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Abstract
Background: Genetic variation explains a considerable part of observed phenotypic variation in
gene expression networks. This variation has been shown to be located both locally (cis) and distally
(trans) to the genes being measured. Here we explore to which degree the phenotypic
manifestation of local and distant polymorphisms is a dynamic feature of regulatory design.

Results: By combining mathematical models of gene expression networks with genetic maps and
linkage analysis we find that very different network structures and regulatory motifs give similar cis/
trans linkage patterns. However, when the shape of the cis-regulatory input functions is more
nonlinear or threshold-like, we observe for all networks a dramatic increase in the phenotypic
expression of distant compared to local polymorphisms under otherwise equal conditions.

Conclusion: Our findings indicate that genetic variation affecting the form of cis-regulatory input
functions may reshape the genotype-phenotype map by changing the relative importance of cis and
trans variation. Our approach combining nonlinear dynamic models with statistical genetics opens
up for a systematic investigation of how functional genetic variation is translated into phenotypic
variation under various systemic conditions.

Background
The key disciplinary goal of genetics the last 100 years has
been to understand the relationship between genetic vari-
ation and phenotypic variation. A series of concepts have
been conceived to describe various aspects of the geno-
type-phenotype map. Many of them reflect the fact that
the phenotypic signatures of alleles and genes depend on
other alleles and genes (as for example "dominance" [1]
and "epistasis" [2]). However, these concepts have to be
regarded as descriptory rather than explanatory. An

explanatory theory capable of linking genetic variation
with phenotypic variation in even simple mechanistic
terms has yet to emerge [3]. However, there exist a few
well studied model systems such as the lambda switch
[4,5] where this link has been described very well.

An empirically sound starting point for such a theory
development will be the mRNA phenotype. The genotype-
phenotype gap is in this case narrow compared to higher
level phenotypes and relatively simple dynamic models
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can be used to describe much of the systemic behaviour
[6-9]. Also, numerous studies have established that a sig-
nificant fraction of observed inter-individual variability in
gene expression is due to cis-linked and trans-linked
genetic polymorphisms (reviewed by [10] and [11]). How
biological systems translate genetic variation into pheno-
typic variation has recently received some attention [12-
16], but there is still an almost completely unrevealed
relationship between regulatory polymorphisms, network
design principles, and descriptory concepts like cis/trans-
linkage, dominance, epistasis and penetrance even at the
expression level.

Gjuvsland et al. [17] showed that gene regulatory net-
works generate significant amounts of statistical epistasis
which depends on the type of feedback regulation
involved. Here we address how single gene descriptors
and their dependence on (genetically controlled) regula-
tory design features contribute to the functional epistasis
characteristics of mathematical genotype-phenotype
maps. Functional epistasis is here used as a common term
for describing situations where the phenotypic effect of a
genetic substitution (on one or multiple loci) depends on
the genetic background, i.e. on the state of other loci in
the genotype [18].

The basic strategy underlying our analysis was to (i) posi-
tion a fixed number of genes on a genetic map; (ii) intro-
duce dynamic network models for the expression of these
genes; (iii) define alleles by a set of model parameters and
the equilibrium concentrations of the gene products (with
noise added) as these genes' expression phenotype; (iv)
introduce genetic variation in the model parameters; (v)
make mapping populations of individuals having their
expression phenotypes determined by the dynamic net-
work models; and (vi) analyse the populations with the
machinery of statistical genetics. This approach opens for
a systematic investigation of the phenotypic manifesta-
tions of genetic variation as a function of gene network
design.

As the steady state abundance of mRNA is dependent on
the balance between synthesis and decay, our models
include one term for synthesis and one for decay of
mRNA.

