
Chen et al. Source Code for Biology and Medicine 2014, 9:8
http://www.scfbm.org/content/9/1/8
RESEARCH Open Access
Software for pre-processing Illumina next-
generation sequencing short read sequences
Chuming Chen1*†, Sari S Khaleel2†, Hongzhan Huang1 and Cathy H Wu1
Abstract

Background: When compared to Sanger sequencing technology, next-generation sequencing (NGS) technologies are
hindered by shorter sequence read length, higher base-call error rate, non-uniform coverage, and platform-specific
sequencing artifacts. These characteristics lower the quality of their downstream analyses, e.g. de novo and
reference-based assembly, by introducing sequencing artifacts and errors that may contribute to incorrect
interpretation of data. Although many tools have been developed for quality control and pre-processing of NGS
data, none of them provide flexible and comprehensive trimming options in conjunction with parallel processing
to expedite pre-processing of large NGS datasets.

Methods: We developed ngsShoRT (next-generation sequencing Short Reads Trimmer), a flexible and comprehensive
open-source software package written in Perl that provides a set of algorithms commonly used for pre-processing NGS
short read sequences. We compared the features and performance of ngsShoRT with existing tools: CutAdapt, NGS QC
Toolkit and Trimmomatic. We also compared the effects of using pre-processed short read sequences generated by
different algorithms on de novo and reference-based assembly for three different genomes: Caenorhabditis elegans,
Saccharomyces cerevisiae S288c, and Escherichia coli O157 H7.

Results: Several combinations of ngsShoRT algorithms were tested on publicly available Illumina GA II, HiSeq 2000, and
MiSeq eukaryotic and bacteria genomic short read sequences with the focus on removing sequencing artifacts and
low-quality reads and/or bases. Our results show that across three organisms and three sequencing platforms, trimming
improved the mean quality scores of trimmed sequences. Using trimmed sequences for de novo and reference-based
assembly improved assembly quality as well as assembler performance. In general, ngsShoRT outperformed comparable
trimming tools in terms of trimming speed and improvement of de novo and reference-based assembly as measured
by assembly contiguity and correctness.

Conclusions: Trimming of short read sequences can improve the quality of de novo and reference-based assembly
and assembler performance. The parallel processing capability of ngsShoRT reduces trimming time and improves the
memory efficiency when dealing with large datasets. We recommend combining sequencing artifacts removal, and
quality score based read filtering and base trimming as the most consistent method for improving sequence quality
and downstream assemblies.
ngsShoRT source code, user guide and tutorial are available at http://research.bioinformatics.udel.edu/genomics/
ngsShoRT/. ngsShoRT can be incorporated as a pre-processing step in genome and transcriptome assembly projects.

Keywords: Next-generation sequencing, Illumina, Trimming, De novo assembly, Reference-based assembly, Perl
* Correspondence: chenc@udel.edu
†Equal contributors
1Center for Bioinformatics and Computational Biology, University of
Delaware, Newark, DE, USA
Full list of author information is available at the end of the article

© 2014 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

http://research.bioinformatics.udel.edu/genomics/ngsShoRT/
http://research.bioinformatics.udel.edu/genomics/ngsShoRT/
mailto:chenc@udel.edu
http://creativecommons.org/licenses/by/2.0

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 2 of 11
http://www.scfbm.org/content/9/1/8
Background
As a cost-effective, high-throughput alternative to classical
Sanger sequencing technology, emerging next-generation
sequencing technologies have revolutionized biological re-
search. When compared to Sanger sequencing technology,
NGS platforms (e.g. 454, Illumina and ABI-SOLiD) [1]
have their drawbacks, including shorter sequence read
length, higher base-call error rate, non-uniform coverage
and platform-specific artifacts [2-4] that can severely
affect the downstream data analysis efforts.
One of the most important areas of NGS data analysis

