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Abstract

Background: The use of correlation networks is widespread in the analysis of gene expression
and proteomics data, even though it is known that correlations not only confound direct and
indirect associations but also provide no means to distinguish between cause and effect. For
"causal" analysis typically the inference of a directed graphical model is required. However, this is
rather difficult due to the curse of dimensionality.

Results: We propose a simple heuristic for the statistical learning of a high-dimensional "causal"
network. The method first converts a correlation network into a partial correlation graph.
Subsequently, a partial ordering of the nodes is established by multiple testing of the log-ratio of
standardized partial variances. This allows identifying a directed acyclic causal network as a
subgraph of the partial correlation network. We illustrate the approach by analyzing a large
Arabidopsis thaliana expression data set.

Conclusion: The proposed approach is a heuristic algorithm that is based on a number of
approximations, such as substituting lower order partial correlations by full order partial
correlations. Nevertheless, for small samples and for sparse networks the algorithm not only yield
sensible first order approximations of the causal structure in high-dimensional genomic data but is
also computationally highly efficient.

Availability and Requirements: The method is implemented in the "GeneNet" R package
(version 1.2.0), available from CRAN and from http:/strimmerlab.org/software/genets/. The
software includes an R script for reproducing the network analysis of the Arabidopsis thaliana data.

Background as this requires only two simple steps: i) the computation
Correlation networks are widely used to explore and visu-  of all pairwise correlations for the investigated variables,
alize high-dimensional data, for instance in finance [1-3],  and ii) a thresholding or filtering procedure [8] to identify
ecology [4], gene expression analysis [5,6], or metabo-  significant correlations, and hence edges, of the network.

lomics [7]. Their popularity is owed to a large extent to the
ease with which a correlation network can be constructed,
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However, for shedding light on the causal processes
underlying the observed data, correlation networks are
only of limited use. This is due to the fact that correlations
not only confound direct and indirect associations but
also provide no means to distinguish between response
variables and covariates (and thus between cause and
effect).

Therefore, causal analysis requires tools different from
correlation networks: much of the work in this area has
focused on Bayesian networks [9] or related regression
models such as systems of recursive equations [10,11] or
influence diagrams [12]. All of these models have in com-
mon that they describe causal relations by an underlying
directed acyclic graph (DAG).

There already exist numerous methods for learning DAGs
from observational data - see for instance the summariz-
ing review in [13] and the references therein. However,
with few exceptions [e.g., the PC algorithm, [14,15]] vir-
tually all of these methods have been devised for compar-
atively small numbers of variables and with large sample
size in mind. For instance, the numerical example of the
recently proposed algorithm described in [16] uses n =
10,000 observations for p = 7 variables. Unfortunately, the
data that would be most interesting to explore with causal
methods, namely those commonly visualized by correla-
tion networks (see above), have completely different char-
acteristics, in particular they are likely of high dimension.

In this paper we follow [15] and focus on modeling large-
scale linear recursive systems. Specifically, we present a
simple discovery algorithm that enables the inference of
causal relations from small sampled data and for large
numbers of variables. It proceeds in two steps as follows:

e First, the correlation network is transformed into a par-
tial correlation network, which is essentially an undi-
rected graph that displays the direct linear associations
only. This type of network model is also known under the
names of graphical Gaussian model (GGM), concentra-
tion graph, covariance selection graph, conditional inde-
pendence graph (CIG), or Markov random field. Note that
there is a simple relationship between correlation and par-
tial correlation. Moreover, in recent years there has been
much progress with regard to statistical methodology for
learning large-scale partial correlation graphs from small
samples [e.g., [17-22]]. Here we employ the approach
described in [20].

¢ Second, the undirected GGM is converted into a partially
directed graph. This is done by estimating a pairwise
ordering of the nodes from the data using multiple testing
of the log-ratios of standardized partial variances, and by
subsequent projection of this partial ordering onto the
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GGM. The inferred causal network is the subgraph con-
taining all the directed edges.