A polymorphism that has an effect on expression level of
a given gene x must transmit this effect through the pro-
duction and/or degradation term describing the time rate
of change of expression of x. This low-resolution model-
ling approach catches the most important aggregate fea-
tures of more detailed first-principle models of
transcription based on statistical mechanics [19-21]
Moreover, the current resolution of empirical data on the
existence of non-coding polymorphisms affecting maxi-

mal production rates [22-25] and decay rates [26,27] does
not invite to make use of more detailed models of the
processes underlying these observations. Thus, by letting
the parameters defining production rate and decay rate
mediate genetic variation in our genotype-phenotype
models we account for a whole range of different, and
possibly still unrevealed, mechanistic processes responsi-
ble for this variation.

More specifically, we constructed six different three-gene
regulatory models (see Methods) based on the transcrip-
tional regulatory motifs that have been characterized in E.
coli [28] and S. cerevisiae [29]: a negative feedback loop
with all three genes, a negative feedback loop with two
genes and downstream activation, a regulatory chain of
three genes, a coherent feedforward loop, a double input
module with an AND gate, and a double input module
with an OR gate (Figure 1A). For each model we generated
genetic variation by sampling maximal production rates,
decay rates and regulation thresholds from uniform distri-
butions and assigning them to alleles. In dynamic models
of specific biological systems the relevant phenotypes are
normally given by some aspect of the solution of the
model in a quite straight-forward way. Welch et al [16]
introduce a phenotype functional, which transform a
dynamic solution in form of a function or time series into
a real-valued phenotype, they exemplify such functionals
for plant phenotypes; grainfill is represented by cumula-
tive effects, while budding is modelled by threshold trig-
gers. Another example is a model of the lambda switch
[4,5] where the two stable steady states of the system cor-
respond to lytic and lysogenic growth phenotypes respec-
tively. However, in a study like the present one where one
searches for common characteristics over a whole range of
various models, it is not so obvious how to define a com-
mon phenotype as different regulatory systems have dif-
ferent properties. A simple property shared by many
networks is the stable steady state, and this property is
closely associated with homeostatic regulation, which is
an ubiquitous property of biological systems [30,31]. For
simplicity, we have thus restricted ourselves to systems
and parameter values that give a unique stable equilib-
rium. The stable concentrations of all three gene products
for a given set of parameter values (i.e. the genotype) were
taken as the genotypic values for the three expression phe-
notypes (see Methods).

We particularly investigated whether or not different gene
network structures create different cis- and trans- linkage
patterns, and how the manifestation of phenotypic effects
is influenced by the actual form of the cis-regulatory input
function [32]. This function (also called gene regulation
function [25]) describes the relationship between the pro-
duction rates of a given gene product and the concentra-
tions of the regulatory agents controlling these rates. Our
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motivation for focusing on this function is thus that it is
both a basic regulatory design common to all network
structure and the prime mediator of trans-acting effects, in
both downstream and feedback regulatory relationships
[33]. We chose to work with two distinct functional
shapes (or modes), one describing ordinary hyperbolic
saturation kinetics (being close to linear over much of the
concentration span), and one describing moderately non-
linear (sigmoidal) saturation kinetics (Figure 1B). There is
solid empirical [25,34-36] as well as theoretical [19-
21,37-39] support for frequent presence of both modes in
eukaryotes, and experimental studies have shown that it is
relatively easy in mutational terms to move between a
hyperbolic mode and a sigmoidal one [25,34]. We found
that the shape of the cis-regulatory input function has a
dramatic influence on the genotype-phenotype map con-
cerning the phenotypic expression of distant compared to
local polymorphisms under otherwise equal conditions.

Results and Discussion
In all six models the transition from a hyperbolic to a sig-
moidal cis-regulatory input function causes a dramatic
increase in the frequency of detected trans-acting determi-
nants (Figure 2). This applied to genes having their gene
products explicitly incorporated in the regulatory function
of a down-stream gene that is measured as well as those
that mediate their regulatory effect through another gene.