is de novo genome or transcriptome assembly. De novo
assembly is essential for studying non-model organisms
where a reference genome or transcriptome is not avail-
able. A common approach for de novo assembly of NGS
sequences uses De Bruijn Graph (DBG) [5] data struc-
ture, which manages the large volume and short read
length of NGS data better than classical Overlap-Layout-
Consensus assemblers such as TIGR and Phrap [6,7]. In
the DBG-based approach, reads are decomposed into
K-mers that in turn become the nodes of a DBG. Se-
quencing errors complicate the DBG because a single
mis-called base can result in a new K-mer sequence
that will subsequently introduce a new path in the
DBG. These incorrect K-mers increase the complexity
of the DBG, prolong assembler runtime, increase memory
footprint, and ultimately lead to poor quality assembly [8].
Pre-processing NGS reads to remove mis-called bases
would be beneficial to DBG assembler performance and
the resulting assembly.
Another important area of NGS data analysis is

reference-based assembly i.e. mapping or aligning reads
to a reference genome or transcriptome. This step is
crucial for many NGS applications including RNA-Seq
[9], ChIP-Seq [10], and SNP and genomic structural
variant detection [11]. The correct mapping of reads to a
reference depends heavily on read quality [12,13]. For
example, some mapping tools use the base quality scores
of a read to determine mismatch locations. Chimeric
reads or other sequencing artifacts can introduce gaps in
the alignment. Erroneous bases add additional complex-
ity to the correct identification of actual mismatch posi-
tions during the mapping process. Therefore, cleaning
up raw sequencing reads can improve the accuracy and
performance of alignment tools.
We developed ngsShoRT (next-generation sequencing

Short Reads Trimmer), a flexible and comprehensive open-
source software package that implements many commonly
used pre-processing algorithms gathered from the se-
quencing and assembly literature. In addition, we per-
formed systematic assessments of the effects of using
pre-processed short read sequences generated by differ-
ent algorithms on the resulting de novo and reference-
based assembly of three genomes: Caenorhabditis
elegans, Saccharomyces cerevisiae S288c, and Escheri-
chia coli O157 H7. We also compared the performance
of ngsShoRT with other existing trimming tools: CutA-
dapt [14], NGS QC Toolkit [15] and Trimmomatic [16].

Methods
Overview
For a typical NGS data analysis pipeline, ngsShoRT
serves as a module between the raw sequences gener-
ated by NGS sequencers and further downstream ana-
lyses (Figure S1) [see Additional file 1].
ngsShoRT takes Single-Read (SR), Paired-End (PE), and

Mate-Pair (MP) FastQ or Illumina’s native QSEQ format
sequence files as input (compressed files are supported
also) and runs them through a set of independent pre-
processing algorithms including adapter/primer sequence
removal, homopolymer sequence removal, Illumina QSEQ
specific methods, reads with “N” bases removal/splitting,
quality score based trimming, and 5' or 3'-end bases trim-
ming. Outputs include a set of SR or PE/MP reads in
FastQ format and a detailed summary statistics report.
Using ngsShoRT to pre-process short read sequences is
usually an iterative process: raw reads are trimmed by one
of the ngsShoRT methods and the output can be used as
an input to another ngsShoRT method. The end product is
a trimmed data set ready for incorporation into various
downstream assembly and data analysis pipelines.

Design principles
Common pre-processing issues
There are several types of potential errors in NGS reads:
un-called “N” bases, sequencing artifacts (usually platform
specific PCR primers, linkers and adaptors) and low qual-
ity bases. Errors are more likely to occur at the 3′-ends of
a read from Illumina sequencing technology [2].
Many de novo genome assembly projects [15-21] in-

cluded pre-processing steps for removing reads with un-
called “N” bases, and detecting and removing of adaptor
sequences using exact string matching algorithms to
search for user-specified adaptor sequences. However,
exact string matching may fail to detect all adapter se-
quences because of sequencing errors. A customizable
approximate matching algorithm is more desirable in
this case.
Another issue of NGS read pre-processing is dealing

with PE or MP reads that are important for repeat reso-
lution and scaffolding used by the DBG assemblers. The
PE or MP reads are usually partitioned into two separate
files with forward direction reads in the first file and re-
verse direction mate reads in the second file. The reads
are listed in the same order in both files, an assumption
critical to the assembly process. Surprisingly, most exist-
ing pre-processing tools do not process PE or MP read
files as a single unit (Table 1). Instead, they treat each

Table 1 Comparison of ngsShoRT with other publically available pre-processing tools

