from cli186 is analyzed to identify the
genes, biological processes and gene networks affected by the integration of light and carbon pathways. Analysis of this
data reveals 966 genes regulated by light and/or carbon signaling in wild-type. In cli186, 216 of these light/carbon regulated
genes are misregulated in response to light and/or carbon treatments where 78% are misregulated in response to light
and carbon interactions. Analysis of the gene lists show that genes in the biological processes "energy" and "metabolism"
are over-represented among the 966 genes regulated by carbon and/or light in wild-type, and the 216 misregulated genes
in cli186. To understand connections among carbon and/or light regulated genes in wild-type and the misregulated genes
in cli186, the microarray data is interpreted in the context of metabolic and regulatory networks. The network created
from the 966 light/carbon regulated genes in wild-type, reveals that cli186 is affected in the light and/or carbon regulation
of a network of 60 connected genes, including six transcription factors. One transcription factor, HAT22 appears to be
a regulatory "hub" in the cli186 network as it shows regulatory connections linking a metabolic network of genes involved
in "amino acid metabolism", "C-compound/carbohydrate metabolism" and "glycolysis/gluconeogenesis".

Conclusion: The global misregulation of gene networks controlled by light and carbon signaling in cli186 indicates that
it represents one of the first Arabidopsis mutants isolated that is specifically disrupted in the integration of both carbon
and light signals to control the regulation of metabolic, developmental and regulatory genes. The network analysis of
misregulated genes suggests that CLI186 acts to integrate light and carbon signaling interactions and is a master regulator
connecting the regulation of a host of downstream metabolic and regulatory processes.
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Background
Carbon and light are two important and interdependent
signals that regulate plant growth and development. One
mechanism by which these signals exert their effects on
plants is through their ability to affect the expression of a
large number of genes through signal transduction cas-
cades. While much is known about how plants respond to
and transduce light signals [1-6], less is known about the
perception and transduction of carbon signals [7-13].
Moreover, while carbon and light signaling pathways
influence one another via "crosstalk" [13-18], nothing is
yet known about the molecular components that might
link these two signaling pathways.

Microarray studies have been used to investigate the inte-
gration of multiple inputs such as carbon and nitrogen
[19-21], carbon and hormones (i.e. abscisic acid) [22] as
well as carbon and circadian rhythms [23]. These studies
demonstrate that the carbon-regulated genes are repre-
sentative of a diverse range of biological processes, such as
metabolism (carbohydrate, amino acid and fatty acid and
lipid), energy, protein synthesis and stress (heat-shock
proteins), among others. Microarray studies have also
been used to investigate the genes and encoded biological
processes that are subject to a significant degree of regula-
tion by light and carbon interactions in light-grown Ara-
bidopsis seedlings [18]. Results from our previous study
revealed that the majority of genes analyzed (63%)
showed regulation by light and carbon interactions. Fur-
thermore, functional category analysis revealed that genes
in the biological process "metabolism", were significantly
controlled by the interaction of carbon and light in light-
grown plants [18]. Other studies of carbon and light inter-
actions have shown synergistic or antagonistic relation-
ships between light and carbon signaling on a gene-by-
gene basis [17]. For example, genes related to photosyn-
thesis are strongly induced by light, yet repressed by car-
bon treatment (e.g. chlorophyll a/b binding protein,
plastocyanin, small subunit of rubisco) [7]. For other
genes, the effects of carbon are distinct in the presence or
absence of light. For example, a number of genes involved
in N-assimilation (e.g. glutamine synthetase 2) are
induced by carbon in dark-adapted plants [7,17,24,25],
but are repressed by carbon in light-treated plants [17].
More specific interactions between carbon and light sign-
aling have been observed by the ability of carbon to sup-
press a far-red/phytochrome A-specific, light-induced
block of greening [14]. Here, carbon may antagonize or
suppress a phytochrome A signaling pathway(s).

A number of studies have used genetic approaches to
identify genes involved in light or carbon signaling. Some
genetic screens have focused on the isolation of Arabidop-
sis mutants involved in carbon signaling [7,26-28] or in
light sensing and signaling [2,3,6]. Several of these genetic

studies have used light signaling mutants to test the influ-
ence of carbon treatments on phytochrome signal trans-
duction pathways [14-16]. Thus far, there have been no
reports of the isolation of mutants identifying compo-
nents that mediate or mechanisms involved in the signal-
ing interactions between carbon and light signaling.

In this study, a carbon and light insensitive (cli186)
mutant is identified and its molecular defects character-
ized on a genome-wide scale, using a multinetwork
approach to identify the genes, biological processes and
regulatory/metabolic networks affected in the cli186
mutant. The multinetwork analysis of microarray data
reveals connections between metabolic and regulatory
networks that are perturbed in the cli186 mutant that
could only be discovered via this integrated network anal-
ysis. This combined genetic, genomic and network analy-
ses of a carbon and light insensitive (cli186) mutant
described herein, identifies CLI186 as a putative major
regulatory gene that integrates carbon and light signaling
to control a downstream network of metabolic and regu-
latory genes in Arabidopsis.

Results
A positive genetic selection for carbon and light insensitive 
mutants (cli)
In previous studies, it has been shown that the asparagine
synthetase (ASN1) gene in plants is transcriptionally
repressed by transient treatments with sucrose and/or
light, where both light and sucrose together have a syner-
gistic repressive effect [24,29,30]. To identify genetic com-
ponents involved in the integration of light and carbon
signaling, the ASN1 promoter was used in a positive
genetic selection, designed to identify mutants defective
in the transcriptional repression of the ASN1 gene by both
light and carbon. An Arabidopsis line was created that
contained a transgene in which a 148-bp region of the
ASN1 promoter from pea was placed upstream of the
hygromycin phosphotransferase gene (HPT2) [30,31]
(Figure 1a). As light and carbon treatments repress expres-
sion of ASN1 in the light on carbon-containing media, the
ASN1::HPT2 lines whose growth was suppressed under
these conditions were selected for mutagenesis. A similar
positive genetic selection scheme using the reporter gene
construct, CAB3::HPT2 was used in the isolation of the
dark overexpression of cab mutants (doc), which identi-
fied genes controlling expression of the CAB3 gene [32].

Seeds from one transgenic ASN1::HPT2 line [31] were
mutagenized using either fast neutron irradiation or EMS
(see Methods). M2 mutagenized seeds were germinated
and grown in the light on media containing 1% sucrose
and 15 μg/ml hygromycin. Putative carbon and light
insensitive (cli) mutants showing a loss of ASN1::HPT2
transgene repression by light and carbon treatments were
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Reporter construct used for mutant screen and verification of ASN1 gene expression in cli186Figure 1
Reporter construct used for mutant screen and verification of ASN1 gene expression in cli186. (a) Schematic representation 
showing regulation of the ASN1-HPT2 reporter construct used to select for carbon and light insensitive (cli) plants. A 148-bp 
region of the ASN1 promoter from pea was placed upstream of the hygromycin phosphotransferase gene, HPT2. ASN1 is tran-
scriptionally repressed by sucrose and by light independently, where sucrose and light together have a synergistic repressive 
effect. (b) Three mutagenized lines, cli186, cli12-2-1 and cli16-1 that exhibit hygromycin-resistance when screened on 0.5% 
sucrose in L/D cycling conditions. Controls consist of a 'wild-type' (WT) unmutagenized line containing the ASN1-HPT2 trans-
gene and a transgenic line (NOS) containing the HPT2 transgene driven by a NOS promoter, allowing for constitutive expres-
sion of the HPT2 gene. (c) Fold-repression as determined via Q-PCR of ASN1 in WT and cli186 plants. Seven day old etiolated 
seedlings were subject to four treatments: -C-L, +C-L, -C+L and +C+L. Fold-repression of ASN1 was determined by compar-
ing all treatments against their respective backgrounds of -C-L. Asterisks indicate a significant difference between WT and 
cli186 in expression based on a t-test, p > 0.05.
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selected, based on their degree of resistance to hygromy-
cin (Figure 1b). Hygromycin-resistance was determined
by increased root length, greening of primary and second-
ary leaves and overall enhanced growth over a period of
three weeks, when compared to the un-mutagenized wild-
type transgenic ASN1::HPT2 parental line (Figure 1b).