Further, in five of six models (2, 3, 4, 5, 6) the number of
cis-linked polymorphisms increases also substantially for
at least one of the three mapping instances, but the change
is not as dramatic as in the trans case. These two patterns
are thus quite generic. Despite that polymorphisms in a
double input module with an AND gate seem much less
prone to be detected than those with an OR gate, the
results suggest that even very different gene network struc-
tures do not in general cause markedly different cis- and
trans-linkage patterns. Generally, results from multiple
trait mappings were very similar to those from the single
trait analysis except that fewer false positives were
detected (results not shown).

How can these observations be interpreted in biological
terms? Linkage analysis estimates so-called additive (a)
and dominance (d) genotypic values (see Methods). For a
single locus with two alleles a measures half the distance
between the genotypic values of the two homozygots. In
other words, this parameter describes the mean difference
between the two homozygote genotypes in phenotypic
units. The dominance genotypic value is the difference
between the heterozygot genotyic value and the midpoint
of the two homozygots. The gene action of the locus is
described by these two parameters; if d = 0 the locus is said
to be additive, if d < | a | it shows partial dominance, com-
plete dominance if d < | a | and overdominance if d < | a

Interaction diagrams and cis-regulatory input functionFigure 1
Interaction diagrams and cis-regulatory input function. (A) Interaction diagrams describing the six gene regulatory net-
works used in the simulations. A circle represents a gene, a +(-)-signed arrow from gene A to gene B symbolises that the gene 
product of A activates (inhibits) B. The six networks described in regulatory terms are: Model 1: a negative feedback loop with 
three genes; Model 2: a negative feedback loop with two genes and downstream activation; Model 3: a regulatory chain of three 
genes; Model 4: a coherent feedforward loop; Model 5: a double input module with AND gate, and Model 6: a double input 
module with OR gate. (B) The Hill function, used as the cis-regulatory input function in the models, plotted with constant 
threshold for various Hill coefficients.
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Linkage analysis on simulated expression phenotypesFigure 2
Linkage analysis on simulated expression phenotypes. Results from Haley-Knott regression for the six models in Figure 
1A. In all plots the gene whose expression QTLs are mapped, is represented with a filled circle. The number inside a circle indi-
cates the number of F2 datasets of the total 400 in which the gene is detected as a QTL for the trait being studied. For instance 
the leftmost plot of model 1, with p = 1, shows that when mapping QTLs for the expression level of gene 1, we detected gene 
1 itself in 116 of 400 F2 populations, gene 2 and gene 3 were detected in 4 and 20 F2 populations, respectively. Some false pos-
itives are seen when a QTL is reported in the position of a gene downstream of the gene whose expression is being studied.
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|. Together, a and d constitute the basic gene action model
upon which the predictive machinery of quantitative
genetics, which includes variance components, heritabili-
ties and breeding values, is built (see [40]). These two val-
ues thus constitute the link between the mathematical
genotype-phenotype models and the linkage analysis
results. When we compare the distributions of additive
and dominance values in the hyperbolic and sigmoidal
case for all the models, the general pattern is that the addi-
tive and dominance absolute values become more fanned
out for local as well as for distant variation when the
steepness of the cis-regulatory input function increases
(Figure 3). This means that steepening the cis-regulatory
input function causes in general a given set of regulatory
polymorphisms to have more distinct phenotypic signa-
tures. In accordance with the linkage analysis results (Fig-
ure 2), the steepening modulates the allelic variation such
that the phenotypic expression effect of distant polymor-
phisms increases relative to the local polymorphisms. We
also see that in the hyperbolic case, dominance effects are
scarcely present, while in the sigmoidal case they contrib-
ute substantially. As the change of shape of the cis-regula-
tory input function can be interpreted as a change of
genetic background, the observed shifts in the cis-/trans-
linkage and dominance patterns are manifestations of
functional epistasis in the actual genotype-phenotype
map.

