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Abstract
Background: We address the issue of explaining the presence or absence of phase-specific
transcription in budding yeast cultures under different conditions. To this end we use a model-
based detector of gene expression periodicity to divide genes into classes depending on their
behavior in experiments using different synchronization methods. While computational inference
of gene regulatory circuits typically relies on expression similarity (clustering) in order to find
classes of potentially co-regulated genes, this method instead takes advantage of known time profile
signatures related to the studied process.

Results: We explain the regulatory mechanisms of the inferred periodic classes with cis-regulatory
descriptors that combine upstream sequence motifs with experimentally determined binding of
transcription factors. By systematic statistical analysis we show that periodic classes are best
explained by combinations of descriptors rather than single descriptors, and that different
combinations correspond to periodic expression in different classes. We also find evidence for
additive regulation in that the combinations of cis-regulatory descriptors associated with genes
periodically expressed in fewer conditions are frequently subsets of combinations associated with
genes periodically expression in more conditions. Finally, we demonstrate that our approach
retrieves combinations that are more specific towards known cell-cycle related regulators than the
frequently used clustering approach.

Conclusion: The results illustrate how a model-based approach to expression analysis may be
particularly well suited to detect biologically relevant mechanisms. Our new approach makes it
possible to provide more refined hypotheses about regulatory mechanisms of the cell cycle and it
can easily be adjusted to reveal regulation of other, non-periodic, cellular processes.

Background
In yeast several transcription factors and sequence motifs
are known to ensure timely expression of genes whose

products are required at specific phases in the cell cycle
[1]. For instance, genes with the ECB motif upstream are
predominantly transcribed in the M/G1 boundary of the
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cell cycle, while presence of the MCB motif is correlated
with high expression in the G1 phase. Spellman et al. [2]
used temperature-sensitive mutants of cdc15 and cdc28,
as well as stimulation by the α-factor mating pheromone,
to induce synchrony in budding yeast (S. cerevisiae). The
aim was to identifying all cell cycle regulated genes in
yeast by selecting genes that exhibited consistent periodic
expression in cultures synchronized by these different
methods. However, it has subsequently been noted that
there are genes that appear to be periodically expressed
only when some of the synchronization methods are used
[3]. The different synchronization methods are bound to
affect the system in different ways, and so it is to be
expected that different dynamics follow the perturbation.
Here we study this phenomenon of perturbation-depend-
ent phase-specific expression and the corresponding cis-
regulatory control structures in the yeast cell cycle. In
doing so we devise a method in which prior information
is incorporated in a model-based treatment of gene
expression data, a method we expect to be useful in other
analyses.

Several studies have used computational methods to
uncover cis-regulatory control structures in yeast from
high-throughput data sources. An important step was
taken by Pilpel et al. [4] who observed that expression was
more concordant for genes sharing two upstream
sequence motifs than for genes sharing only one motif.
This suggested that the expression program of the yeast
genome in general is determined by combinations of reg-
ulatory elements and stimulated several computational
studies aimed at identifying these regulatory mechanisms
using sequence motifs and expression data. Segal et al. [5]
used clusters of similarly expressed genes as initial regula-
tory modules, found common motifs for these modules
and then iteratively refined them by reassigning genes
whose promoter regions did not match the motif profile
of their current module. Beer and Tavazoie [6] found a
large number of sequence motifs that were overrepre-
sented in a set of expression clusters, and inferred a statis-
tical (probabilistic) relationship between these motifs and
the clusters. Hvidsten et al. [7] and Wilczyński et al. [8]
retrieved motif combinations by computing minimal sets
of motifs necessary to separate genes in overlapping
expression clusters. The common denominator for all
these studies, as well as other related studies [9-13], is that
expression similarity is characterized in terms of the pres-
ence of combinations of sequence motifs or other cis-reg-
ulatory information. The resulting sets of putatively co-
regulated genes are then often evaluated using external
data such as gene function annotations [14] or by consid-
ering additional experimental support such as binding of
transcription factor to gene promoters [15,16]. A different
route was taken by Segal et al. [17] and Pham et al. [18]
who directly addressed the transcriptional network by

using the notion that expression of genes (i.e. transcrip-
tion factors) affect transcription of other genes in a direct,
but not necessarily causative fashion. For instance, Segal et
al. [17] constructed decision trees for co-regulated sets of
genes (clusters) where the internal nodes in the tree were
decisions based on the expression level of known tran-
scription factors. This approach, as the above, relies on
identifying groups of genes with similar expression. How-
ever, instead of explaining expression similarity with cis-
regulatory descriptors, transcription factors were found
whose joint expression pattern was concordant with that
of a cluster of genes. Nevertheless, little information
about putative physical interactions was provided since
actual binding or occurrence of binding motifs was not
included.

Although the previously reported clustering approaches
generate interesting hypotheses on regulatory mecha-
nisms, none of them make efficient use of any prior
knowledge about the studied cellular process. This is in
contrast to the model-based classification of expression
profiles that we present here. Rather than using clustering,
we employ a previously published Bayesian detector
where a sinusoidal function and prior knowledge of cell
division times is used to model periodic temporal profiles
[19]. The detector is used to classify the temporal expres-
sion profiles as periodic or aperiodic for each of the three
experiments using different synchronization methods
published by Spellman et al. [2]. We argue that this class
division is more suited for investigations of cell cycle reg-
ulation than a class division based on clustering (com-
puted from, for example, Euclidean distance or
correlation between expression profiles). With periodic
expression as the criterion for class inclusion, the classes
are directly associated with phase-specific regulation and,
consequently, with the cell cycle machinery. When clus-
tering is used, relationships between the classes and cellu-
lar processes may only be inferred from secondary data
such as functional annotations. Furthermore, we show
that the new approach yields understanding of regulation
in terms of novel cis-regulatory descriptors. Each cis-regu-
latory descriptor is a binary variable that corresponds to
the simultaneous presence or absence of an upstream
sequence motif and observed binding of a transcription
factor. Several of these interactions are supported in the
literature. We then use a previously published rule-based
method [7,8] to model the information available about
the regulation of the periodic genes defined by the Baye-
sian detector as logical rules associating minimal combi-
nations of descriptors with one or more of the periodic
classes. An overview of the method is given in Figure 1.