From an initial screen of approximately 20,000 M2 fast-
neutron irradiated ASN1::HPT2 seedlings (isolated from
763 individual M1 lines), one line, cli186, retained a con-
sistent hygromycin-resistant phenotype past the M3 gen-
eration (Figure 1b). A screen of approximately 23,000
additional M2 seeds from 579 M1 EMS mutagenized
ASN1::HPT2 lines identified 12 additional putative cli
mutants [33] that retained a consistent hygromycin phe-
notype beyond the M3 generation, two of which are
shown in Figure 1b, cli12-2-1 and cli16-1.

ASN1 egulation by carbon and light is disrupted in cli186
As the cli mutant selection was initially based on misregu-
lation of a pea ASN1::HPT2 transgene, in a secondary
screen, it was determined whether the regulation of the
endogenous Arabidopsis ASN1 gene was also aberrant in
response to light and carbon treatments. Plants at two dif-
ferent stages of development were analyzed: etiolated and
light-grown. For etiolated studies, plants were grown in
the presence or absence of 1% sucrose for seven days in
the dark, after which half were maintained in the dark and
the other half were illuminated with white light (70 μEin
m-2s-1) for an additional three hours. For light-grown
studies, plants were grown in 16-h light/8-h dark cycling
conditions for 14 days on sucrose-containing (1%) media
and were thereafter transferred to fresh media containing
either no sucrose or 1% sucrose and placed in the dark or
white light (70 μEin m-2s-1) for an additional three hours.
The change of endogenous ASN1 transcript levels in
response to various transient treatments of light and car-
bon (+L-C; +L+C; -L+C; -L-C) were compared in wild-type
and cli mutants to confirm light and/or carbon misregula-
tion of the endogenous ASN1 gene. Quantification of
endogenous levels of ASN1 mRNA (see section below) in
the 13 cli mutants revealed misregulation of ASN1 mRNA
with regard to light and carbon repression, when com-
pared to wild-type (Figure 1c, data not shown for addi-
tional cli mutants). The cli186 mutant exhibited the most
dramatic misregulation of ASN1 regulation by light and
carbon interactions and was thus selected as the major
focus of this genomic/network study.

Fold-repression of ASN1 mRNA levels by light/carbon
treatments is shown for cli186 compared to wild-type for
light grown versus etiolated seedlings (Figure 1c). When
grown in the dark in the presence of 1% sucrose, ASN1
levels were repressed 96.3-fold in wild-type. This carbon
repression of ASN1 was reduced to 9.7-fold in cli186 (Fig-

ure 1c; C). Therefore, carbon regulation of ASN1 in etio-
lated seedlings is impaired approximately 10-fold in
cli186 mutants as compared to wild-type plants. Repres-
sion of ASN1 mRNA levels in response to light only treat-
ments was similar in wild-type and cli186 (~3-fold),
suggesting that light regulation of ASN1 is not impaired in
cli186 (Figure 1c; L). Intriguingly, the interaction of light
and carbon repression of ASN1 is dramatically perturbed
in cli186, as levels of ASN1 mRNA are repressed 1,880-
fold in wild-type, compared to 16.4-fold in cli186 (Figure
1c, LC). Thus, the regulation of ASN1 by the interaction of
light-and-carbon was significantly disrupted (114.5-fold)
in cli186, compared to wild-type when assayed in etio-
lated plants.

Fold repression of ASN1 mRNA levels by light and carbon
treatments was also determined in 14-day old light-grown
plants (Figure 1c). When light-grown plants were tran-
siently treated with 1% sucrose in the dark, ASN1 mRNA
levels were similarly repressed in wild-type (5.8-fold) and
in cli186 (6.5-fold) (Figure 1c; C). In light only treat-
ments, the fold repression of ASN1 mRNA was also simi-
lar between wild-type (14-fold) and cli186 (10.3-fold).
Again there were differences observed in ASN1 mRNA lev-
els in plants treated with the combination of light plus
carbon in wild-type (129-fold) versus cli186 (98-fold).
Thus, although not as dramatic as that observed for etio-
lated seedlings, the regulation of ASN1 by the interaction
of light-and-carbon remained disrupted in cli186 in light-
grown seedlings when compared to wild-type.

These results confirm that in wild-type seedlings, the com-
bination of light and carbon together repress ASN1 mRNA
levels 1,880-fold in etiolated seedlings and 129-fold in
light-grown plants, which being more than the sum of the
two factors individually in either developmental state is
indicative of a synergistic light/carbon interaction. Inter-
estingly, this synergistic interaction of light and carbon in
the regulation of ASN1 was dramatically lost in the cli186
mutant, specifically when monitored in etiolated seed-
lings (Figure 1c, LC). Thus, investigation of the cli186
mutant should aid in elucidating the mechanism(s)
underlying the interaction between light and carbon sign-
aling, and how this intersects with loss of carbon only sig-
naling in etiolated plants (Figure 1c, C).

Genomic microarray analysis of wild-type and cli186 
seedlings
Microarray analysis combined with systems biology tools
was used to determine which genes, biological processes
and gene networks are targets of light/carbon signaling
interactions in wild-type and which of these networks are
disrupted in the cli186 mutant. Affymetrix whole genome
ATH1 chips were hybridized with cRNA made from RNA
isolated from wild-type and cli186 etiolated seedlings.
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Plants were grown for seven days in the dark (etiolated) in
the presence or absence of 1% sucrose and subjected to
transient light treatments (e.g. three hours of white light
versus three hours of additional darkness). Using this gen-
eral approach, wild-type and cli186 plants were subject to
four different light and/or carbon treatments (-L+C; +L-C;
+L+C; -L-C). Treatment with no light and no carbon (-L-
C) acted as a control or baseline treatment, to which all
other treatments were compared. Each of two background
treatments (i.e. -C-L) were compared with both replicates
for each treatment (e.g. +L-C) which provided a four-way
comparison for each of the three treatments. The treat-
ments compared to the background will be referenced in
the following manner: C = carbon-only (-L+C/-L-C), L =
light-only (+L-C/-L-C), LC = light-plus-carbon, (+L+C/-L-
C). Genes that responded to the various light and/or car-
bon treatments (C, LC, or L) were further identified and
classified based on parameters assigned to each gene by
Microarray Suite 5.0 and using a 'metric' classification sys-
tem as described in Methods.

Data analysis from gene chips performed on wild-type
and cli186 mRNA was carried out simultaneously to clas-
sify genes based on their regulation by light and/or carbon
across all 24 comparisons (4 comparisons/treatment × 3
treatments × 2 genotypes: wild-type and cli186). Three fil-
ters were applied to the initial dataset to identify the sub-
set of genes for further analysis. To eliminate probes for
genes that could not be reliably compared between treat-
ment and baseline due to poor detection from either low
expression or aberrant hybridization, Filter 1 was applied
to eliminate probes with "absent" detection calls in both
treatment and baseline hybridizations. To include probes
representing genes that are expressed at a low level, probes
whose expression was low but detectable (signal value of
50 or greater) was compared with those probes that were
'absent' in the treatment or the baseline hybridization.
Thus, Filter 2 included probes with an "absent" call in
treatment or baseline if the "present' probe in the other
hybridization had a signal value of 50 or greater. To
ensure high reproducibility of genes within our dataset,
Filter 3 was used to include genes in which the difference
calls in 3 out of 4 comparisons between treatment and
baseline in wild-type and mutant were consistent (i.e.
"induced", "repressed", "not change") as provided by the
Affymetrix Microarray Suite 5.0 software. Thus, genes that
performed reproducibly 75% of the time were included in
the dataset. When applied to the wild-type and cli186
dataset over all 24 comparisons (3 treatments × 2 repli-
cates × 2 controls = 12 treatments for each genotype × 2
genotypes (wt and mutant) = 24 comparisons), these rig-
orous filtering steps removed probes corresponding to
21,186 genes, leaving 1,624 genes that showed consistent
reliability for further analysis. This final filtered dataset of
1,624 genes is thus stringent and reliably reproducible

across all the comparisons examined. These 1,624 genes
were further analyzed below to determine what patterns
of regulation by light and/or carbon were found in wild-
type and cli186 seedlings.