Tool Programming
language

Targeted
NGS platform

Input format PE reads
handling

Parallel
processing

NGS
artifacts
handling

Quality score-based
trimming

Output
format

Summary
report

ngsShoRT (2.1) Perl 454, Illumina FastQ, Illumina QSEQ Yes Yes Yes Yes: 3'-end, quality window and
filter out low quality reads

FastQ Yes

NGS QC toolkit
(v.2.3.2) [15]

Perl 454, Illumina1 FastQ, FastA (+ .qual) Yes Yes Yes Yes: filter out low quality reads FastA (+.qual), FastQ Yes

FASTX toolkit
(v. 0.0.13.2) [26]

C/C++ Non-specific FastQ2, FastA (not .qual) No No No Yes: filter out low quality reads FastA, FastQ No

SeqTrim [25] Perl Non-specific3 FastA (+ .qual), Phred No No No Yes: filter out low quality reads FastA (+.qual) Yes

CutAdapt (v.1.3) [14] Python4 454, Illumina,
SOLID5

FastQ, SOLID’s cs.FastA +
cs.FastA.qual

No No No Yes: filter out low quality reads FastQ, SOLID’s cs.FastA +
cs.FastA.qual

No

Btrim [27] C++6 Illumina FastQ6 No No No Yes: quality window FastQ No

SolexaQA (v.2.2) [8] Perl Illumina FastQ Yes No No7 Yes: quality window and filter out
low quality reads

FastQ Yes

Sickle [28] C/C++8 Illumina FastQ Yes No No Yes: quality window FastQ Yes

Scythe [24] C/C++8 Illumina FastQ No No Yes, but only
3’

No FastQ Yes

Trimmomatic (v.0.32)
[16]

Java Illumina FastQ Yes Yes Yes Yes: quality window and filter out
low quality reads

FastQ Yes

1NGS QC’s IlluQC only works for FastQ file, and 454QC only works for FastA (+.qual) file [15].
2FASTX toolkit does not accept multi-line FastQ file and requires reformatting to one-line FastQ file using provided tools [26].
3While SeqTrim isn’t platform-specific, it can only take FastA file (with/without .qual and chromatogram) [25].
4Most of CutAdapt is in python, but the alignment algorithm was written in C for speedup [14].
5CutAdapt was designed with RNA-Seq technology in mind [14].
6Btrim’s C++ implementation is designed for single reads. The tool website offers an un-optimized Perl script that organizes separately trimmed paired-end files [27].
7SolexaQA does not provide primer/adapter trimming [8].
8Scythe and Sickle require Zlib (http://www.zlib.net/) [24,28].

C
hen

et
al.Source

Code
for

Biology
and

M
edicine

2014,9:8
Page

3
of

11
http://w

w
w
.scfbm

.org/content/9/1/8

http://www.zlib.net/

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 4 of 11
http://www.scfbm.org/content/9/1/8
file separately, which can result in removing some reads
from the first file, but not their corresponding mates in
the second file, resulting in a loss of “same order” read
pairing. The pairing is also usually lost if either trimmed
read is shorter than the K-mer length parameter used by
the DBG assembler [22]. A preferred approach would be
to divert “widowed” mates of PE or MP reads (reads
whose mates were removed during trimming) to a separ-
ate single read file, while maintaining read ordering in
the trimmed PE or MP read files. In addition, because
maintaining the post-trimming read length to be ≥K is
critical for DBG assemblers (e.g., Velvet), trimming algo-
rithms need to be adjusted to ensure that they do not
trim reads to be of lengths shorter than K.
Earlier versions of Illumina sequencer (prior to Casava

1.8, released in 2011) produced sequences in QSEQ for-
mat instead of FastQ format [23]. A unique feature of
QSEQ format read is its “Failed_Chastity” filter flag, which
indicates it is a low quality read. Additionally, QSEQ for-
mat used an ASCII-to-Phred quality score mapping where
ASCII character #64 corresponds to a Phred quality score
of zero. In this mapping, a “B” character is a special indi-
cator for “unknown quality score”. Both the “Failed_Chas-
tity” and “B” character flags are lost when reads in QSEQ
format are converted to more popular FastQ format,
which uses a “Sanger-based” ASCII-to-Phred mapping
where ASCII character #32 corresponds to a Phred quality
score of zero. It would be useful for the trimming tools
that target the Illumina platform to be able to process Illu-
mina’s native QSEQ format read for datasets generated
prior to Casava 1.8.
Finally, given the large volume of data generated by

NGS sequencers, another compelling feature for a NGS
short read pre-processing software would be its scalabil-
ity and the capability of parallel processing to reduce
computational time.