Our results provide several fundamental observations
about the regulation of the S. cerevisiae cell cycle. Firstly,
we show that combinations of cis-regulatory descriptors
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are better at explaining the periodic classes than single
descriptors. Secondly, we demonstrate that these combi-
nations are specific to different periodic classes. Although
others have argued that the variation in periodic behavior
of the different synchronization studies is experimental
noise [20,21], our results seem to indicate that the syn-
chronization methods induce different perturbations that
initially activate different regulatory mechanisms visible
in the two first periods of the cell cycle. Thirdly, we show
that combinations of regulatory descriptors specific to
genes that are periodic in only one synchronization exper-
iment are frequently subsets of combinations specific to
genes periodic in two experiments, which again are sub-
sets of combinations for genes periodic in all three exper-
iments. This suggests that the periodic classes are
regulated in an additive fashion. Finally, we show that
combinations retrieved using the model-based detector
are much more specific towards known phase-specific
motifs and transcription factors than when employing
conventional clustering. This illustrates that replacing
clustering-based classification of dynamic gene expression
patterns with model-based classification is advantageous
for discovering the mechanisms underlying cellular con-
trol processes.

In the context of previous methods explaining expression
clusters with cis-regulatory information, the novelty of our
work chiefly consists in a model-based treatment of the
dynamical gene expressions. This allows us to retrieve

more relevant regulatory mechanisms than when using
expression similarity (i.e. expression clustering). We show
this by letting the same machine learning method first dis-
cover regulatory mechanism explaining periodic classes
and then by trying the same process using expression sim-
ilarity. Importantly, the use of periodic classes makes it
easier for the investigator to interpret the hypotheses since
they take the form of statements about how the genes
expression behaves under different experimental condi-
tions. We believe this is an improvement over methods
where genes are grouped into expression clusters since
these clusters only can be assigned semantics retrospec-
tively, e.g. by looking for overrepresentation of annota-
tions within the cluster or visual inspection of the
expression pattern of the cluster. Given the systemic,
genome-wide evaluation outlined above, we believe that
our method provides reliable predictions for the regula-
tory mechanisms underlying periodic expression. In addi-
tion, the new approach introduced here is generic and
may easily be adjusted to the analysis of other types of
temporal gene expression profiles.

Results
Our study includes several steps towards demonstrating
how a model-based treatment of gene expression results
in the retrieval of more focused and relevant regulatory
mechanisms than what is obtained by expression profile
clustering. First we describe how we divide the genes into
different classes depending on which synchronization

Method overviewFigure 1
Method overview. We used genome-wide data including (a) binding of transcription factors in ChIP on chip experiments 
[16], (b) annotations of computationally inferred upstream sequence motifs [22] and (c) gene expression time profiles for dif-
ferent synchronization methods [2]. (d) The cis-regulatory information in a and b is combined by finding statistically associated 
combinations of transcription factors and motifs (i.e. cis-regulatory descriptors). (e) Periodic expression in each experiment is 
inferred from the temporal expression profiles. (f) Finally, machine learning is applied to model periodic expression. The model 
consists of rules associating cis-regulatory descriptors with patterns of periodic expression.
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method induces periodicity in three synchronization
experiments [2]. To this end, we use a previously pub-
lished detector of periodic expression [19]. This detector
only relies on the approximate period time and cyclicity of
the process. Then we explain how we combine sequence
motifs and transcription factor binding from ChIP-chip
experiments [16] to obtain cis-regulatory descriptors.
These are later used as the basic building blocks for con-
structing regulatory mechanisms. Having obtained
descriptors of the genes that reflect possibilities of regula-
tion, we perform statistical tests to show that it indeed is
possible to explain the periodic classes with cis-regulatory
descriptors. We start by testing for overrepresentation of
single descriptors, and go on to pairs of descriptors. Since
we see that pairs of descriptors explain the periodic classes
better than single descriptors, we proceed by retrieving
higher order combinations. To this end, we apply a previ-
ously published rule-based approach [7,8]. We interpret
the rules and use them to explain the structure of the peri-
odic classes. In particular, we observe that we can organize
the regulatory mechanisms in a hierarchical structure that
mimics the hierarchical structure of the periodic classes.
We compare the regulatory mechanisms we obtain from
applying our approach to periodic classes with those
obtained from conventional expression clusters (i.e. the
approach taken by almost all other studies in this field).
This shows that our model-based approach enables the
retrieval of regulatory mechanisms that are much more
specific towards known cell cycle regulators. Finally, we
illustrate some of the strongest regulatory mechanisms
using a network-representation. We also present a Gene
Ontology analysis of the periodic classes to further con-
firm the biological significance of our class division.

Class generation
Periodic classes were computationally inferred from
expression measurements. We applied a previously pub-
lished detector of periodic expression [19] that took into
account the approximate period time of the cell cycle in
the α-factor, cdc15 and cdc28 experiments reported by
Spellman et al. [2]. Basically, the detector calculates a sta-
tistic s which is restricted to the unit interval [0, 1] for each
of the expression profiles where s = 1 corresponds to abso-
lute certainty in periodic expression and s = 0 to no sup-
port for periodic expression (see Andersson et al. [19] and
Methods for details). Figure 2 shows the score assigned in
the α-factor, cdc15 and cdc28 experiment to each gene. It
shows a strong pattern where the majority of genes is
assigned a score close to either 0 or 1 in each experiment.
However, the observed correlation is poor; there are many
genes that show signs of periodic expression in the cdc28
experiment but not in the α-factor experiment and vice
versa, and similarly for the cdc15 experiment.

From the expression data we select genes that have a high
score for periodicity in at least one of the experiments and
a very low score in the other, thus removing uncertain cat-
egorizations. Consequently we divide the genes from the
microarray experiments into several classes, depending on
whether they are detected as periodically expressed or not.
To classify a gene as periodically expressed, one must
choose a threshold for the detector statistic s. A trade-off
must be made as to maximize the number of genes in the
dataset while keeping the number of false positives at a
minimum. We used the criteria A : s <snp = 0.1 and B : s >
sp = 0.9 to classify each gene as periodic (if it satisfies crite-
rion B) or not periodic (if it satisfies criterion A) in each of
the experiments. The 2079 genes that fulfilled either of
these criteria were then divided into eight classes labeled
000, 001,...,110, 111. Each digit in the label corresponds
to α-factor, cdc28 and cdc15 from left to right and takes
value 0 or 1 depending on whether criterion A or B is ful-
filled for that gene in the corresponding experiment. In
the following we shall refer to the classes of genes that are
detected as periodically expressed in at least one experi-
ment, i.e. all classes excluding 000, as the periodic classes.