Identification of 966 genes regulated by light and/or 
carbon in wild-type and 216 genes misregulated by light 
and/or carbon in cli186
In order to identify misregulated genes in the cli186
mutant, a 'metric' classification system (see Methods) was
designed to organize the filtered genes into classes based
on their relative expression profiles across all three types
of treatments: L, C, LC. The classification system uses a sta-
tistical approach to determine those genes that are regu-
lated by light and/or carbon in wild-type, and that show
different responses (misregulated) in the corresponding
experiments in the cli186 mutant. ANOVA analysis was
used to compare gene regulation across all three treat-
ments (L-only, LC, C-only), for both wild-type and cli186.
Multiple testing was addressed by controlling the false dis-
covery rate at 5% as previously described [34]. 658 of the
1,624 "reliable" genes did not show significant differences
across any of the three treatments (L, LC or C) when com-
paring wild-type or cli186 responses. In contrast, 966 of
the 1,624 genes changed significantly in at least one treat-
ment (L, LC or C) in wild-type or cli186, suggesting inter-
actions of light and carbon or an altered response to the
light and/or carbon treatments in the cli186 mutant. A list
of genes and their classes that are light/carbon regulated
in wild-type and cli186 is included [see Additional file 1].
A list of the 966 light/carbon regulated genes in wild-type
and the 216 misregulated genes in cli186 is included [see
Additional file 2]. Closer inspection of the resulting pat-
terns of regulation revealed 216 genes that were misregu-
lated in cli186 in light and/or carbon treatments when
compared to wild-type. A total of 900 genes (or 93% of
966 genes) are regulated by all three treatments (L, C and/
or LC) in wild-type and exhibit either normal regulation
(same as wild-type) OR misregulation by light and/or car-
bon in cli186 (Table 1a, 1c). Of the remaining 66 genes,
22 genes (2.3%) are regulated by LC only, and 21 genes
(2.2%) are regulated by L-only and C-only in wild-type
(Table 1a). Moreover, 14 genes (1.3%) that are not regu-
lated by L/C in wild-type, are regulated in any one or com-
bination of L and/or C treatments in cli186 (Table 1c). In
total, of these 966 light/carbon regulated genes in wild-
type, 216 are misregulated in cli186 in any one or combi-
nation of light and/or carbon treatments (Table 1b). Pat-
terns of misregulation observed among the 216
misregulated genes in cli186 is included [see Additional
file 3].

Although cli186 shows misregulation of genes in a
number of light and/or carbon treatments and combina-
tions thereof, the most common pattern of misregulation
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corresponded to genes specifically misregulated in LC
treatments only (91/216 genes or 42% of all misregulated
genes, Table 1b). This suggests that cli186 may be a
mutant defective in a component that integrates light and
carbon sensing and/or signaling. Additionally, cli186 con-
tains 41/216 genes (19%) that are misregulated in L and
LC treatments, 7/216 genes (3.2%) that are misregulated
in C and LC treatments, 31/216 genes (14%) that are mis-
regulated in the L-only treatment, and 36/216 genes
(17%) that are misregulated in the C-only treatment
(Table 1b). Genes that exhibit misregulation in L-only but
not in LC treatments, indicate that the carbon signaling
pathway antagonizes the light pathway, thus an interac-
tion between light and carbon pathways is present. A sim-
ilar rationale is applied to those genes that are
misregulated in the C-only treatment, but not in LC treat-
ments. Thus, of the 216 misregulated genes in the cli186
mutant, 161 genes or 75% (31 genes in L only; 36 genes
in C only; 91 genes in LC; 3 genes in both L only and C
only) exhibit misregulation specifically in response to an
interaction between light and carbon signaling, further
supporting the hypothesis that cli186 is defective in a
component that integrates light and carbon sensing and/
or signaling.

To complement and further validate the 'metric' classifica-
tion system analysis, an ANOVA analysis was used deter-
mine the genes regulated by either C and/or L in wild-type
and the cli186 mutant (see Methods). This 3-way ANOVA
was carried out with three dichotomous categorical varia-
bles (Carbon, Light and Genotype). The p-values were
then corrected for multiple testing using a FDR correction
at 5%. Of the 1,625 genes comprising the filtered dataset,
we find 1,263 regulated genes and of those, 308 are mis-
regulated in the cli186 mutant [see Additional file 4].
There is a significant overlap of genes among the two anal-
ysis methods employed. For example, 924 regulated genes
and 156 misregulated genes are shared among the two
datasets [see Additional file 4]. As this 3-way ANOVA
analysis provided similar results as the 'metric' classifica-
tion system, we carried out all further analyses in this
study using the 966 regulated genes and 216 cli186 mis-
regulated genes obtained from the 'metric' classification
analysis, a method previously used for the classification of
microarray datasets [18,19].

Table 1: Number and percent of (a) L/C regulated genes in WT or (b) L/C misregulated genes in cli186 and (c) the comparison of genes 
misregulated in cli186 with their regulation in WT in any one or combination of treatments.

a Treatment WT L/C Regulation b Treatment cli186 L/C Misregulation
L LC C # % L LC C # %

1) L - - 2 0.2 1) L - - 31 14.0
2) - - C 1 0.1 2) - - C 36 17.0
3) - LC - 22 2.3 3) - LC - 91 42.0
4) L - C 21 2.2 4) L - C 3 1.4
5) L LC - 4 0.4 5) L LC - 41 19.0
6) - LC C 2 0.2 6) - LC C 7 3.2
7) L LC C 900 93.0 7) L LC C 7 3.2
8) - - - 14 1.3 8) - - - 0 0

Total 966 99.9 Total 216 100

Misregulation of genes observed in cli186 in:

c Regulation of 
genes observed 

in WT in:

L (31) C (36) LC (91) L_C (3) L_LC (41) LC_C (7) L_LC_C (7) WT 
Regulation 

(14)

(2) L - - - - - - - 2
(1) C - 1 - - - - - -
(22) LC 1 - 8 - - 1 - 12
(21) L_C - - 10 1 - - - 10
(4) L_LC - 2 - - - - - 2
(2) LC_C - 1 - - - - - 1

(900) L_LC_C 30 28 66 1 41 6 5 723
(14) Not regulated - 4 7 1 - - 2 -

The L/C patterns of misregulation in cli186 that are perturbed in a L and C interaction are in bold.
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Genes in the biological processes energy and metabolism 
are regulated by light and/or carbon in wild-type but 
misregulated in cli186
The 966 L/C regulated genes in wild-type and the 216 L/C
misregulated genes in cli186 were categorized using func-
tional classification terms to determine which biological
processes are significantly over-represented in this group
of genes. Functional assignments of genes were based on
annotations provided by the Munich Information Center
for Protein Sequences (MIPS) Arabidopsis thaliana data-
base [35,36]. The over-representation of MIPS terms in
the gene lists, "L/C Regulated (966)", "L/C Misregulated
(216)" were compared to the entire Arabidopsis genome
using the BioMaps tool for visualization and statistical
analysis, using a p value ≤ 0.05 [37,38].

Table 2a shows the MIPS functional categories over-repre-
sented in the 966 L/C regulated genes in wild-type and
those over-represented in the list of 216 L/C misregulated
genes from cli186. Of the 29 primary level MIPS func-

tional categories, "Metabolism" and "Energy" are two sig-
nificantly over-represented terms among the 966 L/C
regulated genes in wild-type (Table 2a). In secondary and
tertiary functional categories under "Metabolism" and
"Energy", the processes that are significantly over-repre-
sented among the 966 L/C regulated genes in wild-type
include, "C-compound and carbohydrate metabolism",
"glycolysis and gluconeogenesis" and "photosynthesis"
(Table 2a). Interestingly, the functional categories
"Energy", "glycolysis and gluconeogenesis" and "photo-
synthesis" are over-represented among both the 966 L/C
regulated genes in wild-type and the 216 L/C misregulated
genes in cli186 (Table 2a). The categories that are over-
represented only among the 216 L/C misregulated genes
in cli186 include, "amino acid metabolism", "nitrogen
and sulfur metabolism", "respiration", "aerobic respira-
tion", "plastid" and "chloroplast" (Table 2a). These find-
ings indicate that the biological processes mentioned
above that are misregulated in cli186 are normally regu-
lated by L, LC and C in wild-type seedlings. This validates

Table 2: Biological processes over-represented among (a) all the 966 L/C regulated genes in WT and 216 L/C misregulated genes in 
cli186, (b) the 542 L/C regulated genes in WT and the 92 L/C misregulated genes in cli186 that are connected in a network and (c) the 
424 L/C regulated genes in WT and the 124 L/C misregulated genes in cli186 that are not connected in a network.

a
ALL

compared to genome

b
IN Network

compared to multinetwork

c
NOT in network

compared to genome

WT cli186 WT cli186 WT cli186

Numerical 
Category

MIPS Funcational Category L/C regulated 
(966)

L/C misregulated 
(216)

L/C regulated 
(542)