Review of currently available trimming tools
We reviewed nine publicly available NGS pre-processing
tools [8,14-16,24-28] for: targeted NGS platforms, input/
output formats supported, ability to handle PE or MP
reads generically, scalability, sequencing artifacts hand-
ling, types of quality score based trimming methods sup-
ported, and finally, output of trimming and QC statistics
summary report (Table 1). Many tools trim a number of
bases from the 3'-end of a read because in general, low
quality bases occur more frequently at 3'-end of a read
[8,20,25]. A more refined approach involves a sliding
window algorithm that tries to extract a substring of
read bases where the first and last base’s quality scores
exceed a specified cutoff [8,25]. The quality score based
window extraction approach is somewhat arbitrary when
it comes to determining the quality score cutoff and the
window size. For example, specifying a window size
shorter than the K-mer length used by the DBG assem-
bler will result in skipping many of the trimmed reads
altogether [22]. A simpler approach is to extract “high
quality reads”, i.e. reads with a percentage of high quality
bases (bases whose quality scores exceed a specified cut-
off) that satisfies a user-specified percentage cutoff
[15,20,25,26]. The problem with this approach is that it
may filter out reads that could have been salvaged by
trimming fewer low quality bases from their 3'-ends.
To the best of our knowledge, the only freely available

tools that handle PE or MP reads generically are Btrim
[27] (in the secondary step following separate paired-end
reads trimming), SolexaQA (v.2.2) [8], Sickle [28], Trim-
momatic [16], and NGS QC Toolkit (v.2.3) [15]. Of these
tools, only Trimmomatic supports parallel-processing on
the original SE or PE input files, while NGS QC Toolkit
supports “parallel” trimming of separate input files by
using one thread for each file.

Algorithms and implementation
ngsShoRT provides 12 algorithms/methods in 5 categor-
ies summarized in Table 2 and described in detail below.

Sequencing artifacts removal
5adpt [mp, list, approx_match_modifiers, search_depth,
action] detects (at a match percentage mp and up to a
depth of search_depth) 5'-adaptor/primer sequences
loaded from a list (which can be built-in Illumina primer li-
brary, and/or user-provided sequences) and removes them
from a read. 5adpt allows users to do approximate match-
ing using the Levenshtein edit distance implementation in
CPAN’s String::Approx module [29]. This module allows
approximate matching using a simple percentage cutoff or
detailed modifiers (number of allowed insertions, substitu-
tions, and deletions). This feature, accessible through the
approx_match_modifiers option, allows 5adpt to be modi-
fied to fit platform specific features and error profiles.
For example, one would expect more InDels over sub-
stitutions in 454 reads, and the opposite in Illumina
reads [30]. After an adapter/primer/linker sequence (or
fragment) is matched and trimmed from a read, the action
option allows users to specify how to handle this read. A
read can be removed completely (action = kill-read, kr) or
trimmed to the base 5' to the detected artifact string
(action = kill-after, ka).
rmHP [h, b] searches for homopolymer sequences

whose lengths are ≥ h in the reads and are composed of
bases listed in b (normally A, C, G, and T). If detected,
the homopolymer sequence and all bases 3' of it are re-
moved from the read.

QSEQ specific methods
qseq0 and qseqB [n, mode, action] are methods we de-
veloped specifically for reads in Illumina QSEQ format,

Table 2 Short read sequence pre-processing algorithms in ngsShoRT

Category Algorithm/Method Description

Sequencing Artifacts Removal 5adpt Detects (using exact or approximate matching) sequencing artifacts listed in an
input file and removes them.

rmHP Removes homopolymer sequences.

QSEQ Specific Methods qseq0 Removes QSEQ reads with “Failed_Chastity” filter flags.

qseqB Removes reads with more than certain number of "B"-scored bases.