Note that this algorithm is similar to the PC algorithm in
that edges are being removed from the independence
graph to obtain the underlying DAG. However, our crite-
rion for eliminating an edge is distinctly different from
that of the PC algorithm.

The remainder of the paper is organized as follows. First,
we describe the methodology. Second we consider its sta-
tistical interpretation and further properties. Subse-
quently, we illustrate the approach by analyzing an 800
gene data set from a large-scale Arabidopsis thaliana gene
expression experiment. Finally, we conclude with some
discussion of the method, commenting also on the limi-
tations of the approach.

Methods

Theoretical basis

Consider a linear regression with Y as response and X, ...,
X, ..., X as covariates. We assume that X;, and Y are ran-
dom variables with known variances var(Y) and var(X,)
and with covariance cov(Y, X;). The best linear predictor
of Y in terms of the X, that minimizes the MSE of %, 5X,
- Y is given by [e.g. ref. [23], p. 206]

ﬁ}ij :/Syk ' (1)

Q1|Qz
SN N

where ﬁyk and is the partial correlation between Y and X,

and 6‘5 and 6;3 are the respective partial variances.

The partial correlation is the correlation that remains
between two variables if the effect of the other variables
has been regressed away. Likewise, the partial variance is
the variance that remains if the influences of all other var-
iables are taken into account. Table 1 lists the definitions
and formulas for the computation of these quantities
(note that in our notation a tilde on top of a symbol indi-
cates "'partial").

From Equation 1 it is immediately clear that the complete
linear system and thus all ,BZ are determined by the joint

covariance matrix of Y and X, [see also, e.g., [24,24]]. For

only a single dependent variable Equation 1 reduces to the

well-known relation ) = pyx,IO'y2 / 0',% , which contains

only the unconditioned correlation and variances (with-
out the tilde).
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Table I: Formulas for computing partial variances and partial correlations

Definition True value Estimate
Covariance matrix: cov(X, X) = oy 2 = (o) S = (sp)
Concentration matrix: Q=3 Q= (ay)
Variances: lop s

var(X,) = oy = O';g . .
Partial variances ( ) ~ -2 1

var(X|X,) = Oy, = O, = @ ~ ~

KAk kk k kk G Sik

Correlations: corr(Xy, X) = py= i (o o1)"? P=(py) R=(ry
Partial correlations: corr(X, XX, ) =

_— -1/2 P=(p R=(7

P =~ (ogop) ! (Pu) (i)

Index i runs from | to n (sample size), and indices k and | run from | to p (dimension). A tilde denotes a "partial" quantity.

We emphasize that Equation 1 has a direct relation with
the usual ordinary least squares (OLS) estimator for the
regression coefficient. This is recovered if the empirical
covariance matrix is plugged into Equation 1. However,
note that Equation 1 also remains valid if other estimates
of the covariance are used, such as penalized or shrinkage

estimators (note that there is no hat on ﬂg ).

For the following it is important that Equation 1 can be
further rewritten by introducing a scale factor. Specifically,
by abbreviating the standardized partial variance 6{ /o7
by SPV,, we can decompose the regression coefficient into
the simple product

SPV, |o?
Bl = |t | L
k 'DVk SPVk Giz_ (2)
A —
B8 C

Note that SPV, and SPV), take on values from 0 to 1. All
three factors have an immediate and intuitive interpreta-
tion:

A : This factor determines whether there is a direct asso-
ciation between Y and the covariate X;,. If the partial corre-
lation between X, and Y vanishes, so will also the two

corresponding regression coefficients [3}3 and ﬁ)lf .Ina

partial correlation graph an edge is drawn between two
nodes Y and X, if & # 0.

8 : This factor adjusts the regression coefficient for the rel-
ative reduction in variance of Y and X, due to the respec-
tive other covariates. In the algorithm outlined below a

test of log( 8) establishes the directionality of edges of a
partially causal network.