L/C misregulated 
(92)

L/C regulated 
(424)

L/C misregulated 
(124)

01. METABOLISM 0.00163 - - - - -
01.01 amino acid metabolism - 0.0315 - - - -
01.02 nitrogen and sulfur 

metabolism
- 0.01365 - - - -

01.02.01 nitrogen and sulfur 
utilization

- - - - - -

01.05 C-compound/
carbohydrate 
metabolism

0.04471 - - - - -

02. ENERGY 1.02E-07 2.01E-07 - - - 0.00042
02.01 glycolysis/gluconeogenesis 0.00175 0.00151 - - - -
02.13 respiration - 0.00119 - - - 4.71E-05
02.13.03 aerobic respiration - 0.02291 - - 0.00034 0.00264
02.30 photosynthesis 8.16E-05 2.53E-08 - 7.00E-03 0.00076 0.00316
10. CELLULAR COMMUNICATION/

SIGNAL TRANSDUCTION
- - - - - -

10.05 transmembrane signal 
transduction

- - - - - -

10.05.02 non-enzymatic receptor 
mediated signaling

0.02932 - - - - -

10.05.02.30 ion channel mediated 
signaling pathway

0.02932 - - - - -

30. CONTROL OF CELLULAR 
ORGANIZATION

- - - - - -

30.26 plastid - 8.63E-05 - - - 1.35E-05
30.26.03 chloroplast - 8.63E-05 - - - 1.35E-05

This table shows the functional categories (funcats) annotated by MIPS [35] that respond to light and/or carbon among the 966 L/C regulated genes in wild-type (WT) and 216 
L/C misregulated genes in cli186. The funcats are arranged according to their hierarchy as indicated by their numerical category. P-values to determine the significance of the 
funcats among the subsets of genes are shown in the columns labeled, 'L/C Regulated' and 'L/C Misregulated' in panels (a), (b) and (c). The p-values for the funcats that are 
significantly over-represented among both the L/C regulated genes in wild-type and the L/C misregulated genes in cli186 are in bold in panels (a), (b) and (c). The p-values for 
the funcats that are in normal text indicate those funcats that show over-representation among the 'L/C Regulated' or the 'L/C Misregulated' groups of genes in all panels, (a), 
(b) and (c). Dashes indicate no significant representation of the funcat among the groups of genes. Over-representation of MIPS terms in the gene lists were compared to the 
entire Arabidopsis genome (a), (c) or to the Arabidopsis multinetwork (b) using the BioMaps tool for visualization and statistical analysis, using a p value ≤ 0.05 [37, 38].
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that the positive genetic selection for mutants impaired in
light/carbon repression of ASN1::HPT2 enabled us to iso-
late an Arabidopsis mutant that affects the light/carbon
regulation of genes involved in metabolism and other
genes in related energy pathways.

L/C regulated genes in wild-type form a highly connected 
and complex metabolic and regulatory network that is 
disrupted in the cli186 mutant
We next analyzed the microarray data in a multinetwork
context to accomplish the following three goals: 1) To
understand how the L/C regulated genes (966 genes) in
wild-type are connected to each other from a network per-
spective, 2) to help understand/identify hubs that may
control such a large number of genes in concert, and 3) to
determine how the cli186 mutation perturbs this network.
Integrated metabolic and regulatory networks were cre-
ated using an Arabidopsis multinetwork tool developed
by Gutierrez et al. (2007) [[21]; Methods]. This multinet-
work allowed us to use a systems biology approach to
identify the metabolic and regulatory interactions affected
by the different treatments used and to see how these
interactions are changed or perturbed in the cli186
mutant. All 966 L/C regulated genes in wild-type were
used to query this Arabidopsis multinetwork. Of the 966
L/C regulated genes in wild-type, 542 genes were present
in the highly connected multinetwork [see Additional file
5]. The remaining 424 genes are not yet represented by
connections in the multinetwork database. To determine
if the presence and connectivity of the 542 genes in this L/
C network are significant, 966 genes were selected at ran-
dom from the Arabidopsis genome 10,000 times, and
asked how many times a network of 542 connected genes
or more could be recapitulated (see Methods). In no cases
out of 10,000 randomizations, was a connected network
of 542 genes or more recapitulated when randomly select-
ing 966 genes from the Arabidopsis genome (p < 0.0001).
Thus, a subset of 542 L/C regulated genes from wild-type
form a significantly connected component of the L/C
interaction network.

With the L/C network of 542 genes in place for wild-type
Arabidopsis, the genes in this network that are misregu-
lated in cli186 were identified, so as to identify the sub-
networks and biological processes disrupted by the cli186
mutation [see Additional file 5]. Of the 216 L/C misregu-
lated genes in cli186, 92 genes are present in the large con-
nected wild-type L/C multinetwork of 542 genes. Again,
the significance of the degree of presence (i.e. the overlap
of 92 genes) and connectivity of the L/C misregulated
genes in the large wild-type multinetwork was determined
(see Methods). Both the presence of and connectivity
among the 92 L/C misregulated genes in cli186 within the
wild-type multinetwork is significant (presence: p < 10-4,
connectivity: p = 0.0418).

To gain an overview of the biological processes that are
represented among the 542 connected genes (out of 966)
in the L/C gene network in wild-type and the subset of 92
(out of 216) L/C misregulated genes also present in this
network, a funcat (functional category) analysis using the
MIPS annotations was carried out on these lists of genes,
"L/C Regulated (542)" and "L/C Misregulated (92)"
(Table 2b). Over-representation of MIPS terms in the gene
lists, "L/C Regulated (542)" and "Mis-regulated (92)"
were compared to the 6,179 gene nodes represented in the
Arabidopsis multinetwork [21] using the BioMaps tool for
visualization and statistical analysis, using a p value ≤
0.05 [37,38]. This analysis revealed that the sub-funcat,
"photosynthesis" is the only over-represented term
among the L/C misregulated genes in cli186 (Table 2b).
The over-representation of only one sub-funcat is found
because the 6,179 gene nodes from the Arabidopsis multi-
network [21] was used as the background to determine
over-represented funcats within the gene lists, "L/C Regu-
lated (542)" and "L/C Misregulated (92)". As the Arabi-
dopsis multinetwork is not complete, there may be a bias
of biological processes represented within the multinet-
work. Thus, using the Arabidopsis multinetwork [21]
instead of the entire Arabidopsis genome as a background
for comparison of over-represented terms among the lists
of genes, "L/C Regulated (542)" and "Misregulated (92)"
accounts for this possible bias.

Although the current version of the Arabidopsis multinet-
work is extensive, containing 6,176 gene nodes, 1,459
metabolite nodes and 230,900 interactions, it is not com-
plete. Thus, many genes and their interacting partners are
not represented in the multinetwork. To determine which
biological processes are represented among those genes
that are not represented in the Arabidopsis multinetwork,
a MIPS functional category analysis was carried out (Table
2c). This analysis revealed that genes in the biological
processes, "respiration" and "aerobic respiration" are
over-represented in the genes not present in the multinet-
work, which include the 424 L/C regulated genes in wild-
type and the 124 L/C misregulated genes in cli186. Inter-
estingly, the biological processes, "Energy", "photosyn-
thesis", "plastid" and "chloroplast" are over-represented
among the 124 L/C misregulated genes in cli186. Thus, the
biological processes, "respiration" and "aerobic respira-
tion" are additional processes that are also regulated by L/
C in wild-type and misregulated by L/C in cli186, but not
yet defined by the network analysis. Furthermore, the fun-
cats "Energy", "photosynthesis", "plastid" and "chloro-
plast" are processes that are L/C misregulated in cli186,
but not yet defined by the network analysis.
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Supernode network summarizes multinetwork of L/C 
regulated processes in wild-type and L/C misregulated 
processes in cli186
To gain an understanding of how the various processes
regulated by L/C in wild-type seedlings are connected to
each other, and to determine which of these processes are
perturbed by the cli186 mutation, a supernode network
was created (Figure 2). Supernodes are created by collaps-
ing multiple genes from a multinetwork into a single
node, according to their annotation. For example, all
genes annotated to the glycolysis/gluconeogenesis path-
ways are summarized in the network with a single node

labeled "glycolysis/gluconeogenesis". The size of the node
is proportional to the number of genes annotated to the
corresponding node label. Gene edges from the large
multinetwork are transferred to the supernode, and are
summarized in the final supernode network by a single
edge type between supernodes. The connectivity of the
nodes are supported by edges that may be metabolic (grey
line), protein-DNA (red line = positive correlation; green
line = negative correlation) or protein-protein (blue
dashed line) interactions or combinations thereof. Hence,
this supernode analysis provides a summary of the biolog-
ical processes that are L/C regulated in wild-type and

A supernode network summarizes the biological processes regulated in wild-type and misregulated in cli186 by L/C treatmentsFigure 2
A supernode network summarizes the biological processes regulated in wild-type and misregulated in cli186 by L/C treatments. 
Supernodes are created by collapsing genes into a category according to both their metabolic pathways and the first two 
words of their gene annotation. This supernode network was created from the large multinetwork analysis that contains the 
966 L/C regulated genes in wild-type [see Additional file 6]. Blue nodes represent biological processes that contain genes that 
are under wild-type L/C regulation in wild-type and cli186. Yellow nodes represent biological processes in which at least one 
gene shows L/C misregulation in cli186. The size of the node indicates the number of genes within that particular biological 
process. Nodes are connected by either metabolic (grey lines), DNA:protein (red lines = positive correlation; green lines = 
negative correlation) or protein:protein (blue lines) interactions.
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those that are perturbed by the cli186 mutation and the
connections between these processes.