Reads with “N” Bases Removal/Splitting nperc Filters out reads with un-called “N” bases exceeding a percentage cutoff.

ncutoff Filters out reads with un-called “N” bases exceeding a number cutoff.

nsplit Searches and removes “N” bases, then splits the read around the removed “N” bases
into two smaller daughter reads.

Quality Score Based Trimming LQR Removes “low quality” reads using quality score cutoff or percent cutoff.

Mott Quality-window extraction (trim both the 5'- and 3'-ends of a read).

TERA Trims low quality-score bases from the 3'-ends of reads based on their running
average quality scores.

5'/3'-end Bases Trimming 3end Trims bases from 3'-end of a read.

5end Trims bases from 5'-end of a read.

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 5 of 11
http://www.scfbm.org/content/9/1/8
the default output format for Illumina sequencer prior to
Casava 1.8 [23]. qseq0 removes a QSEQ read that does
not pass the “Failed_Chastity” filter, which was shown to
greatly improve assembly contiguity and correctness [31].
qseqB trims a read with more than n "B"-scored bases. Be-
cause a “B” score means “unknown quality score”, these
bases are usually trimmed along with all the bases 3' to
them [18,32]. Unfortunately, conversion of QSEQ format
to popular FastQ format results in losing the “Failed_-
Chastity” filter flag information. In addition, conversion
usually includes changing the ASCII score mapping from
Illumina-based to Sanger-based mapping, which changes
the “B” quality score to a different ASCII character. There-
fore, unlike qseq0, qseqB still can be used with Illumina
reads in FastQ format if their ASCII-to-Phred score
mapping could be switched from Sanger back to Illu-
mina using the switch_score method (see below). At
mode = “local”, qseqB [n] will remove a read with ≥ n
"B"-scored bases. qseqB [n] will search for a string of
consecutive "B"-scored bases no shorter than n. If such
a string is detected, the read can be removed com-
pletely (action = kill-read, kr) or trimmed to the base 5'
to the detected "B"-scored string (action = kill-after, ka).
A QSEQ limited implementation of qseqB with mode =
local and action = ka was used by Garcia et al. [32].
switch_score is not a trimming method, but it allows

switching the ASCII-to-Phred mapping of a base-call
quality score between Illumina’s legacy ASCII-64-based
mapping and Sanger’s ASCII-32-based mapping. This
restores the original Illumina quality scores for the read
bases in FastQ format downloaded from NCBI’s Se-
quence Read Archive, including the aforementioned
"B"-scored bases that then can be trimmed using qseqB
method.
Reads with “N” bases removal/splitting
nperc [p] and ncutoff [n] filter out a read with un-called
“N” bases where the percentage or number of “N” bases
is ≥ p or ≥ n, respectively. ncutoff [n =1] is equivalent to
the commonly used pre-processing step of filtering out
reads that contain “N” bases.
nsplit [l] detects a string of un-called “N” bases whose

length is ≥ l, removes them from a read and splits the
read around the detected “N” bases into two smaller
daughter reads. We developed this method to remove
“N” bases from a read without having to filter out the
entire read and lose its information.
nperc, ncutoff and nsplit are important for removing

“N” bases from a read because they are usually associated
with low quality score bases, and DBG assemblers either
discard reads with such bases [33] or simply convert them
to an arbitrarily chosen nucleotide such as “A” [22].

Quality score based trimming
LQR [lqs, p] trims a “low quality” read using a low qual-
ity score (lqs) cutoff for individual bases, and a percent-
age cutoff (p) to limit the number of such bases in a
read. LQR filters out a read with over p% of bases whose
quality score is under lqs. It is similar to the algorithms
used in other pre-processing tools [16,26,34].
Mott [ml] is a quality window extraction algorithm

that trims from both the 5'- and 3'-ends of a read. Start-
ing at the 3'-end of a read, it counts the running sum of
(ml - Perror) values, RSMLP, for each base (Perror of a
base = 10-qulityscore/10) in the read, and extracts the string
from the first base with RSMLP > 0 to the base with the
highest RSMLP. Mott algorithm was adapted from the
CLC Bio Genomics Workbench [34]. Mott is also similar
to the “QRL” algorithm used by DiGuistini et al. [18].