The number of genes assigned to each class is shown in
Table 1. With the strict criteria A and B, the number of
genes that was included in the data set constitutes roughly
1/3 of all genes in the genome (2079 out of 6178 genes).
Some classes contain very few genes, for instance, genes
that are periodically expressed only in the cdc-based exper-
iments (six genes). Here we note again that the two sided
criterion results in robust class separability. Due to crite-
rion A it is not the case that e.g. some of the genes in class
011 would have moved to class 111 if the threshold in cri-
terion B was slightly lowered. Hence, the two sided crite-
rion ensures that genes with uncertain periodicity are
excluded from further analysis. The fact there are so few
genes in class 111 is a testament to the high variability
between the different synchronization methods. The
actual number however depends on the specific thresh-
olds chosen.

Cis-regulatory descriptors
We aim to describe the different periodic classes in terms
of cis-regulatory descriptors. We produced such cis-regula-
tory descriptors using the compilation of upstream
sequence motifs published by Hughes et al. [22] in com-
bination with the genome-wide location analysis showing
the binding of transcription factors to gene promoters
published by Harbison et al. [16]. These datasets both
contain noise. In particular, we expect a large number of
the sequence motifs to be non-functional (i.e. false posi-
tives). Moreover, since bindings in the genome-wide loca-
tion analysis are inferred from the measured signal
strength using some arbitrary threshold, we would expect
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Probability of periodic expressionFigure 2
Probability of periodic expression. The detector used in the present paper calculates a probability of periodic expression. 
For each gene in the S. cerevisiae genome, the probability of periodic expression in the α-factor, cdc28, and cdc15 experiment 
of Spellman et al. [2] is plotted against the probability of periodicity in the other experiments. Also, the distribution of probabil-
ities in each of the experiments is shown on the diagonal.
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Table 1: Periodic classes

Class label α-factor cdc28 cdc15 Number of genes

000 Not periodic Not periodic Not periodic 1490
001 Not periodic Not periodic Periodic 66
010 Not periodic Periodic Not periodic 185
011 Not periodic Periodic Periodic 6
100 Periodic Not periodic Not periodic 163
101 Periodic Not periodic Periodic 15
110 Periodic Periodic Not periodic 135
111 Periodic Periodic Periodic 19

Periodic classes. Class distribution inferred from expression data. All genes in the S. cerevisiae genome were classified into periodic or not periodic 
for each of the synchronization experiments of Spellman et al. [2].
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this data to contain both false positives and false nega-
tives.

In order to automatically curate false positives we formed
new descriptors of the form X - Y where X is a transcription
factor and Y a sequence motif present at the same gene in
the genome wide location analysis and upstream
sequence motif data, respectively. We then filtered these
transcription factor-motif pairs and retained pairs where
the transcription factor was statistically associated with
the motif or vice versa. To ensure that most of the motifs
and transcription factors were included, we selected the
three best scoring significant pairs (p-value < 0.05) for
each transcription factor and each motif for further analy-
sis (see Methods for details).

It was encouraging to see that known transcription factor-
motif pairings such as MCM1-MCM1, MBP1-MCB, SWI6-
MCB, SWI4-SCB, YOX1-ECB and HIR2-CCA were recov-
ered. This strengthens our belief in the predicted novel
relationships where the motif is putative or the associa-
tion between the transcription factor and the motif has
not been described earlier (e.g. SWI6-LYS14). Some illus-
trative examples are shown in Table 2 and 3. Note that the
best scoring motif for transcription factor ABF1 is the
ABF1 motif (Table 2).

Inclusion of a pair in the further analysis is due either to
the transcription factor being among the three best scor-
ing factors for the motif or vice versa. For example, note in
Table 3 that binding of transcription factor UME6, which
regulates early meiotic genes, is one of the three most sig-
nificant transcription factors co-located with the SCB
motif. However, the SCB motif is not one of the three
most significant motifs that is co-located with the binding
of UME6 (Table 2). Furthermore, the p-value is an indica-
tor of the strength of the association. For example, we see
a pair with UME6 which includes the putative motif
m_glyoxylate_cycle_orfnum2SD_n11. This motif was
inferred from a group of genes known to be involved in
the glyoxylate cycle by Hughes et al. [22]. However, the p-

value of this pair is much higher than the p-value of the
two first, both of which are known to be associated with
UME6. Thus one may have less confidence in this pre-
dicted interaction (see Additional file 1 for all pairs and p-
values).

We described each gene in terms of the transcription fac-
tor-motif pairs found upstream of that gene. Since not all
the genes included in the periodic classes were covered by
these pairs, the size of the periodic classes shrinked. The
resulting class distribution of the 1644 covered genes is
shown in Table 4. In total, 1459 transcription factor-motif
pairs were kept, resulting in a list (vector) of 1459 binary
elements, each indicating the presence or absence of a par-
ticular pair. It is important to note that these cis-regulatory
descriptors were formed without using expression data, or
more specifically, without any direct relation to the classes
inferred from the microarray experiments.

Describing expression with cis-regulatory descriptors
If the cis-regulatory descriptors explain the regulation of
the periodic classes, it should be possible to observe a sta-
tistical dependency between the presence of a transcrip-
tion factor-motif pair upstream (i.e. the match of a cis-
regulatory descriptor) and the class designation of each
gene. To investigate this, we calculated the probability
that a descriptor matches by chance at least the observed
number of genes from the same class. A p-value lower
than 0.05 indicates a significant overrepresentation of this
descriptor in the promoters of genes from that specific
class. This calculation was done for all descriptors that
were associated with genes in each of the periodic classes.
However, these p-values are not informative in them-
selves; due to the large number of descriptors one would
expect to find many overrepresentations by chance. If
there is no relationship between any of the descriptors
and the class designation, the expected number of descrip-
tors to have a p-value less than 0.05 is 0.05 × n, where n is
the number of descriptors associated with the class. Thus,
a ratio of observed significant descriptors over expected
significant descriptors greater than 1.0 will indicate an

Table 2: Regulatory descriptors – transcription factors

Transcription factor P-value Sequence motif

YOX1 2.25e-06 MCM1
3.83e-05 ECB
0.0034 m_organization_of_cell wall_orfnum2SD_n6

UME6 5.70e-114 m_meiosis_orfnum2SD_n3
1.75e-70 Ume6 (URS1)
1.74e-17 m_glyoxylate_cycle_orfnum2SD_n11

ABF1 6.5e-214 ABF1
2.98e-09 Ume6 (URS1)
7.8e-09 RPN4

The three most significantly co-occuring sequence motifs for the YOX1, UME6 and ABF1 transcription factors.
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overrepresentation of descriptors that are significant at the
level of 0.05. This ratio can also be complemented with a
p-value (see Methods). Table 5 shows the ratio between
expected and observed numbers and the corresponding p-
values for each periodic class.