The supernode network (Figure 2, blue nodes), shows that
the supernodes containing the largest number of genes
that are under regulation by L/C interactions in both wild
type and cli186 include: "zinc finger", "benzoate degrada-
tion via CoA ligation", "valine, leucine, isoleucine degra-
dation", "stilbene, coumarine and lignin biosynthesis",
"phosphatidylinositol signaling system" and "inositol
phosphate metabolism". Those processes that contain the
largest number of genes and that have at least one L/C
misregulated gene in cli186 in the supernode include "gly-
colysis/gluconeogenesis", "nitrogen metabolism", "car-
bon fixation", "expressed protein", "pyruvate
metabolism", "protein kinase", nicotinate and nicotina-
mide metabolism" and "phenylalanine metabolism" (Fig-
ure 2, yellow nodes). Of the 108 processes shown as
supernodes in the wild type supernode network, 41 of
them are perturbed by the misregulation of one or more
genes in cli186. Thus, genes that are misregulated in cli186
are functionally associated.

A supernode network was also created using the 216 mis-
regulated genes in cli186 to visualize the processes that
contain the largest number of genes that are misregulated
in cli186, to see the number of connections and with
which other nodes they are connected [see Additional file
6]. These supernodes, representing biological processes,
indicate that the regulation of genes in these processes are
perturbed in cli186. The supernodes with the highest
number of genes misregulated by L/C in cli186 include,
"nitrogen metabolism", "glycolysis/gluconeogenesis",
"carbon fixation" and "expressed protein". Prominently,
within this supernode network of cli186 L/C misregulated
genes is a homeobox leucine zipper protein connected via
protein-DNA connections to the supernodes that repre-
sent metabolic processes such as "nitrogen metabolism",
"glycolysis/gluconeogenesis" and "carbon fixation"
among others. Within this supernode network there are
additional proteins with DNA binding and/or transcrip-
tional activity but do not exhibit the striking connectivity
of the homeobox leucine zipper protein [see Additional
file 6].

A homeobox-leucine zipper transcription factor (HAT22) 
integrates metabolic networks
To gain a gene-by-gene network view of the connectivity
of the 216 L/C misregulated genes in cli186, the 216 genes
were used to directly query the Arabidopsis multinetwork
(Figure 3) [see Additional file 7]. A number of interactions
are visualized within this sub-network including: (1) met-
abolic networks (2) protein:protein interaction networks
and (3) protein:DNA regulatory interaction networks [21]
(see Methods). Nodes representing genes (blue hexa-

gons), genes annotated to be transcription factors (green
diamonds) or metabolites (peach circles) are connected
via edges. The type of edge indicates if the interaction is
metabolic (black arrows), protein:DNA regulation (red
arrows) or protein-protein interactions (blue dashed
lines). Predicted transcription factor target gene edge con-
nections are based on interactions available from AGRIS
[39], the interolog and regulogs described previously [40]
and the statistical over-representation of the transcription
factor binding sites within the target gene promoter and
the correlation (p < 0.01 and r > 0.5) of expression of the
transcription factor and target gene across all 16 experi-
ments (see Methods). This analysis shows one large net-
work comprised of 60/216 genes, all of which are L/C
misregulated in cli186.

The gene network analysis reveals that a number of enzy-
matically and physically connected genes involved in the
biological processes "C-compound/carbohydrate metab-
olism", "amino acid metabolism" and glycolysis/glucone-
ogenesis" are misregulated by L/C in cli186. Thus, these
metabolic processes are likely to be overall perturbed in
cli186. Moreover, at least one gene in these three 'super-
nodes' has a regulatory edge connected to HAT22, a
homeobox-leucine zipper protein 22. The genes that con-
tain regulatory protein:DNA edge connections to HAT22
include ASN1 (asparagine synthetase) (the gene used in
the genetic screen to isolate the cli186 mutant), PPDK
(pyruvate phosphate dikinase) and AGT (alanine glyoxy-
late aminotransferase). This network result suggests that
HAT22 may be involved in coordinating the regulation of
the target genes in the three related metabolic processes
"amino acid metabolism", "C-compound/carbohydrate
metabolism" and "glycolysis/gluconeogenesis" (Figure 3)
[see Additional file 7]. Furthermore, HAT22 shows addi-
tional regulatory edge connections to four other genes,
three of which are known regulatory genes (WRKY23
(At2g47260), SINA (At3g61790), a light-regulated signal-
ing protein (At3g26740)) and one is an unknown gene
annotated as an expressed protein (At3g20340). WRKY23
is one member of the family of WRKY transcription fac-
tors, SINA (seven in absentia protein family) is a gene
required for R7 photoreceptor development in Dro-
sophila [41] but whose function is currently unknown in
Arabidopsis, the light responsive protein is involved in
signaling and the 'expressed protein' is annotated as hav-
ing a gene regulatory function. Interestingly, ASN1, the
gene used to construct the transgenic plants used in the
selection of the cli mutants, is included in this cli186 gene
network and is connected to the HAT22 hub. Strikingly,
there are a large number of genes in this network anno-
tated to "amino acid metabolism" and "amino acid degra-
dation", all of which are misregulated in cli186. Other
genes within this metabolic subnetwork are genes related
to or are byproducts of Asn synthesis and degradation and
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include the following: At3g47340 (ASN1, asparagine syn-
thetase), At3g16150 (ANS1, asparaginase), At5g18170
(GDH1, glutamate dehydrogenase 1), At5g07440 (GDH2,
glutamate dehydrogenase 2) and At1g55090 (glutamine-
dependent NAD (+) synthetase). The misregulation of six
of seven HAT22 target genes in the network have been val-
idated via q-PCR and all of these genes (SINA, At3g61790;
WRKY23, At2g47260; ASN1, At3g47340; PPDK,
At4g15530; light-regulated protein, At3g26740; AGT,
At3g08860), including HAT22 itself show misregulation
in cli186 when compared to WT [see Additional file 8].

Integration of cli186 with light signaling mutants
As the genome scale analysis suggests that cli186 is specif-
ically impaired in the regulation of genes affected by L/C
interactions, it was of interest to compare gene regulation
in cli186 to other Arabidopsis mutants impaired in light
sensing/signaling. We compared morphological and
molecular phenotypes where applicable, to gain a prelim-
inary idea of where CLI186 functions with respect to
known light signaling mutants. Cli186 exhibits shorter
hypocotyls and opened cotyledons during etiolated
growth, similar to other known constitutively photomor-
phogenic mutants. Comparison of the molecular pheno-

A metabolic and regulatory sub-network created from the 216 misregulated genes in cli186Figure 3
A metabolic and regulatory sub-network created from the 216 misregulated genes in cli186. This is a sub-network of the 216 
misregulated genes that was extracted from the larger multinetwork created using the 966 L/C regulated genes in WT [see 
Additional file 5] and visualized using Cytoscape [54]. Nodes representing genes (blue hexagons), genes annotated to be tran-
scription factors (green diamonds) or metabolites (peach circles) are connected via edges. The type of edge indicates if the 
interaction is metabolic (grey arrows), protein-DNA regulation (red arrows) or protein-protein (blue dashed lines). Protein-
DNA interactions are supported by the presence of one or more binding sites within the promoter of that gene for that par-
ticular transcription factor (see Methods). This is a connected network comprised of 60/216 misregulated genes in cli186 in 
which all of the nodes represented are misregulated in cli186.
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types of cli186 with cop [42] and det [43] mutants reveals
that unlike cop and det mutants, cli186 does not exhibit
induced expression of the RBCL and CAB genes in etio-
lated plants. Furthermore, based on microarray analysis,
the cli186 mutant displayed a loss of light regulation
rather than a constitutive light response in the dark based
on microarray analysis. As this is more consistent with a
mutation in the phytochrome and/or cryptochrome sign-
aling pathways, the growth phenotype of cli186 was ana-
lyzed alongside the photoreceptor mutants, phyA-201
[44]phyB-5 [45] and cry1-304/cry2 [46] in various light
conditions (e.g. continuous far-red light for phyA-201,
continuous red light for phyB-5 and continuous blue light
for cry1-304/cry2-1). Cli186 exhibited an inhibition in
hypocotyl elongation similar to wild-type under all light
conditions, whereas the photoreceptor mutants displayed
elongated hypocotyls compared to their wild type. These
preliminary studies indicate that cli186 is not an allele of
either the phyA, phyB, cry1 or cry2 mutants (data not
shown).