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 6 of 11
http://www.scfbm.org/content/9/1/8
TERA [avg] is an algorithm we developed as an alter-
native to the 3end method (see below). Unlike 3end,
TERA trims the 3'-end of a read differently depending
on its bases’ quality scores. Starting at the 3'-end, the
running average quality score (RAQS) of each base is
calculated until it exceeds a cutoff, avg, at the base X.
All bases 3' to X are then discarded. A good read with
high quality (above avg) bases at its 3'-end would have
fewer bases trimmed by TERA, while a low quality read
might have more bases trimmed.
5'/3'-end bases trimming
3end [x] trims x bases from the 3'-end of a read, 5end
[y] trims y bases from the 5'-end of a read.
Adjustment for DBG assembly
To avoid trimming a read to be of length shorter than
the K-mer size used by DBG assemblers, ngsShoRT en-
forces a global minimum read length limit, min_rl, on
TERA, 3end, 5end, and Mott methods to stop trimming
once a read’s remaining length reaches min_rl. For ex-
ample, if the highest K-mer length used for assembly is
41 bps, the user should set min_rl to be that value or
larger. Another special case to handle is “widowed”
mates. If a paired-end read had only one read of the pair
filtered, ngsShoRT saves this “widowed” read in a separ-
ate single read file that can be co-assembled with rest of
PE or MP reads. This approach was suggested by Daniel
Zerbino at EMBL-EBI (personal communication) and has
been used by other genome assembly projects [18,35].
Implementation
ngsShoRT supports parallel processing by using multi-
threading to deal with large volume of data and reduce
trimming time. Another unique feature of ngsShoRT is
its ability to handle PE or MP reads generically using
paired-end specific modules.
ngsShoRT is implemented using object-oriented Perl

5.6 where the main object is a READ object. Every time
ngsShoRT parses a read from the input read file (QSEQ
or FastQ format), a READ object is created to hold its
attributes (header, sequence bases, quality scores of the
corresponding bases, and “Failed_Chastity” filter flag in
the case of QSEQ format read). Pre-processing methods
act on the READ object’s attributes and are independent
of the read’s original file format, which makes it easy to
implement additional pre-processing algorithms or have
different output formats. Parallel processing is per-
formed using Perl’s built-in threads module, where each
thread processes a separate set of reads from the input
file with the processed reads merged in the final step.
Evaluation
We compared the performance of ngsShoRT with three
other tools: CutAdapt, NGS QC Toolkit and Trimmo-
matic. Since these tools implement different processing
algorithms, we compared only the algorithms that are
similar to the ones in ngsShoRT in terms of running
speed and RAM usage. We compared the effects of
using pre-processed reads generated by these different
algorithms on the de novo and reference-based assembly
of three different genomes: Caenorhabditis elegans, Sac-
charomyces cerevisiae S288c and Escherichia coli O157
H7, and evaluated assembly quality and assembler per-
formance. Evaluation workflow is shown in Figure S2
[see Additional file 1].

Data source and experimental settings
The short read sequence data of Caenorhabditis elegans,
Saccharomyces cerevisiae S288c and Escherichia coli
O157 H7 genomes downloaded from NCBI Sequence
Read Archive were used for the evaluation. The details
of raw sequence data are shown in Table 3. The goal of
our evaluation experiments is to take raw short read se-
quences for different organisms generated by multiple
NGS platforms, process them using different pre-
processing algorithms, then do de novo and reference-
based assemblies. Because all three selected organisms
have reference genomes, we can then evaluate the qual-
ity of our de novo and reference-based assemblies
against the reference genomes. The experiments were
conducted on X86_64 Fedora 17 server with 256G RAM
and 32 Intel(R) Xeon(R) CPU/Core X7550 @ 2.00GHz.

Comparison of ngsShoRT algorithms
We applied 5 basic ngsShoRT pre-processing algorithms
(5adpt, TERA, 3end, LQR, Mott) and some of their com-
binations (LQR-5adpt, LQR-5adpt-TERA, LQR-5adpt-
Mott, 3end-TERA, 3end-nX etc.) to the raw sequences
of three organisms to generate pre-processed data sets.
We collected runtime and peak RAM usage used to gen-
erate each pre-processed sequence data set and com-
puted the mean quality score and sequence/read counts
of each experimental data set.
We evaluated the multi-threading performance of

ngsShoRT by running the Mott algorithm (the slowest
one of all the algorithms provided by ngsShoRT) on
Caenorhabditis elegans GAIIx raw sequences with 1, 8,
16 or 32 threads. We recorded total runtime, maximum
thread runtime, final merging runtime, and peak RAM
usage.