¢ :This is a scale factor correcting for different units in Y
and X,,.

The product AB= ﬁgJGﬁ/Gf is also known as the

standardized regression coefficient. Note that for comput-
ingboth 7 and 8 only the correlation matrix is needed,
as the variance information is already accounted for by the
third factor c.

In this context it is also helpful to recall the diverse statis-
tical interpretations of SPV:

e SPV is the proportion of variance that remains (unex-
plained) after regressing against all other variables.

e For the OLS estimator SPV is equal to 1 - R2, where R is
the usual coefficient of determination.

e SPV is the inverse of the diagonal of the inverse of the
correlation matrix. Thus, if there is no correlation (unit
diagonal correlation matrix) the partial variance equals
the variance, and hence SPV = 1.

e SPV may also be estimated by 1/VIF, where VIF is the
usual variance inflation factor [cf. [26]].

Heuristic algorithm for discovering approximate causal
networks

The above decomposition (Equation 2) suggests the fol-
lowing simple strategy for statistical learning of causal net-
works. First, by multiple testing of A = 0 we determine
the network topology, i.e. we identify those edges for
which the corresponding partial correlation is not vanish-
ing. Second, by subsequent multiple testing of log( 8 ) = 0
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we establish a partial ordering of the nodes, which in turn
imposes a partial directionality upon the edges.

In more detail, we propose the following five-step algo-
rithm:

1. First, it is essential to determine an accurate and posi-
tive definite estimate R of the correlation matrix. Only if
the sample size is large with many more observations than
variables (n > > p) the usual empirical correlation estimate
will be suitable. In all other instances, the use of a regular-
ized estimator is absolutely vital (e.g., the Stein-type
shrinkage estimator of [20]) in order to improve efficiency
and to guarantee positive definiteness. In addition, if the
samples are longitudinal it may be necessary to adjust for
autocorrelation [27].

2. From the estimated correlations we compute the partial
variances and correlations (see Table 1), and from those
in turn plug-in estimates of the factors # and 8 of Equa-
tion 2 for all possible edges. Note that in this calculation
each variable assumes in turn the role of the response Y .
An efficient way to calculate the various 8 is given by tak-
ing the square root of the diagonal of the inverse of the
estimated correlation matrix, and computing the corre-
sponding pairwise ratios.

3. Subsequently, we infer the partial correlation graph fol-
lowing the algorithm described in [19]. Essentially, we
perform multiple testing of all partial correlation coeffi-
cients A . Note that for high dimensions (large p) the null
distribution of partial correlations across edges can be
determined from the data, which in turn allows the adap-
tive computation of corresponding false discovery rates
[28].

4. In a similar fashion we then conduct multiple testing of
all log(8). As 8 is the ratio of two variances with the
same degrees of freedom, it is implicit that log(3) is
distributed [29],
unknown variance parameter €. Thus, the observed z =
log( 8 ) across all edges follow a mixture distribution

approximately normally with an

f(z) = 1o N(0, 6) + (1 - 1) fa (2)- (3)

Assuming that most z belong to the null model, i.e. that
most edges are undirected, it is possible to infer non-par-
ametrically the alternative distribution f, (z), the propor-
tion 7, as well as the variance parameter 8 - for an

algorithm see [28]. From the resulting densities and distri-
bution functions local and tail-area-based false discovery
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rates for the test log( 8) = 0 are computed. Note that in
this procedure we include all edges, regardless of the cor-
responding value of A or the outcome of the test A = 0.

5. Finally, a partially directed network is constructed as
follows. All edges in the correlation graph with significant
log( 8 ) # 0 are directed in such a fashion that the direction
of the arrow points from the node with the larger stand-
ardized partial variance (the more "exogenous" variable)
to the node with the smaller standardized partial variance
(the more "endogenous" variable). The other edges with
log( 8 ) = 0 remain undirected. The subgraph consisting of
all directed edges constitutes the inferred causal network.
Note that this does not necessarily include all nodes that
are contained in the GGM network.