Since it was determined that cli186 is not in an upstream
component of light signaling (cop, det, phyA, phyB, cry1 or
cry2 mutant), we attempted to place CLI186 as a down-
stream component in the context of other known light or
carbon signaling pathways by comparing available micro-
array data from light signaling mutants with microarray
data from cli186. We focused on the phyA and phyB micro-
array studies that were the most similar with respect to
growth conditions [47,48] used for the cli186 studies
described herein. A comparison of genes misregulated by
phyA and/or phyB [47,48] with the 216 L/C misregulated
genes in cli186 reveals sixty-eight genes that are shared
among the misregulated genes in cli186 and the phy data
sets. As PHYA is the predominant phytochrome type in
etiolated seedlings, and because the ASN1 misregulated
molecular phenotype of cli186 is more pronounced in eti-
olated seedlings, CLI186 may function as a downstream
component of the PHYA pathway that integrates L and C
signaling pathways. The involvement of CLI186 in a
PHYA or PHYB pathway does not preclude it from also
potentially functioning downstream of any of the other
photoreceptors. Thus, it will be beneficial to investigate
cli186 in the context of other light and carbon signaling
mutants when microarray data becomes available.

Discussion
CLI186: An integrator of light and carbon signaling 
interactions
The systems wide studies herein suggest that the cli186
mutation blocks the integration of light and carbon sign-
aling pathways that occur in wild-type Arabidopsis. Fur-
thermore, comparative analysis of microarray data from
cli186 and phy mutants was used to derive the preliminary
hypothesis that CLI186 functions downstream of a light

signaling pathway, that is, at least in part, mediated by
phytochrome (possibly phyA) and a carbon signaling
pathway, mediated by a yet undetermined sensor or mod-
ulator (Figure 4). Our analysis of gene networks that are
misregulated in cli186, combined with a comparative
analysis of genes misregulated in phyA and phyB mutants
enabled us to place CLI186 in a molecular hierarchy,
depicted in Figure 4. Our hypothesis that CLI186 acts
downstream of phyA is also based on the dramatic
changes in L/C regulated gene expression observed in eti-
olated plants. While the misregulation by light and car-
bon (LC) of ASN1 expression in light-grown cli186
seedlings was modest (Figure 1c), it was sufficient to select
cli mutants, based on misregulation of the ASN1::HPT2
construct. Since the cli186 mutant exhibits delayed green-
ing and problems with seed set (data not shown), the
notion that CLI186 also plays a role in light-grown seed-
ling development is currently being investigated.

Among the 216 genes misregulated by L/C in cli186, nine
genes are transcription factors or genes with regulatory
function, of which six are present in the large L/C multi-
network (HAT22, RAV1, ERF5, WRKY, SINA and one
unnamed C3HC4-Zn finger binding protein). HAT22, a
homeodomain leucine zipper protein is of particular
interest, as it appears to be a network hub that is predi-
cated to target the promoters of 53 genes in the multinet-
work [see Additional file 5]. Seven of these 53 target genes
of HAT22 are also misregulated in cli186 and have been
validated via qPCR in their misregulation [see Additional
file 8]. The misregulation of HAT22 in cli186 suggests that
HAT22 is a putative transcription factor hub that func-
tions downstream of CLI186 to integrate L/C regulation of
genes involved in metabolic networks related to C-metab-
olism, N-metabolism and Energy, as well as regulatory
networks involved in transcription. A number of the genes
in these HAT22 target metabolic networks (e.g. ASN1,
ANS, GDH2, SHM1, ALDP1 and GAPB) are also affected
in phyA or phyB [47,48] mutants, supporting the gene net-
work hierarchy of CLI186 being involved in the integra-
tion of L and C signaling as shown in the model in Figure
4. It is noteworthy that MIPS funcat analysis reveals that
genes involved in photosynthesis are also over-repre-
sented in the list of misregulated genes in cli186 (Table 2)
and that a number of these genes are also misregulated in
the phyA and phyB mutants. The genes involved in the
light reactions of photosynthesis are not in the current
version of the Arabidopsis multinetwork [21] because at
present, there are no edges connecting these photosynthe-
sis genes to the rest of the network (e.g. via protein:protein
interactions). This could be because the inferred pro-
tein:protein interactions in the current Arabidopsis multi-
network are based on experimentally proven
protein:protein interactions in worm, fly or yeast [49].
Thus, a number of genes and/or interactions specific to
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plants, such as those involved in photosynthesis are not
yet represented in the Arabidopsis multinetwork. The
other five transcription factors, acting downstream of
CLI186, may regulate genes involved in photosynthesis or
other metabolic and regulatory networks that are not rep-
resented in the multinetwork or that are not present in the
dataset used for the analyses in this report. These tran-
scription factors and their role in the L/C regulation of
genes are currently under investigation. The model pre-
sented in Figure 4 is one hypothesized manner in which
CLI186 may act to integrate L and C signaling interactions
that best accounts for and fits our analysis and interpreta-
tion of the microarray analyses carried out for cli186.

This systems based analysis of the cli186 mutant suggests
the existence of a master regulator of L/C signaling inter-
actions. Furthermore, our network analysis defines
HAT22 as a regulatory hub that plays a major role in inte-
grating the L and C regulation of genes in the biological
processes, "amino acid metabolism" and "glycolysis and

gluconeogenesis". Thus, HAT22 could hypothetically play
the role of CLI186 as a master regulator however, HAT22
does not encode the affected gene in cli186 based on (1)
the presence of HAT22 mRNA in the cli186 mutant (data
not shown); (2) the fact that HAT22 passes the first criteria
for filtering of microarray data (i.e. probes must be called
'present' in baseline or treatment hybridizations) and (3)
location of HAT22 in the genome (chr 4). Although,
HAT22 is ruled out as a cli186 candidate, other transcrip-
tion factors, miRNAs or genes with regulatory roles such
as those involved in chromatin remodeling, that are not
within the scope of this analysis are possible cli186 candi-
dates and are currently under investigation. Interestingly,
of the 216 misregulated genes in cli186, almost 80% of
them exhibit a dampening of regulation (either induction
or repression) via the interaction of L and C signaling
pathways, suggesting that CLI186 may be positive regula-
tory factor.

A proposed model: CLI186 is an integrator of L and C signaling interactionsFigure 4
A proposed model: CLI186 is an integrator of L and C signaling interactions. L and C signaling interactions converge via CLI186 
that may, in turn, act on a number of downstream regulatory factors such as HAT22, SINA, RAV1, ERF5, WRKY and a Zn-fin-
ger protein. These regulatory proteins may regulate a number of genes involved in various biological processes such as N-
metabolism, C-metabolism and Energy among others. Genes involved in the light reactions of photosynthesis (CAB4, 
LHCA2*1, etc.) were not represented within the multinetwork and so it remains unclear how CLI186 may target these genes 
for regulation. Genes in bold are those that exhibit misregulation in the cli186 mutant and in phyA and phyB mutants, supporting 
the hypothesis that the light signal integrated with carbon may be perceived through a phytochrome pathway. The genes within 
the dashed box indicate a relationship supported by the network analyses. All genes depicted within this hierarchical network 
are misregulated in the cli186 mutant, with the exception of PHYA. This molecular hierarchy depicted is supported by our anal-
ysis and interpretation of the microarray analyses carried out for cli186.
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Conclusion
In this study we have taken an integrated genetic, genomic
and systems approach to define gene networks that are
regulated by the interaction of light and carbon signaling
and that are perturbed in cli186. Using this approach, we
have developed the biological hypothesis that CLI186 is a
regulatory hub affecting the integration of L and C signal-
ing and exerts its effects via downstream transcription fac-
tors which in turn regulate genes involved in essential
biological processes such as amino acid metabolism and
glycolysis/gluconeogenesis. More common methods used
thus far for genome-wide studies in Arabidopsis such as
cataloging genes based on biological processes and pro-
viding gene lists, would not have enabled us to gain a sys-
tems biology understanding of how CLI186 may act to
integrate L and C signaling interactions via HAT22 and
other downstream transcription factors. We believe that in
addition to elucidating the factors involved in the integra-
tion of L and C signaling pathways, that this work may
serve as a case study wherein the analysis of genomic data
in a systems/network context can help define the role of a
mutated gene. Moreover, this type of analysis could
potentially be used to determine which mutants in a
genetic screen are potential network hubs and should be
targeted for gene cloning efforts.