The linkage analysis results (Figure 2) can thus be
explained by how allelic effects on a and d values are sys-
temically modulated. However, this elucidation does not
reveal the actual relationships between genetic variation
in production rates, decay rates and regulation thresholds
and the phenotypic a and d values. Intuitively one would
expect that polymorphisms affecting maximal production
rates or decay rates would appear as eQTLs. For instance,
Schadt et al [41] highlights polymorphisms affecting the
decay rate of C5, and a double copy number variation of
Alad, which will increase the production capacity, as can-
didate polymorphisms for cis-acting eQTLs in mice. The
relationship between polymorphisms affecting the shape
of the cis-regulatory input function is less intuitive. With
mathematical models of gene regulatory networks we can
explore these relationships in detail. Some very interesting
features emerge from a systematic investigation of how
allelic differences in these three parameters for a given
gene are correlated with its own expression as well as the
expression of all other genes in the network in terms of a
and d (Figure 4, results for models 2 through 6 where the
steepest cis-regulatory input function was used). The cor-
relation between additive genotypic values and parental
line difference (see legend to Figure 4) in the ratio
between maximal production rate and relative decay rate
(µ) and the threshold value (θ)changes dramatically with
the steepness of the cis-regulatory input function. This is

true for additive genotypic values underlying both cis- and
trans-linkage. Furthermore, the effect of going from the
hyperbolic case to the sigmoidal case is that differences in
µ becomes more weakly correlated with a, while the dif-
ferences in θ become stronger correlated to a. In molecular
terms this suggests that mutations affecting the steepness
of the cis-regulatory input function will alter the pheno-
typic effect of other polymorphisms, simultaneously
releasing variation associated with one type of parameter
and buffering variation associated with the other. Other
simulation studies have also shown that both mainte-
nance and release of genetic variation are emergent prop-
erties of gene regulatory networks with sigmoidal dose-
response relationships [42,43], and our findings identify
the steepness as an important modulator of genetic varia-
tion. Another aspect is that if trans- and cis-linked poly-
morphisms are both selected for in a given network this
implicitly leads to more pronounced dependency patterns
compared to when only cis-linked polymorphisms are
selected for. The frequency of trans-linked polymorphisms
identified by linkage analysis [11] strongly suggest that
selection for such polymorphisms is a frequent phenom-
enon.

With regard to dominance values, all models contain
cases where these are correlated with µ or θ or both (Fig-
ure 4). However, the relationship between model param-
eters and dominance values is dramatically weaker than
for additive values. This implies that cis-regulatory varia-
tion at a given locus does not relate in a straightforward
manner to dominance values associated with its own gene
product or on gene products of down-stream loci. Predic-
tors of the dominance variation can be constructed in
deterministic models like the ones made use of here, but
these predictors will have to include much more extensive
information about the system. The variation in domi-
nance effects is thus a more pronounced systemic feature
than the variation in additive effects, which in turn
implies that the classical definition of dominance as an
intralocus interaction [40,44] should be used with care.

Although cis-regulatory variation is more difficult to
detect and understand [45,46], we have focused on the
phenotypic signatures of cis-regulatory variation in tran-
scriptional networks and not taken into account the effect
of coding polymorphisms. The rationale for this is that
genetical genomics studies in yeast [47] and mice [48]
strongly suggest that this cis-variation is a very important
cause for self-linkage.

Our results apply to a much wider range of regulatory set-
tings than what appears from a superficial inspection of
the differential equations (see Methods). This is because a
regulatory relationship can be mediated by numerous
other gene products influencing a variety of intra- and
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intercellular processes, a simple example being a tran-
scriptional cascade [35]. As long as all these gene products
simply transfer the signal between genes A and B in the
form of a well-defined dose-response functional relation-
ship, the complexity of this transduction does not influ-
ence our predictions. Sigmoidal gene regulation functions
are widely used in models of gene networks. Here we
employ the frequently [6,9,14,49] used Hill function (see
Methods). Properties of the transcriptional machinery
such as multiple transcription factor binding sites, synergy
and cooperativity [37], and fractal kinetics [38] will con-

tribute to sigmoidal gene regulation functions. Mathemat-
ical description of transcription regulation by use of
statistical mechanics methodology [19-21] as well as
experimental data [25,35,36] also suggest that the Hill
function is very well suited for describing a whole range of
mechanistic processes causing nonlinear transcription
responses.