Results and discussion

Interpretation of the resulting graph

The above algorithm returns a partially directed partial
correlation graph, whose directed edges form a causal net-
work.

This procedure can be motivated by the following connec-
tion between partial correlation graph and a system of lin-
ear equations, where each node is in turn taken as a
response variable and regressed against all other remain-
ing nodes. In this setting the partial correlation coefficient

is the geometric mean of ﬂg and the corresponding recip-

rocal coefficient ,Bf , l.e.

JBEBL =By (4)

[see also equation 16 of ref. [20]]. In this light, an undi-
rected edge between two nodes A and B in a partial corre-
lation graph may also be interpreted as bidirected edge, in
the sense that A influences B and vice versa in the under-
lying system of regression. Therefore, the test 8 = 1 can be
understood as removing one of these two directions, where
Equation 2 suggests that only the relative variance reduc-
tion between the two involved nodes needs to be consid-
ered for establishing the final direction.

Reconstruction efficiency and approximations underlying
the algorithm

Topology of the network

The proposed algorithm is an extension of the GGM infer-
ence approach of [19,20]. Its accuracy of correctly recover-
ing the topology of the partial correlation graph has been
established, e.g., in [30].
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However, it is well known that a directed Bayesian net-
work and the corresponding undirected graph are not nec-
essarily topologically identical: in the undirected graph
for computing the partial correlations one conditions on
all other nodes whereas in the directed graph one condi-
tions only on a subset of nodes, in order to avoid condi-
tioning "on the future" (i.e. on the dependent nodes).
Therefore, it is critical to evaluate to what extent full order
partial correlations are reasonable approximations for
lower order partial correlations. This has already been
investigated intensively by [31] who showed that in cer-
tain situations (sparse graphs, faithfulness assumption
etc.) lower order partial correlations may be used as
approximate substitute of full conditional correlations.
Therefore, in the proposed algorithm we adopt the very
same argument but apply it in the different direction, i.e.
we approximate lower order partial correlation by full
order partial correlation.

Node ordering

A second approximation implicit in our algorithm con-
cerns the determination of the ordering of the nodes,
which is done by multiple testing of pairwise ratios of
standardized partial variances. We have conducted a
number of numerical simulations (data not shown) that
indicate that for randomly simulated DAGs the ordering
of the nodes is indeed well reflected in the partial vari-
ances, as expected.

However, from variable selection in linear models it is
also known that the partial variance (or the related R?)
may not always be a reliable indicator for variable impor-
tance. Nevertheless, the partial ordering of nodes accord-
ing to SPV and the implicit model selection in the
underlying regressions is a very different procedure in
comparison to the standard variable selection approaches,
in which the increase or decrease of the R2is taken as indi-
cator of whether or not a variable is to be included, or a
decomposition of R2is sought [for a review see, e.g., [32]].
The distinctive feature of our procedure is that by per-
forming all tests log( 8 ) # 0 simultaneously we consider
all p regression equations at once, even if the final feature
selection occurs only locally on the level of an individual
regression.

It is also noteworthy that, as we impose directionality
from the less well explained variable (large SPV, "exoge-
nous", "independent") to the one with relatively lower
SPV (well explained, "endogenous", "dependent" varia-
ble), we effectively choose the direction with the relatively
smaller regression coefficient (conditional that the corre-
sponding partial correlation is also significant).

http://www.biomedcentral.com/1752-0509/1/37

Further properties of the heuristic algorithm and of the
resulting graphs

The simple heuristic network discovery algorithm exhibits
a number of further properties worth noting:

1. The estimated partially directed network cannot con-
tain any (partially) directed cycles. For instance, it is not
possible for a graph to contain a pattern such as A - B —
A. This example would imply SPV, > SPV; > SPV,,, which
is a contradiction. As a consequence, the subgraph con-
taining the directed edges only is also acyclic (and hence
a DAG).