Methods
Construction of ASN1::HPT2 reporter gene transgenic 
line
Transgenic Arabidopsis thaliana plants were constructed in
which the genome contained the 5' upstream region of
ASN1 from -148 to +120 fused in a transcriptional fusion
to the hygromycin phosphotransferase (HPT2) gene and
to a GUS gene [30]. This 148-bp region of the ASN1 pro-
moter has previously been shown to include the regula-
tory cis-elements necessary for repression of the gene in
response to light [30,31] and carbon [31]. This ASN1-
HPT2/ASN1-GUS construct was further subcloned into
the Ti binary vector PBI101.1, introduced into Agrobacte-
rium tumefaciens LBA4404 and used to transform the
Columbia ecotype of Arabidopsis via vacuum infiltration
[31]. Among the kanamycin-resistant independent trans-
formants, only plants containing a single insertion were
selected for further characterization. The transgenic line
exhibiting the most dramatic level of light and sucrose
repression of GUS expression was chosen for a genetic
screen to select for plants defective in light and/or carbon
signaling [31].

Screening for cli mutants
An unmutagenized (wild-type) line harboring the ASN1-
HPT2 transgene was mutagenized with fast-neutron irra-
diation or ethylmethane sulfonate (EMS). 20,000 M2
seeds from 763 individual M1 fast-neutron irradiated
lines and 23,000 M2 seeds from 579 M1 EMS-generated

lines were screened for resistance to hygromycin when
grown in the presence of light and sucrose. Mutagenized
seed and controls were surface-sterilized, plated on desig-
nated media and stratified for 48 hours at 8°C. Seeds were
grown on media containing 1× Basal MS (Life Technolo-
gies, Long Island, NY), 0.9% (w/v) bactoagar, pH adjusted
to 5.7 with KOH, supplemented with 2 mM KNO3, 0.5%
sucrose and 15 μg/ml hygromycin (Gibco-BRL). Controls
consisted of unmutagenized seeds containing the ASN1-
HPT2 transgene and a transgenic line containing the HPT
transgene driven by a NOS promoter, allowing for consti-
tutive expression of the HPT2 gene. Two fast-neutron gen-
erated and 25 EMS generated hygromycin-resistant
mutants were isolated based on their growth phenotype
when compared to the unmutagenized ASN1::HPT2 con-
taining line: hygromcyin-resistant plants exhibited longer
root length and green primary and secondary leaves.
Mutants demonstrating a consistent, heritable hygromy-
cin-resistant phenotype were characterized further using
quantitative PCR to determine aberrant expression of the
endogenous ASN1 gene.

Plant Growth and RNA Isolation
Wild-type and mutant seeds were grown and RNA was iso-
lated as described in a previous study [17]. Seeds stocks
for phyA-201 and phyB-5 were obtained from the Arabi-
dopsis Biological Resource Center (Ohio State University)
and cry1-304/cry2-1 from Dr. Chentao Lin (University of
California, Los Angeles).

Quantitative PCR
RNA was isolated from whole plants using a phenol
extraction protocol as previously described [17]. The RNA
samples used for quantitative PCR are the same as those
used for the microarray analysis in this study. cDNA syn-
thesis using 1.0 μg total RNA was carried out according to
Invitrogen (catalog no. 11146-024). Subsequent real-time
quantitative PCR was carried out with a LightCycler
(Roche Diagnostics, Mannheim, Germany). PCR amplifi-
cation in a 20 μl reaction volume consisted of a master
mixture containing DNA Taq polymerase, dNTP mixture
and buffer (LightCycler DNA Master SYBR Green 1, Roche
Diagnostics, catalog no. 2158817), 4 mM MgCl2, 0.9 μM
of each primer and cDNA in a glass capillary tube. Primers
spanned at least one intron for each gene analyzed and
were designed using the LightCycler probe design soft-
ware (Roche). The primers were synthesized at Invitrogen
Life Technologies (Carlsbad, CA). Quantitative PCR using
hybridization probes was carried out as previously
described for ASN1 and At4g24550, a putative clathrin
coat assembly protein [17]. The following primers were
used for amplification: HAT22 (At4g37790) 5' GCAGAC-
CTCGTCCCAC 3'(forward primer), 5' GCACATAGT-
CAAAGTCGC 3' (reverse primer); SINA (At3g61790)
5'CACTGCTTCGGTCAAT 3' (forward primer), 5'
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AGGCCAAATCGGTGAG 3' (reverse primer); WRKY23
(At2g47260) 5' TGGTTATCGCTGGCGA 3' (forward
primer), 5'AGCGTGGCTATTAAGGT 3' (reverse primer);
PPDK (At4g15530) 5' TGCAGGCTCGGAATAT 3'(forward
primer), 5' AGGGTCGTGCTGTAAGA 3' (reverse primer);
AGT (At3g08860) 5' ATCGTAGAGCTTGCTCC 3' (for-
ward primer), 5' CCAACGAGGTTAGCATT 3' (reverse
primer); Light-regulated protein (At3g26740) 5' GCTCT-
GTTTATCAAACCAACT 3' (forward primer), 5' CCAAGAT-
CATCGCAGGC 3' (reverse primer). Thermal cycling was
performed as follows: initial denaturation at 95°C for 2
min, followed by 45 cycles of denaturation at 95°C for 0
s, annealing at 55°C for 5 s (HAT22, SINA and PPDK) or
60°C for 10 s (WRKY23, AGT and light-regulated protein)
and extension at 72°C for 20 s. Melting curve analyses
were carried out for all amplification reactions as follows:
one cycle of an initial denaturation at 95°C for 0 s,
annealing at 50°C for 5 s and another denaturation at
95°C for 0 s with a slope of 0.1°C/s. Standards were pre-
pared with a 10-fold serial dilution (10-4 to 10 pg) of the
PCR products and were run under the same PCR condi-
tions used for the samples. The absolute amount of mRNA
[ng/ml] for all samples was corrected/normalized accord-
ing to the amount of At4g24550, a putative clathrin coat
assembly protein.

Microarray Analysis and Data Filtering
Preparation of cDNA and cRNA for microarray analysis
was carried out as previously described [18]. 15 μg of
cRNA was used for hybridization (16 hours at 42°C) to
the Arabidopsis Genome ATH1 array (Affymetrix). Wash-
ing, staining, and scanning were performed as recom-
mended by the Affymetrix instruction manual. Expression
analysis was performed with the Affymetrix Microarray
Suite software (version 5.0) set at default values with a tar-
get intensity set to 150. Two biological replicates for each
treatment were carried out.

Wild-type and cli186 plants were subjected to four differ-
ent light and/or carbon treatment conditions (-L+C; +L-C;
+L+C; -L-C). All experiments for Q-PCR were carried out
independently in triplicate where two of these experi-
ments were used for microarray analysis. Treatment with
no light and no carbon for either wild-type or cli186, (-L-
C) served as the control treatment and was used as the
background to which all other treatments were compared
(+L-C; +L+C; -L+C). Each of two background treatments
(e.g. -C-L) were compared with both treatment replicates
(e.g. -L+C) providing a stringent four-way comparison. All
treatments were started at 9 a.m. to control for possible
circadian fluctuations. Data analysis from wild-type and
cli186 arrays was carried out simultaneously to classify
genes based on their regulation by light and/or carbon
across all 24 comparisons (4 comparisons/treatment × 3
treatments × 2 genotypes). Genes were retained for the

analysis of wild-type and cli186 if the values in all treat-
ments met the following criteria. Filter 1: the detection
calls must not be called absent (A) or marginal (M) in
both background and treatment conditions. On average,
this filter removed 10,450 genes/comparison, leaving
approximately 12,360 genes/comparison. Filter 2: if a
gene is called absent (A) or marginal (M) in one hybridi-
zation (control or treatment) then the signal in the
present (P) call must be > or = 50. On average, this filter
removed 784 genes/comparison, leaving approximately
10,576 genes/comparison. Filter 3: the difference calls
must be the same in 3 out of 4 comparisons. Application
of these three filters to both wild-type and cli186 resulted
in a reliable dataset. Using the filtered dataset of 1,625
genes, patterns of regulation across different treatments
were assigned to each gene using the Affymetrix difference
calls.