As the ratio is close to 1.0 for classes 001, 010 and 100, it
appears that single descriptors are not informative for
these classes. This is also indicated by the associated high
p-values. However, all classes of genes showing periodic-
ity in more than one experiment have more significantly
overrepresented descriptors than would be expected by
chance. Furthermore, in view of Pilpel et al [4] we do not
expect it to be possible to differentiate between all classes
on the basis of single descriptors. We find it more likely
that transcription factors will interact with each other. To
see if this appears to be the case, the same calculation was
done for all pairs of regulatory descriptors. As is seen in
Table 6, many more pairs of descriptors than single
descriptors are significant compared to what would be
expected by chance. The exception is class 100, which
actually has fewer significant pairs of descriptors than
would be expected by chance. A possible interpretation
could be that class 100 is very homogeneous with respect
to the regulatory descriptors found in this class, i.e. a few
pairs explain a very large part of the regulatory mecha-
nisms for these genes. Furthermore, class 010 remains

close to the chance distribution. Thus, it is not possible to
statistically ascertain that this class of genes is different
from other genes in the genome based on the available
upstream regulatory information.

We were also interested in whether combinations of
descriptors were specific to genes only clearly periodically
expressed in a subset of experiments. Thus, we performed
the calculation again, this time with a background distri-
bution of descriptor pairs formed only from genes in the
periodic classes instead of all 1644 genes (i.e. class 000
was excluded from the analysis). In this way we elimi-
nated the possibility that the overrepresentation we saw in
periodic classes was the result of genes observed as period-
ically expressed in at least one experiment, but that the
actual assignment of genes into periodic classes was ran-
dom. As is seen in Table 7, the pattern of overrepresenta-
tion remains and thus provides evidence for a relationship
between descriptor pairs and class membership beyond
that of the genes observed as periodically expressed in at
least one experiment. The fact that the ratio drops is
expected. As is shown by a Gene Ontology [14] analysis of
the periodic classes later in this study, the genes of class
000 participate in fundamentally different processes than
the genes of the periodic classes. Consequently, one
expect periodic genes and aperiodic genes to be regulated
differently in a more fundamental way than different peri-
odic classes are.

Combinations of cis-regulatory descriptors
Having ascertained that there is a statistically significant
relationship between the cis-regulatory descriptors and
the periodic classes of genes, we proceeded to apply the
rough set methodology of Hvidsten et al. [7] to recover
higher-order combinations of descriptors. Importantly,
these combinations are minimal in terms of the number
of descriptors required to discriminate genes in different
classes with a user defined success rate α ≥ 95%. The
resulting combinations can be presented in the form of
rules, such as "IF Descriptor 1 AND Descriptor 2 THEN
Periodic(101) OR Periodic(110)", meaning that Descrip-
tor 1 and Descriptor 2 are found co-located at gene pro-
moters in classes 101 and 110, and only those.

All rules induced by the method are ranked according to
their p-values. Such p-values are calculated as the proba-
bility that the descriptor combination in the left hand side
of the rule by chance matches at least the observed number
of genes in the class found on the right-hand side (see
Additional file 2 for all rules and p-values).

From this output we find some particularly interesting
examples of regulatory mechanisms (Table 8). E.g. the
rule "IF MBP1-STRE' AND SWI6-MCB THEN Peri-
odic(110)", which states that if the upstream region of a

Table 3: Regulatory descriptors – sequence motifs

Sequence motif P-value Transcription factor

SCB 3.67e-08 AZF1
1.02e-05 UME6
3.31e-05 SWI4

SFF 1.14e-10 FKH2
9.26e-10 FKH1
1.92e-05 HIR1

The three most significantly co-occuring transcription factors for the 
SCB and SFF sequence motifs.

Table 4: Periodic classes

Class label Number of genes

000 1173
001 55
010 140
011 4
100 127
101 11
110 115
111 19
Sum 1644

The class distribution after all genes were represented in terms of the 
regulatory descriptors. Compared to Table 1, 435 genes did not 
match any regulatory descriptor (only 118 of these were periodic).
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gene is bound by MBP1 and SWI6 in the Harbison et al.
[16] experiment and it has the STRE' and MCB motifs
upstream according to Hughes et al. [22], it is periodically
expressed when the yeast cells are synchronized using α-
factor and cdc28, but not cdc15. This particular rule has a
right-hand side support of 2 (i.e. it applies to two genes)
and a p-value of 0.0049. Furthermore, this rule finds sup-
port in the literature. SWI6 and MBP1 together form the
MBF complex which regulates late G1-genes and binds the
MCB motif [23]. Another known interaction recovered in
class 110 is the combination SWI6-LYS14 and SWI4-SCB
(support = 3, p-value = 0.00033). It is known that SWI4
and SWI6 form the SBF-complex which binds the SCB
motif and regulates G1-specific transcription [23].

A hierarchy of regulation
Of particular interest are rules describing higher order
combinations since they cannot be studied exhaustively
in a reasonable time frame (as was done for pairs of
descriptors earlier in this work). The rough set methodol-
ogy used here allows retrieving the most interesting higher
order combinations in terms of their ability to discern the
different classes. The average length and number of com-
binations retrieved in each periodic class is shown in
Table 9. No class specific combinations were recovered for
class 011 (not included in the table). This comes as no sur-
prise since there are only four genes in this class. As is seen

in Table 9, the average length of combinations in rules
tends towards two for all classes. However, some higher
order combinations are found. For example, in class 111
we have a combination of transcription factors FKH1,
FKH2 and MCM1. It is known that MCM1 interacts with
FKH1 or FKH2 in controlling the transcription of G2/M
genes, and that FKH1 and FKH2 bind at the SFF motif
[24]. It was interesting to find that this particular combi-
nation was specific to class 111, while subsets of the com-
bination were found in other classes (shown in Figure 3).
Such patterns, where different subparts of a regulatory
combination are present in different classes, suggest a
hierarchy of regulation. Intrigued by this observation, we
calculated the fraction of combinations found in each
periodic class for which subsets could be found in other
classes. As is seen in Table 10, more of the combinations
of class 111 have subsets in other classes, followed by 110.
It is striking that even though 1398 combinations specific
to 010 are retrieved, only 59% had a subset that could be
found in other classes. In class 111, 76% of the 166 com-
binations have subsets in other classes. Class 110 is per-
haps a better example since the sample size (1692) is
comparable to the sample size for class 010. 68% of the
combinations in this class are supersets of combinations
in other classes. Consequently, the trend seen in Table 10
suggests additive regulation, that is, when genes are peri-
odically expressed under more conditions, more of the