Simulations with genotype-phenotype maps defined by
genotypic values is a widely used tool in quantitative
genetics, and the main purposes are demonstrating and

Additive and dominance genotypic valuesFigure 3
Additive and dominance genotypic values. Box plots for all six models of the additive and dominance genotypic values a 
and d of all three genes on the expression phenotypes of all the three genes. For each model the plots are organized into four 
and four boxes named "G i - P j " indicating that the genotypic values of gene i for the expression level of gene j is plotted. The 
four box plots in each group show the distribution across the 400 F2 populations of  |a|, p=1,  |a|, p=5,  d, p=1,  d, p=5 (for 
model 1 p = 2 was used instead of 5), respectively.
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Dynamic model parameters and genotypic valuesFigure 4
Dynamic model parameters and genotypic values. Correlation coefficients between genotypic values and allelic differ-
ences in values of biological parameters, in datasets of 400 simulated F2 populations for model 2 through 6 (where the highest 
Hill coefficient p = 5 is used). Correlations that are weaker than a threshold determined by permutations (see Methods) are 
set to zero. On the horizontal axis " ai - Pj" and " di - Pj" denotes the genotypic values of gene i for the expression level of gene 
j. On the vertical axis parameter value differences between allele 1 and 2 (from parental lines P1 and P2 respectively) of gene i 

are denoted by  and threshold value ∆θi = θi1 - θi2 (see Methods for further explanation for these 

parameters).
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testing methods for mapping of QTLs [50-52]. Such sim-
ulations are very useful for showing differences between
various mapping methods, and for identifying weaknesses
of current methodologies. The main difference to the
approach presented here is that we start out from a
dynamic system of genes rather than statistical effects. The
genotypic values, which are explicitly defined in the
genetic model approach, instead become emergent prop-
erties of a biologically interpretable dynamic system. This
opens up for a much deeper understanding of functional
epistasis aspects [18] of the genotype-phenotype map in
terms of biological processes and mechanisms. This is
illustrated by our identification of the cis-regulatory input
function as an important provider of functional epistasis
to the genotype-phenotype map, which is clearly beyond
reach for the standard genetic model approach.

In the case of sigmoidal gene regulation functions, our
results (Figure 4) indicate that polymorphisms affecting µ
(the ratio between maximal production rate and relative
decay rate) will not be directly translated into a QTL effect
on the steady state. This opens a new opportunity window
for genetical genomics studies. Although frequently con-
sidered to be the phenotype level closest to DNA sequence
variation [11], transcript abundance does actually reflect
the balance between production and decay rates. These
two rates are thus more directly tied up with DNA
sequence variation than transcript abundance. Genome-
wide studies of decay rates have already been performed
in yeast [53] and human cells [54], and in principle such
data could be used to map rateQTLs in the same way as
they are used for expressionQTLs. As our results illustrate
how variation can be visible at one phenotypic level and
hidden at the next level for systemic reasons, comparing
QTLs for rates and expression levels can thus probably be
exploited to reveal to which degree systemic silencing of
mutations in transcriptional networks is a generic feature
or not.