'Metric' Classification System
If a gene was found differentially regulated in two or more
conditions using the Affymetrix software, an ANOVA
analysis and Tukey's post-hoc analysis was carried out to
rank the mean expression in the treatments in wild-type
and cli186. Multiple testing was addressed by controlling
the false discovery rate (FDR) at 5% as described previ-
ously [34]. If the mean of the signal log ratios of a gene
were significantly different in wild-type versus cli186 in
one treatment, that gene was numerically ranked based on
the level and direction of change. For example, if a gene
exhibits significantly higher expression in wild-type than
in cli186 in a particular treatment, expression for that gene
may be summarized with a numerical rank of 'two' in
wild-type and 'one' in cli186. Negative numerical rankings
indicate repression of gene expression. Differences in
numbers in wild-type versus cli186 in any one treatment
indicate a statistically significant difference in gene expres-
sion between the two genotypes.

Examples of how genes are classified according to their
regulation in wild-type and misregulation in cli186 are
shown as additional data [see Additional file 9]. Values of
"0" signify no change, while induction is positive and
repression is a negative number. The treatments are
ordered L, LC, and C [see Additional file 9]. As an example
of this system, using Tukey's post-hoc analysis for a pair-
wise comparison of all treatments between wild-type and
cli186, significant differences in expression of Gene A were
observed in the L-only treatment, thus Gene A shows the
numerical assignment, "2 1 1" for wild-type, and "1 1 1"
for cli186. Therefore, genes that are assigned the numeri-
cal values of "2 1 1"/"1 1 1" (L LC C) are determined to be
misregulated in cli186 only in L-only treatments. The
numbers assigned to each of the genes also indicate the
direction of regulation observed in any one of the treat-
ments. In a second example, the numerical assignment for
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Gene B, "-1 -1 -1" (L LC C) for wild-type and "-1 -1 -2" (L
LC C) for cli1186 indicates that Gene B is deduced to be
mis-regulated in cli186 only in the C-only treatment [see
Additional file 9]. Further examples of how patterns of
gene expression may be classified and used to identify
misregulated genes in cli186 are in Additional data (Genes
C-G) [see Additional file 9]. In total, the filtered dataset of
1,625 genes exhibited 46 different patterns of L, CL and C
regulation. These combinations of C and L regulation
were compared between wild-type and cli186, and used to
classify genes according to their misregulation in cli186 in
any one of or combination of the treatment conditions.

Three-Way ANOVA
To look at the genes regulated by either C and/or L in
wild-type and the cli mutant a 3-way ANOVA analysis
with three dichotomous categorical variables (Carbon,
Light, and Genotype) was performed. The p-values were
corrected for multiple testing using a FDR method with a
cutoff of 0.05 or 5% FDR. Our results indicate that the
majority of the regulated and misregulated genes deter-
mined using a 3-way ANOVA analysis is very similar to
those obtained from the method discussed above [see
Additional file 4]. The model used is as follows:

Gene expression ~carbon + light + carbon:light + car-
bon:genotype + light:genotype + carbon:light:genotype -1

Our model assumes no intercept and thus contains a
minus 1.

Arabidopsis Multinetwork
The Arabidopsis multinetwork consists of genes (nodes)
connected by edges that represent interactions based on:
(1) metabolic pathways (2) protein-protein interactions
and (3) protein-DNA regulatory interactions. Support for
the gene connections in metabolic pathways are based on
information from KEGG [50], and AraCyc [51] databases.
Support for protein-protein interactions and protein-DNA
interactions are based on information from DIP [49],
BIND [52] and Transfac [53]. Predicted protein-DNA
interactions are supported by those available from AGRIS
[39], the interolog and regulogs [40] and a method devel-
oped in our lab used to predict protein-DNA interactions
(see 'Predicting Protein:DNA Interactions' below). At
present, this Arabidopsis multinetwork contains 6,176
gene nodes, 1,459 metabolite nodes and 230,900 interac-
tions "edges" connecting the nodes. Two nodes can have
multiple edge connections. Querying this multinetwork
with a gene list (e.g. from a microarray experiment) and
visualization using the Cytoscape software [54] displays
all connections between the genes of interest and other
biological molecules.

Predicting Protein:DNA Interactions
Protein:DNA interactions were generated using biologi-
cally responsive elements taken from the AGRIS database
[39] to scan upstream sequence using the DNA pattern
search tool available from RSA tools [55]. 1000 bp of the
upstream sequence of all genes were scanned in the for-
ward and reverse directions without overlap and matches
to the consensus sequence were reported based on their
frequency within the upstream region (starting from -
1000 bp upstream). Those binding sites having a fre-
quency greater then a set Z-score (average + 2 standard
deviations) were considered over-represented and there-
fore significant based on our own analysis of frequency
effects within the genome as well as previous work in
eukaryotic species showing a correlation between
increased frequency of a binding site and a change in
expression [56].

Statistics for Multinetwork
It was of interest to determine the significance of the
multinetwork created from the 966 L/C regulated genes
and the 216 misregulated genes. The significance of the
presence of the genes in the network was determined as
well as the connectivity among nodes (genes) in the net-
work.

The significance of the presence of the 966 L/C regulated
genes within the Arabidopsis Multinetwork was deter-
mined by calculating how many nodes from the 966 L/C
regulated dataset (dataset Reg) are present in the Multinet-
work (dataset M) and then asking, if a random sample size
of 966 genes were sampled 10,000 times from the entire
Arabidopsis genome of 22,811 nodes, how many times
could we expect to find the same number of nodes present
in the Multinetwork. It was found that there are 542 nodes
(dataset Reg_M) from the 966 L/C regulated dataset that
are present in the Multinetwork and in no cases (out of
10,000) does an arbitrary set of 966 nodes out of 22,811
intersect with such a large cardinality with those present in
the Multinetwork (p value < 10-4). We also determined the
significance of the connectivity of the multinetwork that
was created from the 966 L/C regulated dataset. Here, the
number of the genes (nodes) that are shared among data-
set Reg_M were determined and of those 542 genes (data-
set Reg_M) that are shared among the two datasets, the
number of edges were determined, of which there are
3356. It was then asked, if a random sample size of 542 or
more genes was sampled 10,000 times from the Multinet-
work, how many times could we expect to find 542 genes
that have 3356 edges. In no cases, out of 10,000, did a
sample size of 542 genes or more out of the Multinetwork
contain 3356 edges (p value = 0.0000).

The significance of the 216 misregulated genes (dataset
Mis) within the multinetwork that was created by using
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the 966 L/C misregulated genes was determined. Here, the
intersection between the genes in dataset Reg_M and the
216 misregulated genes (dataset Mis) was determined to
be 92 genes. It was then asked, if a random sample size of
216 genes was sampled 10,000 times from the Arabidop-
sis genome, how many times could we expect to find 92
genes that are in dataset Reg_M. In no cases (out of
10,000) does an arbitrary set of 216 nodes out of 22,811
intersect with such a large cardinality with those present in
dataset Reg_M (p value < 10-4). The significance of the
connectivity of the 216 L/C misregulated genes in the
Multinetwork was investigated by determining how many
edges are induced in dataset M from the genes in database
Mis (i.e. an edge (g1, g2) is induced if both g1 and g2 are
in Mis). The answer is 289. We then asked how many
times can one expect to find 298 edges induced in M from
a randomly selected group of 216 genes from dataset
Reg_M. In 418 cases, out of 10,000, did a sample size of
216 genes from dataset Reg_M induce 298 edges in M (p
value = 0.0418).

Microarray Data
The microarray data for this article have been deposited in
the ArrayExpress database, accession number E-MEXP-
1112.
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