Table 5: Indications of significant single regulatory descriptors

Class label Observed/Expected P-value Number of genes

001 1.1 0.35 55
010 0.77 0.9 140
011 9.1 1.3e-11 4
100 0.85 0.84 127
101 4.42 1.55e-9 11
110 2.2 1.30e-10 115
111 3.7 4.79e-13 19

The second column contains for each class the ratios of the number of significant descriptors at the significance level of 0.05 to the expected 
number of significant descriptors for single descriptors. Also displayed (third column) is the p-value of the ratio. To aid the reader the number of 
genes in each class is included in the last column.

Table 6: Indications of significant pairs of regulatory descriptors

Class label Observed/Expected P-value Number of genes

001 7.3 5.0e-10 55
010 0.95 0.91 140
011 19.3 < 1e-20 4
100 0.36 1.0 7
101 19.1 2.5e-12 11
110 1.6 1.44e-10 115
111 17.1 < 1e-20 19

The ratio of the number of significant descriptors at a significance level of 0.05 to the expected number of significant descriptors for pairs of 
descriptors. To aid the reader the number of genes in each class is included in the last column.
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inferred combinations consist of supersets of combina-
tions specific to genes periodically expressed under a
smaller set of conditions (see Additional file 3 for all hier-
archies).

Comparison with clustering
Previous work in this area has used clustering to obtain
groups of genes expected to have similar regulation and
then proceeded by using machine learning techniques to
obtain combinations of sequence motifs that explain that
grouping. To see how the class division used here com-
pared to that of clustering we applied the clustering
method of Hvidsten et al. [7] to the Spellman et al. [2]
data. The principal difference is that combinations are
recovered using classes defined by expression similarity.
Specifically, genes belong to the same class if the Eucli-
dean distance between the expression profiles is less than
a predefined threshold d. Since good validation sets of
known regulatory modules are not available, we needed a
suitable performance measure for comparing the different
methods. We argue that a relevant measure in this case is
the degree to which already known cell cycle regulators,
both transcription factors and sequence motifs, are
included in the combinations retrieved by the different
methods. Out of the motifs in the Hughes et al. [22] data
set, we defined CCA, ECB, MCB, SWI5, SCB, SFF, SFF',
MCM1 and MCM1' as cell cycle motifs after reviewing the
literature. Furthermore, from the literature we defined the
following transcription factors in the Harbison et al. [16]
data as cell cycle regulating: ACE2, FKH1, FKH2, GTS1,
HIR1, HIR2, MBP1, MCM1, NDD1, STB1, SWI4, SWI5,
SWI6, XBP1, YBR267W, YHP1 and YOX1. We can calcu-
late the fraction of all these cell cycle regulators that are
present in all significant rules at a specific p-value thresh-

old as well as the fraction of regulators with no known
relationship to the cell cycle. Figure 4 shows a plot of these
fractions generated by varying the p-value significance
threshold from 0 to 1.

As is seen in Figure 4, the method proposed in this paper
is more specific towards cell cycle-related regulators than
the clustering approach. For example, for the model-based
approach one may select a significance level (p < 6.77e-
06) so that 46% of the known cell cycle regulators are
included in the rules but virtually none of the other regu-
lators. Clearly, a similar specificity towards cell cycle regu-
lators is not possible using the clustering approach, even
when the cluster inclusion threshold d is made stricter. In
fact, the specificity degrades when the criterion becomes
too strict (i.e. d = 0.03). This may be explained by the fact
that tighter inclusion thresholds give smaller groups from
which it is more difficult to recover significant associa-
tions between different cis-regulatory descriptors and
expression similarity. Nonetheless, the expression data
under consideration mostly contain periodic signals. This
is apparent from the fact that the combinations retrieved
using the clustering method also are geared towards cell
cycle regulators. In fact, a method that selected combina-
tions of cis-regulatory descriptors randomly would pro-
duce a curve that approximately follows a straight line
between (0, 0) and (1, 1). The clustering approach, how-
ever, is notably different from such a straight line. We also
visualized the points on the curves that correspond to the
p-value thresholds that would have been chosen with
Bonferroni (BF) or FDR correction for multiple hypo-
thesis tests (both at the 0.05 level). As can be seen in Fig-
ure 4, the model-based approach yields higher specificity
than the clustering method when the BF threshold is cho-

Table 8: Known interactions

Rule Support P-value Reference

IF MBP1-STRE' AND SWI6-MCB THEN Periodic(110) 2 0.0049 [23]
IF SWI6-LYS14 AND SWI4-SCB THEN Periodic(110) 3 0.00033 [23]

Two examples of rules describing regulatory mechanisms that are known in the litterature.

Table 7: Indications of over representation of pairs exclusively within the periodic classes.

Class label Observed/Expected P-value Number of genes

001 0.86 0.71 55
010 0.31 1.0 140
011 18.18 1.02e-12 4
100 0.0 1.0 127
101 12.9 1.3e-14 11
110 1.81 0.0013 115
111 6.7 3.8e-14 19

The ratio of significant number of descriptors at a significance level of 0.05 to the expected number for pairs of descriptors. To aid the reader the 
number of genes in each class is included in the last column.
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sen. Also, as expected, the FDR procedure is less strict than
BF. However, the important thing to note is that the rules
with the lowest p-values are highly enriched for phase-
specific regulators.