Comparison with other tools
We compared ngsShoRT with other tools in three cat-
egories of algorithms: 1) adapter trimming, 2) 3'-end
trimming, and 3) quality score based trimming. For the

Table 3 The descriptions of raw short-read sequences used in the evaluation experiments

DataSet Caenorhabditis elegans Saccharomyces cerevisiae S288c Escherichia coli O157 H7

Taxonomy ID 6239 559292 83334

Reference Genome size (bp) 100.3 M 12.2 M 5.5 M

#Chromosomes 7* 17* 1

SRA run SRR065390 SRR449310 SRR957847

Platform Illumina Genome Analyzer II Illumina HiSeq 2000 Illumina MiSeq

Strategy WGS WGS WGS

Source Genomic Genomic Genomic

Layout Paired Paired Paired

Read length 100 76 150

Nominal length 356 230 350

Total sequences (paired) 33,808,546 1,898,259 2,241,778

Total bases (paired) 6,761,709,200 288,535,368 672,533,400

Mean Phred quality score 29.49 34.17 33.12

Low Phred quality score (<=10) 1,902,576 (2.81%) 167,669 (4.42%) 76,598 (1.71%)

Coverage 67.4x 23.7x 122.3x

GC content (%) 35 39 50

*The mitochondrial chromosome is included.

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 7 of 11
http://www.scfbm.org/content/9/1/8
adapter trimming, we compared ngsShoRT with CutA-
dapt, NGS QC Toolkit and Trimmomatic. For 3'-end trim-
ming, we compared ngsShoRT with NGS QC Toolkit. For
quality score based trimming, we compared ngsShoRT
with NGS QC Toolkit and Trimmomatic. We also col-
lected runtime and peak RAM usage used to generate
each pre-processed sequence set, as well as its corre-
sponding mean quality score and sequence/read counts.

De novo assembly
We performed DBG-based de novo assembly of raw and
pre-processed sequences of three organisms using the popu-
lar Velvet assembler [22] (v1.2.10, with OPENMP enabled).
We ran Velvet using the VelvetOptimiser [36] (v2.2.5),
which automatically optimizes the three key parameters of
velvet: K-mer_length, expected_coverage, and coverage_cut-
off. As suggested in GAGE [37], we excluded “chaff” contigs
(single contig less than 200 bps in length) and computed “E-
size”, which is the expected size of the contig containing a
given random location in the reference genome.
We assessed the correctness of assemblies by aligning

the assembled contigs to corresponding reference gen-
ome using the methods of GAGE [37]. We used the nuc-
mer aligner from MUMmer v3.23 [38] to construct local
pairwise alignments between reference genome sequences
and assembled contigs with the options “-maxmatch -l
30 -banded -D 5”. Alignments with less than 95% iden-
tity or more than 95% overlap with another alignment
were discarded using delta-filter. The statistics of
remaining alignments were computed by dnadiff [39]
using default parameters.
Reference-based assembly
We completed reference-based assembly of raw and pre-
processed sequences of three organisms using BWA-
MEM algorithm of BWA v0.7.5a [12]. The alignment
and accuracy statistics were computed by QualiMap
v0.7.1 [40].
Results
Performance of different ngsShoRT algorithms
A summary of the trimmed data sets generated by different
ngsShoRT algorithms is shown in Figure S3 [see Additional
file 1] and Tables SA1-1, SA1-2, and SA1-3 [see Additional
file 2]. In terms of the total number of bases removed from
the raw sequences, 3end method removed the most and
5adpt method removed the least. The mean quality scores
of pre-processed sequences are all increased, with the high-
est read quality resulting from TERA and its combination
with other methods. LQR and its combination with other
methods removed all the low quality score (<=10) bases.
5adpt and Mott methods as well as their combination with
other methods took longer time to run and required more
RAM.
The summary of comparing ngsShoRT algorithms to

other tools with similar algorithms is shown in Figure S4
[see Additional file 1] and Tables SA5-1, SA5-2, and
SA5-3 [see Additional file 3]. In the three categories of
algorithms we compared, ngsShoRT algorithms removed
more low quality bases, improved the overall quality
scores of the trimmed data, and required less time and
RAM to run.