Conclusion
When mathematical models capable of bridging the gen-
otype-phenotype gap are embedded in a framework
accounting for the number of individuals, mating struc-
tures, allele frequencies, genome-wide variations in
recombination frequencies and linkage disequilibrium
structures, we possess a tool to understand how various
polymorphisms affect phenotypic variation in a popula-
tion. With our simple models we have here only sketched
the potential of this approach, but the methodis likely to
be applicable also in more complex settings. Although we
in this paper focus on expression networks, there is in
principle no limit to how many systemic levels one can
include, and how sophisticated the mathematical pheno-
types can be [55]. Our approach thus opens up for a sys-
tematic investigation of the systemic conditions under

which different types of functional genetic variation make
detectable contributions to the phenotypic variation of
traits of interest to biomedicine, production biology and
evolutionary biology. The main constraint will be our
capacity to make biologically realistic mathematical
descriptions of complex phenotypes over a broad range,
not the structural complexities of the genetic variation
involved.

Methods
Gene regulatory model equations
For modelling gene regulatory networks we use the sig-
moid formalism [56,57] for diploid organisms [14]. A
gene regulatory network is described by a set of ordinary
differential equations (ODEs):

where the 2n-vector  = (x11 x12 x21 x22 ... xn1 xn2) contains

the expression levels xi1, xi2 of the products of the two alle-

les for gene number i, i = 1, 2, ..., n, in the gene regulatory

network, the vectors ,  and  contain allelic param-

eter values, and p determines the steepness of the cis-regu-
latory input function (see below). To each allele, we
associate the parameters aij, the maximal production rate

of the allele, and γij, the relative decay rate of the expres-

sion product. In addition, for each gene xk. regulating the

expression of xij, there is a threshold parameter, θkij used to

describe the dose-response relationship, or the regulatory
function, between xk. and the resulting production rate of

xij. We assumed that the two allele products are equally

efficient as regulators so their levels are summed (yi = xi1 +

xi2) before they are used in the regulatory function. The

Hill function [58] generates a flexible dose-response rela-
tionship between regulator and production at the regu-
lated gene:

where θ gives the amount of regulator needed to get 50%
of maximal production rate while p determines the steep-
ness of the response. The Hill equation describes Michae-
lis-Menten regulation for p = 1 and switchlike response as
p increases (Figure 1B). We varied p between simulations,
but within replicates of a particular scenario p is fixed both
between alleles and across regulatory actions. If the regu-
latory effect is inhibitory, the regulatory function 1 -
H(y,θ,p) is used.

dx

dt
F x p= ( , , , , ),α γ θ (1)

x

α γ θ

H y p
y

y

p

p p
( , , ) ,θ

θ
=

+
(2)
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Six diploid mathematical models of the interaction dia-
grams in Figure 1A were made using the sigmoid formal-
ism. In all the equations j = 1,2 and yj = xj1 + xj2, i = 1,2,3.

Model 1: Negative feedback loop with 3 genes

Model 2: Negative feedback loop with 2 genes, down-
stream activation

Model 3: Regulatory chain with 3 genes

For the last three models with regulatory functions involv-
ing double inputs, the following logical functions were
used:

Model 4: Coherent feedforward loop

Model 5: Double input, AND block

Model 6: Double input, OR block

Genetic map
The same genetic map was used for all simulations. This
map contained five 100 cM chromosomes, and marker
loci were spaced equidistant at each 5 cM along the chro-
mosomes. The three genes were placed at the three first
chromosomes, gene 1 at c1-42.5 cM, gene 2 at c2-22.5 cM
and gene 3 at c3-57.5 cM. Haldane's mapping function
was used to compute recombination rates between loci.