Examples of putative mechanisms for cell cycle control
Given the system-wide evaluation presented so far, we
have reason to believe that many of the combinations
retrieved may offer new insight into the specific regulation
of cell cycle-related genes. It might be particularly interest-
ing to look at cis-regulatory descriptor combinations at a
p-value threshold that we know will include mostly
known phase-specific regulators. Combinations of these
known phase-specific regulators as well as of known
phase-specific regulators and other regulators may pro-
vide testable hypotheses explaining the selective regula-
tion of periodic expression. The point (0.034, 0.73) on
the curve representing our method in Figure 4 (acciden-
tally the same as the Bonferroni point) is a good example.
This point is associated with 145 rules with p-value lower
than 0.000195. These rules include 19 of the 26 known
phase specific regulators (73%) and 18 other regulators
(3.4%). Furthermore, they describe 24% of the genes in
the periodic classes. Figure 5 shows the co-occuring tran-
scription factors in these rules. The figure mostly explains
the regulation of genes in classes 011 and 111 since these
classes are associated with the most significant combina-
tions of cis-regulatory descriptors. Consequently, lower
thresholds need to be chosen if one wants to study the
specific regulatory mechanisms of other classes. Thresh-
olds that balance the number of known phase-specific reg-
ulators against the number of other regulators may be

obtained from the class-specific curves similar to that of
Figure 4 (for motive numbers see additional file 4).

Biologically meaningful classes
It is possible that the different synchronization methods
evoke detectable periodic signals from functionally differ-
ent groups. We analyzed Gene Ontology [14] "biological
processes" associated with the classes to see if some anno-
tations occurred more often within a class than would be
expected by chance. One immediately notices that class
000 predominantly consists of metabolic genes. For
example, among the 384 genes annotated to "protein
metabolism" (GO:0019538), 319 genes belong to class
000 (an overrepresentation in class 000 at p-value 5.47e -
7).

Considering the seven periodic classes together, one notes
a large number of "cell cycle" (GO:0007049) annotations.
57 out of 120 genes annotated to "cell cycle" are found in
the periodic classes (an overrepresentation at p-value 1.2e
- 4). Notably, the term "cell cycle" is a rather general des-
ignation, and it is therefore expected that not all genes
annotated to this term are periodically expressed. On the
other hand, many genes not annotated to "cell cycle"
could still be periodic. For example, although 49 out of 58
genes annotated to "protein catabolism" (GO:0030163)
were found in class 000, 4 out of 5 genes annotated to the
more specific subterm "cyclin catabolism"
(GO:0008054), a cell cycle-related process, were found in
the periodic classes. This shows that although the genes of
the periodic classes are annotated to a wide range of bio-

Table 9: Length of rules

Class label Average length Number of combinations

001 1.72 55
010 2.00 1398
100 1.82 861
101 1.25 4
110 2.06 1692
111 2.02 166

Distribution of the average length of a cis-regulatory descriptor combination in rules and the number of combinations retrieved from each periodic 
class.

Table 10: Regulatory hierarchy

Class label Fraction Number of combinations

001 0.48 55
010 0.59 1398
100 0.59 861
101 0.25 4
110 0.68 1692
111 0.76 166

Distribution of the fraction of combinations in rules that had a subset in another periodic class.
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logical processes, many of these processes are cell cycle-
related (see Additional file 5 for all functional signatures).

We also considered the periodic classes separately to see
whether we could find terms specific to the different
classes when compared to each other. For example, one
would expect the genes in class 111 to be annotated to
core processes of the cell cycle. Indeed, the term "regula-
tion of cell cycle" (GO:0007088) was significantly over-
represented in class 111 at the 0.05 level. Although the
functional signatures of the other periodic classes were
rather specific, all periodic classes had some functions
that were overrepresented only in that class. Even though
the associated p-values were only significant at the 0.05
level, and were generally not sufficiently low to be signif-
icant when corrected for multiple hypotheses, we find it
encouraging that unique functional signatures could be
recovered for each of the periodic classes, even when the
comparison was done only among the periodic classes.
We interpret the existence of functional signatures as fur-
ther evidence that the periodic classes inferred from
expression data do not constitute a set of random selec-
tions of cell cycle genes.

Discussion and conclusion
There has been an upsurge in publications attempting to
uncover genome-wide transcriptional control structures
using machine learning strategies. We believe approaches
such as the one presented here have two-fold use: i) They
allow researchers with interest in particular genes or regu-
lators to find in silico support for their hypotheses. ii) They
demonstrate genome-wide properties of the transcrip-
tional network. We were able to find known interactions

in the data, and we expect predicted interactions to be a
valuable resource for experimentalists when designing
experiments.

The basic idea in the present work is to identify genes
whose responses over time due to treatment are similar.
However, such similarity will naturally depend on the
measure of similarity used. As demonstrated here, it is
possible to focus on a particular process of the system, like
the cell cycle in budding yeast, by choosing a measure of
similarity which divides the genes into classes that are
known to be related to the process of interest. The cell
cycle has some special characteristics that makes defining
such a measure easy. However, one may very well define
such measures with natural semantics for other biological
settings. For instance, in an infection study one may be
interested in finding regulatory descriptors corresponding
to different stages of the infection. By designing a detector
that specifically identifies genes active at different stages
we would expect more relevant classes to be found than
by relying on clustering. Of course, designing such detec-
tors can become quite cumbersome. An interesting direc-
tion of future research would be to use hidden Markov
models for dividing the genes into different groups. Such
models allow incorporation of prior knowledge about the
dynamics of the process and has been successfully applied
to gene expression data [25].

One notable exception to the use of clustering analysis is
Tsai et al. [26] where transcription factors were defined as
cell cycle-related if the genes they were regulating had a
significantly different expression level in at least one of
five phases of the cell cycle compared to one or more of

Regulatory hierarchyFigure 3
Regulatory hierarchy. A part of the hierarchy formed from combinations of cis-regulatory descriptors that are subsets of 
the combination MCM1-SFF' FKH1-SFF' FKH2-SFF' FKH2-SFF. Note that the hierarchical structure of the combinations are 
matched by a hierarchical structure of the corresponding class labels (i.e. the classes from which each combination was 
induced).
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the other phases. Although this is an interesting approach,
we were fascinated by the large discrepancies between sets
of genes detected as periodic in S. cerevisiae for different
synchronization methods [20]. Our work lends support to
the notion that periodic expression is conditioned on dif-
ferent stimuli. Using descriptors of possible cis-regulatory
elements, we were able to find regulatory combinations
specific to different sets of synchronization methods. It
should be noted that the rationale for using different syn-
chronizations in the experiments by Spellman et al. [2]
was to be able to identify a signal that is assumed to be
common across the experiments corresponding to the

physiological pattern of expression in the cell cycle. In this
study we instead acknowledged that different synchroni-
zation methods may correspond to different environ-
ments (internal and/or external) in which the cells
propagate, and sought to explain why genes have different
expression patterns with respect to periodicity under these
conditions. The fact that it is possible to find combina-
tions of transcription factors and sequence motifs that are
significantly more common among genes within our
classes supports this hypothesis. However, the expression
data was only available for the two first periods of the S.
cerevisiae cell cycle, thus we cannot claim that the differ-