2. The assignment of directionality is transitive. If there is
a directed edge from A to B and from B to C then there
must also be a directed edge from A to C. Note however,
that actual inclusion of a directed edge into the causal net-
work is conditional on a non-zero partial correlation coef-
ficient.

3. As the algorithm relies on correlations as input, causal
processes that produce the same correlation matrix lead to
the same inferred graph, and hence are indistinguishable.
The existence of such equivalence classes is well known
for SEMs [33] and also for Bayesian belief networks [34].

4. The proposed algorithm is scale-invariant by construc-
tion. Hence, a (linear) change in any of units of the data
has no effect on the overall estimated partially directed
network, and the implied causal relations.

5. We emphasize that the partially directed network is not
the chain graph representing the equivalence class of the
causal network that is obtained by considering only its
directed edges - see [34].

6. The computational complexity of the algorithm is
O(p3). Hence, it is no more expensive than computing the
partial correlation graph, and thus allows for estimation
of networks containing in the order of thousands and
more nodes.

Analysis of a plant expression data set

To illustrate our algorithm for discovering causal struc-
ture, we applied the approach to a real world data exam-
ple. Specifically, we reanalyzed expression time series
resulting from an experiment investigating the impact of
the diurnal cycle on the starch metabolism of Arabidopsis
thaliana [35]. This is the same data set we used in a sister
paper concerning the estimation of a vector autoregressive
model [36].

The data are gene expression time series measurements
collected at 11 different time points (0, 1, 2, 4, 8, 12, 13,
14, 16, 20, and 24 hours after the start of the experiment).
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The corresponding calibrated signal intensities for 22,814
genes/probe sets and for two biological replicates are
available from the NASCArrays repository, experiment no.
60 [37]. After log-transforming the data we filtered out all
genes containing missing values and whose maximum
signal intensity value was lower than 5 on a log-base 2
scale. Subsequently, we applied the periodicity test of [38]
to identify the probes associated with the day-night cycle.
As a result, a subset of 800 genes remained for further
analysis.

In order to estimate the correlation matrix for the 800
genes described by the data set we employed the dynami-

cal correlation shrinkage estimator of [39] as this takes
account of the autocorrelation. The corresponding corre-

&GO

@5 /

D D

Figure |

http://www.biomedcentral.com/1752-0509/1/37

lation graph is displayed in Figure 1. It shows the 150
edges with the largest absolute values of correlation. This
graph is very hard to interpret, the branches do not have
any immediate or intuitive meaning (a complete annota-
tion of the nodes can be found along with the dataset
itself in the R package "GeneNet" [40]). For instance, there
are no hubs as typically observed in biological networks
[41,42].

This is in great contrast to the partially directed partial cor-
relation graph. For this specific data set, by multiple test-
ing of the factor A we identified 6, 102 significant edges
connecting 669 nodes. For the second factor 8, deter-
mined whether edges are directed, the distribution of

QDD
D E—

e €D

Correlation network inferred from the Arabidopsis thaliana data. The solid and dotted lines indicate positive and negative corre-
lation coefficients, respectively, and the line intensity denotes their strength. The network displays the 150 edges with the larg-
est absolute correlation. For annotation of the nodes in this graph see the electronic information contained in the R package

"GeneNet" [40] and the original data paper [35].
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Distribution of log 8 for the Arabidopsis thaliana data. The null distribution is depicted by the dashed line; it follows a normal
distribution with zero mean and a standard deviation of 0.014. The solid line signifies the alternative distribution. The empirical
distribution (indicated by the histogram) is composed of the null distribution (77, = 0.8995) and of the alternative distribution

(174 = 0.1005).

log(8) is displayed in Figure 2. The null distribution
(dashed line) follows a normal distribution and character-
izes the edges that cannot be directed. The alternative dis-
tribution (solid line) coincides with the directed edges. In
total, we found 15, 928 significant directions.