Simulations
For each of the six gene regulatory network models two
simulations were run with different Hill coefficients in the
regulatory functions. Hill coefficients 1 and 5 were used
for models 2–6, but for model 1 Hill coefficient 5 gave
cyclic behaviour, and the steepness was reduced to Hill
coefficient 2. We started by sampling allelic parameter val-
ues from independent uniform distribution of all three
types of heritable model parameters, maximal production
rate α, threshold for regulation θ, and relative decay rate γ,
such that 70 ≤ α ≤ 150, 5 ≤ θ ≤ 15, and 10 ≤ γ ≤ 15. To
allele i of gene j we associated αij, γij and one or two θkij
depending on the model and gene. For a given diploid
genotype consisting of parameter values for two alleles at
each of the three genes the resulting system of equations
was solved to find the stable equilibrium values for all
three genes, and these simulated expression levels were
used as the genotype's contribution to the phenotype. To
get the individual phenotype record, independent nor-
mally distributed noise with mean 0 and variance 25 was
added to the genotypic contribution. For each network
model and Hill coefficient we created a set of mapping
populations by sampling allelic parameter values for 40
fully homozygous lines, half (P1-lines) of these lines were
homozygous 11 at all marker loci, the other half (P2-
lines) were homozygous 22. Finally, each P1-line was
crossed to each P2-line in an F2-cross. For each gene regu-
latory model and Hill coefficient this gave 400 F2 popula-
tions for the genetic analysis.

Linkage analysis
Haley-Knott regression was done using the function scan-
one in the R\qtl package [59], while Multitrait IM was
done with the function JZmapqtl in QTL Cartographer
[60,61]. Genome wide 5% significance thresholds for
LOD and LR scores were set by applying both methods to
2500 F2 populations of 250 individuals, using the same
genetic map as in the simulations, but with only environ-
mental noise contributing to the expression levels. For

x H y p x

x H y p

j j j j j

j j j

1 1 3 31 1 1

2 2 1 12

1

1

= − −

= − −

α θ γ

α θ γ

( ( , , )) ,

( ( , , )) 22 2

3 3 2 23 3 31

j j

j j j j j

x

x H y p x

,

( ( , , )) .= − −α θ γ

(3)
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j j j j
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both methods the test statistic was computed every 2.5 cM
along the whole genetic map. If a test statistic exceeded the
threshold a QTL was inferred, however, at most one QTL
was flagged from each chromosome.

Evaluation of QTL results
By comparing the positions of the three genes underlying
the simulated phenotypes to flagged QTL positions, genes
were divided into two groups: detected and not detected.
A gene was classified as detected if a significant QTL was
flagged on the chromosome at which the gene resided and
the QTL peak was in the same marker bracket as the gene
or in one of the neighbour brackets (i.e. ≤ 7.5 cM away
from the gene), otherwise the gene was classified as not
detected.

Genotypic values
The concept of value, expressible in the metric units of the
phenotype is central in quantitative genetics. The pheno-
type observed in an individual is the phenotypic value of
that individual and this is divided into components attrib-
utable to influence of the genotype, the genotypic value,
and the environment [40]. The genotypic value of a geno-
type is the mean phenotypic value of individuals with that
genotype. In our simulated data genotypic values were cal-
culated before adding noise to the steady state expression
levels. Following the notation used by [44,62] and extend-
ing to three genes Gijklmn denotes the genotypic value of an
individual with genotype ij at gene 1, kl at gene 2, and mn
at gene 3, where ij,kl,mn = 11,12,22. Single locus geno-
typic values are defined by the unweighted average of the
9 genotypic values across the other loci,

at gene 1,

at gene 2, and

at gene 3. The additive genotypic value is half the distance
between the homozygote genotypic values, while the
dominance genotypic value is the deviation of the hetero-
zygote genotypic value from the midpoint of the homozy-
gote genotypic value. Using gene 1 as an example we get,

and

Correlation coefficients
For each model and Hill coefficient, vectors of genotypic
values and allelic differences in values of network model
parameters were collected. These vectors had 400 ele-
ments, each representing one F2 population. Correlation
coefficients for all pair-wise combinations of statistical
and network model parameters were computed. The sig-
nificance of each of these correlation coefficients was eval-
uated by computing the correlation coefficients of 1000
permutations, reshuffling elements at random within one
of the vectors. Correlation coefficients falling inside the
interval observed in the permuted datasets were set to
zero.
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