Specificity towards cell cycle regulatorsFigure 4
Specificity towards cell cycle regulators. Fraction of cell cycle regulators included in rules versus fraction of non-cell cycle 
regulators included in rules for different significance threshold. "Periodicity" refers to the method based on periodic classes 
presented here, "Cluster d" refers to applying the method of Hvidsten et al. [7] using the Euclidean distances d for including a 
gene in a cluster. Bonferroni (BF) and FDR corrected thresholds (at the 0.05 level) are shown for each method (Note that the 
FDR thresholds for "Clusters 0.04" and "Clusters 0.05" are located at the same point).
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Examples of cell cycle controlFigure 5
Examples of cell cycle control. Transcription factors (ellipses) are linked by (red) edges if they appear in the same combi-
nation at p-value threshold 0.000195. The corresponding sequence motifs (rectangles) occurring in cis-regulatory descriptors 
with these transcription factors are also shown, and black edges indicate with which factors they belong. Green indicate known 
phase-specific factors, while blue indicate known phase-specific motifs. Motifs named P# are putative motifs (see Additional file 
4). Thus, for instance, one sees that the forkhead proteins FKH1 and FKH2 bind to genes that have the SFF and SFF' motifs and 
tend to bind simultaneously.
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ences in periodic behavior are long-lived. In fact, it is intu-
itively more appealing to regard these differences as
temporary in the sense that the effects of different initiali-
zations of the cell cycle (i.e. synchronization methods)
will die out in the long run.

The fact that we group genes according to periodicity in
three different synchronization experiments, and not
according to conventional expression similarity, means
that we cannot expect all genes within a periodic class to
be regulated by the same mechanism. Indeed, what we see
is many different mechanisms describing different subsets
of genes within each periodic class. In principle, we could
have subdivided our periodic classes into cleaner regula-
tory modules based on, for example, the time of peak
expression. However, with several of the periodic classes
already containing very few genes, a more practical
approach was to let the rule method arrive at this subdivi-
sion automatically based on the available cis-regulatory
information and the periodic classes.

The periodic classes are inferred exclusively via computa-
tional analysis of expression data, and no biological
experimental validation has been performed. The class
division will depend on the specific thresholds of detec-
tion. The results presented here are based on a scheme
known as "classification with rejection" where genes for
which neither outcome is supported are rejected from fur-
ther analysis. We also attempted a class division with a
single sided criterion (using only criterion B as introduced
earlier), classifying genes as periodic if s > 0.95 and non-
periodic otherwise. Using this single criterion for classifi-
cation we found the Gene Ontology term "regulation of
cyclin-dependent protein kinase activity" (GO:0000079)
to be overrepresented in class 011, the set of genes
detected as periodically expressed only in the cdc-experi-
ments. This was encouraging since the cdc-based synchro-
nizations act by interfering with different cyclin
dependent protein kinases [27]. However, as expected,
such a criterion renders a class distribution that is skewed
towards class 000. Thus, this reduces the chances of
extracting rules describing the regulatory mechanisms of
the (relatively) few representatives in the periodic classes.

We also attempted the use of only motifs or only tran-
scription factors as descriptors. Results were similar; the
class division based on detected periodicity was more spe-
cific towards cell cycle regulators than the class division
based on clustering. However, class specific overrepresen-
tation of cis-regulatory elements (i.e. motifs or transcrip-
tion factors) was weaker, indicating an advantage of using
the novel cis-regulatory descriptors based on both
sequence motifs and actual transcription factor binding. A
further improvement of these descriptors would be to
include proximity and order of the sequence motifs in the

promoter regions [28], however, such information was
not utilized in this study.

The class-specific hierarchical structure of the discovered
cis-regulatory descriptor combinations is an example of
general system-wide properties discovered by our
method. Genes in class 111 have the largest fraction of
combinations where smaller subsets are associated with
more restricted periodic expression. Note that due to the
classification with rejection criterion discussed above, this
hierarchy is not a trivial result of the class structure, e.g.
genes in class 111 are neither a subset nor periodically
similar to genes in class 110, in fact, genes in class 110
have a low probability for being periodic in the third
experiment. Hence, the hierarchy suggests that the subsets
of cis-regulatory descriptors are sufficient for periodic
expression of the genes in fewer conditions. From an evo-
lutionary standpoint it may be advantageous to ensure
periodic expression of vital components in a wide variety
of conditions by building in redundancy and to include
many cis-regulatory elements. One alternative way to reg-
ulate periodic expression would have been to use only one
phase-specific mechanism in genes that are always period-
ically expressed and to block periodic transcription in the
appropriate conditions. However, this model has no sup-
port in the data and can be excluded.

Methods
Datasets
Expression data
We use the publicly cDNA and ratio-transformed oligonu-
cleotide microarray data published by Spellman et al.
[2,29]. In these experiments, yeast cell cultures were syn-
chronized using various methods. Our detector was appli-
cable to the three experiments for which period times
were reported: α-factor synchronization (18 time points),
cdc15 synchronization (24 time points) and cdc28 syn-
chronization (17 time points). α-factor is a mating phe-
romone that blocks haploid S. cerevisiae in the G1 phase
of the cell cycle. When the blocked cells are moved to an
α-factor free media they proceed to divide synchronously.
The cdc synchronizations use a temperature sensitive
mutant yeast that will block at a specific phase when tem-
perature is increased and proceed in synchrony as it is
lowered. For more details see Wagner [27].