To construct the network, we projected upon the signifi-
cant edges (factor #) the significant directions (factor
8). In the network of significant associations, 1,216
directions were significant. Note that the fraction of signif-
icant directions is by far greater in the subset of the signif-
icant partial correlations than in the complete set of all
partial correlations. This agrees with the intuitive notion,
that causal influences can only be attributed to existing
connections between variables.

The resulting partially causal network is shown in Figure
3. For reasons of clarity we show only the subnetwork
containing the 150 most significant edges, which connect
107 nodes. This graph exhibits a clear "hub" connectivity
structure (nodes filled with red color). A prominent exam-
ple for this is node 570, others are 81, 558, 783 and a few
more genes. We see that many of the hub nodes have
mostly outgoing arcs, which is indicative for key regula-

tory genes. This applies, e.g., to node 570, an AP2 tran-
scription factor, or to node 81, a gene involved in DNA-
directed RNA polymerase. An interesting aspect of the par-
tially causal network is the web of highly connected genes
(colored yellow in the lower right corner of Figure 3),
which we hypothesize to constitute some form of a func-
tional module. In this module, it is not possible to deter-
mine any directions, which could be due to complex
interactions among the nodes of the module. Node 627 is
another hub in the network that connects the functional
module with the rest of the network and which according
to the annotation of [35] encodes a protein of unknown
function.

We also see that the partially directed network contains
both directed and undirected nodes. This is a distinct
advantage of the present approach. Unlike, e.g., a vector
autoregressive model [36], it does not force directions
onto the edges.

Finally, in order to investigate the stability of the inferred
partial causal network, we randomly removed data points
from the sample, and repeatedly reconstructed the net-
work from the reduced data set. In all cases the general
topological structure of the network remained intact,
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Figure 3
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Partially causal network inferred from the Arabidopsis thaliana data by the method introduced in this paper — note the difference
to the correlation network of Figure |. The topology of the partially causal network is identical to that of a partial correlation
graph (GGM, CIG). However, edges with significant directionality (as indicated by a factor 8 that is significantly smaller or

larger than one) are oriented.

which indicates that this is a signal inherent in the data.
This is also confirmed by the analysis using vector autore-
gressions [36].

Conclusion

Methods for exploring causal structures in high-dimen-
sional data are growing in importance, particularly in the
study of complex biological, medical and financial sys-
tems. As a first (and often only) analysis step these data
are explored using correlation networks.

Here we have suggested a simple heuristic algorithm that,
starting from a (positive definite) correlation matrix,
infers a partially directed network that in turn allows gen-

erating causal hypotheses of how the data were generated.
Our approach is approximate, but it allows analysis of
high-dimensional small sampled data, and its computa-
tional complexity is very modest. Thus, our heuristic is
likely to be applicable whenever a correlation network is
computed, and therefore is suitable for screening large-
scale data set for causal structure.

Nevertheless, there a several lines along which this
method could be extended. For instance, non-linear
effects could be accounted for by employing entropy crite-
ria, or by using higher order moments [16]. Furthermore,
more sophisticated algorithms may be used to enhance
the approximation of lower order partial correlations or
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the inference of the ordering of the nodes. However, ulti-
mately this would lead to a method similar to the PC algo-
rithm [14,15].

Note that the PC algorithm is more refined than our algo-
rithm, primarily due to additional steps that aim at
removing spurious edges (i.e. those edges that are induced
between otherwise uncorrelated parent nodes by condi-
tioning on a common child node). However, these itera-
tive refinements may be very time consuming, in
particular for high-dimensional graphs.

In contrast, our procedure is non-iterative and therefore
both computationally and algorithmically (nearly) as
simple as a correlation network. Nevertheless, it still ena-
bles the discovery of partially directed processes underly-
ing the data.

In summary, we recommend our approach as a procedure
for exploratory screening for causal mechanisms. Subse-
quently, the resulting hypotheses may then form the basis
for more refined analyzes, such as full Bayesian network
modeling.
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