Binding site data
We used the 43 known binding sites as well as the 313
putative motifs recovered from sequence by AlignACE
[22]. The putative motifs were found by applying Alig-
nACE to the upstream regions of genes that constituted
functional classes in the literature, i.e. classes having sim-
ilar biochemical functions or participating in the same
process. In total 5650 open reading frames (ORFs) are
annotated in this manner by Hughes et al. [22].
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Transcription factor binding data
The genome-wide location assays reported by Harbison et
al. [16] were used to identify transcription factor binding.
A total of 251 transcription factors were linked to the
upstream regions of ORFs determined by microarrays. For
each transcription factor and ORF, a p-value of binding
was reported. We considered a transcription factor to bind
upstream of a gene if the corresponding p-value of bind-
ing was below 0.05 (as recommended by Harbison et al.
[16]).

Transcription factor – sequence motif filtering
For all pairs of transcription factor and sequence motif
present in the data, the probability of obtaining as many
or more occurrence of the pair by chance was calculated.
E.g. for a given transcription factor that occurs r times
among the k ORFs with a given sequence motif follows
the hypergeometric distribution when the k genes with a
particular sequence motif is considered a random selec-
tion. A p-value is calculated as the probability of r bind-
ings or more. This is done for each transcription factor as
well as each motif. The three best scoring partners (lowest
p-values) below 0.05 were included for further analysis.
Note that only significant partners were included, i.e., if a
motif only had two partner transcriptions factors with p <
0.05, only those two were included.

Significance of descriptor overrepresentation
The probability of finding r out of k ORFs with a specific
transcription factor (TF)-motif pair (or a combination
thereof) within a class by random sampling is calculated
using the hypergeometric sampling distribution. I.e., the
class is considered a random selection of genes. This yields
the probability of observing the data under the null hypo-
thesis H0: Presence of TF-motif pair and class membership
are independent. When all pairs of cis-regulatory descrip-
tors are considered, a large number of such p-values are
obtained, one for each combination.

Since small p-values are bound to be found among many
tests even if all hypotheses tested are true nulls, we need
to test whether we have more small p-values than would
be expected by chance. To see this, we perform a test as to
whether the hypothesis H: "All hypotheses tested are true
H0" can be rejected. Our reasoning is similar to the devel-
opment of the Bonferroni correction for multiple hypoth-
eses, that is, one assumes a null model in which all
hypotheses tested are independent and true null. By defi-
nition the distribution of p-values under multiple inde-
pendent true null hypotheses is uniform on [0, 1] i.e. p ~
U (0, 1). In other words, the probability that a true null
hypothesis yields a p-value smaller than some value q will
be q. Thus, if n true null hypotheses are tested, the number
of hypotheses k rejected at some level α will follow a bino-
mial distribution. Consequently, for a given test level α we

calculate the probability of observing k hypotheses or
more with p <α if all n hypotheses were true null using the
binomial probability distribution. These are the probabil-
ities given in Table 5. A small p-value in this test suggests
there are far too many p-values lower than q for all of
them to be true nulls. We note that these p-values should
be interpreted with care as they may be optimistic, i.e.
there may be dependencies. In other words, the class over-
representation of combinations is likely to be correlated
for combinations sharing a cis-regulatory descriptor.

Rule-based retrieval of regulatory mechanisms
We assume that all genes with an identical regulatory
structure will exhibit identical expression. Members of the
same partition in the partitioning of yeast genes shown in
Figure 1 will then not have identical regulatory structure
to any gene in any other partition. We thus seek to identify
descriptors (TF-motif pairs) that are unique to each parti-
tion. However, this would be an ideal situation. In prac-
tice, the partitioning contains noise and ambiguities are
bound to arise.

The rough set theory was developed to deal with ambigu-
ities in data [30,31]. In this setting, a rough set X ⊆ U is a
subset of all genes U that cannot be uniquely discrimi-
nated from the other genes in U on the basis of their
descriptors. One may, however, describe X in terms of all
genes in X that certainly are distinguishable from other
genes (in rough set terminology the lower approximation
of X) and the set of genes that are either in X or indistin-
guishable from members of X (the upper approximation).
Minimal combinations of TF-motif pairs that preserve the
information in the data (the lower and upper approxima-
tion of the periodic classes) are called reducts. In this
study, we computed reducts for each gene, and interpreted
them as hypothetical regulatory mechanisms. Each reduct
gives rise to an IF-THEN rule that discriminate that gene,
and genes in the same perioidc class, from genes from
other perioidc classes. However, in noisy data reducts tend
to be too specific and will not generalize well. A solution
to this problem is to employ a development in rough set
theory called approximate reducts (α-reducts) [32]. In the
present study these a-reducts are minimal combinations
of TF-motif pairs that discern a gene from a user-defined
fraction α of the genes from other periodic classes.

There are a number of efficient heuristics available for cal-
culating reducts. In this study, reduct calculation was
done using a genetic algorithm [33] implemented in the
ROSETTA system [34,35] with the default setting of 0.95
for α. For more details, see Hvidsten et al. [7].

To filter out overly specific (only present in ~1 ORFs) or
overly general (non-discriminatory) combinations, the
degree of overrepresentation within the class was calcu-
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lated for each TF-motif or each TF-motif combination.
This was done by calculating the probability of obtaining
as many or more ORFs having the combination by chance
when the class is considered a random selection, i.e. the
hypergeometric sampling probability. Note that if the
right hand side of a rule includes more than one class, a p-
value is still only computed for the periodic class from
which the rule was induced. Typically, only this class is
significant while the others are a result of inconsistencies
and noise in the data.

Detecting periodic expression
A recently proposed detector of periodic expression was
used [19]. It is built on the Bayesian formalism and relies
on prior knowledge about the period time and has been
shown to be robust against different waveforms as well as
errors in the estimation of the period length. In essence,
the detector fits a times series to two different models: one
time independent and one that is time dependent and
periodic. The fits to the two different models are com-
pared and the Bayesian formalism allows a probability of
periodicity to be calculated, denoted s. Strictly speaking
this probability is an approximation of the probability a
fully analytical Bayesian treatment would yield. However,
a fully analytical treatment is not possible and has to be
approximated. See Andersson et al. [19] for further details.
The probability s is used as a detector statistic and was cal-
culated for each of the ORFs in the Spellman et al. [2]
experiments using experiment-specific cell cyle period
times. The genes were then divided into classes as
described earlier. Unlike many other methods, our detec-
tor does not require training examples for estimating
parameters. Moreover, our method is the sole one that
manages to apply significant yet vaguely expressed infor-
mation such as the period time and uses it in a potent and
formal framework including a model of the dynamics.
This offers a solid starting point for evaluating usefulness
of prior information as examplified in the current paper.
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