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 8 of 11
http://www.scfbm.org/content/9/1/8
The results of multi-threading performance of ngsShoRT
are listed in Table 4. As the number of threads increases,
the total runtime of ngsShoRT job in terms of running the
relatively time-consuming Mott algorithm on Caenorhab-
ditis elegans data set decreases and the peak RAM usage
increases linearly. In contrast, the runtime of the final
merging step remains relatively constant regardless of the
number of threads used. This indicates that the most
computationally intensive work is trimming the reads by
each thread, not merging the outputs from threads.

Effects on de novo and reference-based genome
assembly
1) de novo genome assembly
The summary of de novo genome assemblies of raw and
trimmed data generated by ngsShoRT algorithms is
shown in Figure S5 [see Additional file 1] and Tables
SA2-1, SA2-2, and SA2-3 [see Additional file 2]. Com-
paring to raw sequence assemblies, trimmed sequence
assemblies had better assembly continuity in terms of
total and max contig length, N50, and E-size, with the
exception of the assemblies of pre-processed Escherichia
coli O157 H7 sequences by Mott and LQR methods. In
addition, the assemblies of pre-processed sequences
ran faster and required less RAM than the assemblies
using raw data. Using pre-processed data improved the
accuracy of assemblies as shown in Figure S6 [see
Additional file 1] and Tables SA3-1, SA3-2, and SA3-3
[see Additional file 2]. More reference genome is cov-
ered by the assembled contigs using pre-processed
data, and more contigs can be aligned to the reference
with the exception of contigs assembled from datasets
generated by 3end and Mott methods. This may be ex-
plained by the fact that these methods had the highest
percentage of trimmed bases and shorter reads relative to
other trimming methods, suggesting lower genome cover-
age. Overall, the assembled contigs using pre-processed
data had fewer SNPs, particularly for the Sacchariomyces
cerevisiae S288c data sets. The assemblies of pre-processed
data by 5adpt, TERA, Mott methods and their combination
with LQR method had more SNPs.
Assemblies using raw and pre-processed sequences by

ngsShoRT and other tools are compared in Figure S7
[see Additional file 1] and Tables SA6-1, SA6-2, and
Table 4 Multi-threading performance of ngsShoRT

threads Total
runtime
(mins.)

Peak RAM
usage (MB)

Max thread
runtime
(mins.)

Merging
runtime
(mins.)

1 385.567 9.86 NA NA

8 58.733 26.49 47.950 10.650

16 36.850 44.93 26.433 10.283

32 25 81.96 14.333 10.550
SA6-3 [see Additional file 3]. For adapter trimming al-
gorithms, ngsShoRT 5adpt method was the best in
terms of max contig length, N50, and E-size, but CutA-
dapt performed best for total contig length. NGS QC
Toolkit used the least amount of RAM. For the 3'-end
trimming algorithms, ngsShoRT 3end method outper-
formed NGS QC Toolkit in total contig length, Velvet
runtime, and peak RAM usage. NGS QC Toolkit outper-
formed ngsShoRT 3end method for max contig length,
N50, and E-size. Among quality score based trimming al-
gorithms, ngsShoRT quality score based methods outper-
formed others for Velvet runtime and peak RAM
usage. As shown in Figure S8 [see Additional file 1]
and Tables SA7-1, SA7-2, and SA7-3 [see Additional
file 3], assemblies of 5adpt-trimmed datasets had more
contigs aligned to the reference genomes than assemblies
from other adapter trimming tools. Overall, assemblies
using NGS QC Toolkit trimmed reads had fewer SNPs. In
the 3'-end trimming algorithms, ngsShoRT 3end method
performed better in terms of reference genome coverage
and number of SNPs in the assembled contigs. In the
category of quality score based trimming algorithms,
ngsShoRT TERA method was the best in reference gen-
ome coverage and percent of contigs aligned. ngsShoRT
Mott method had the smallest number of SNPs in the as-
sembled contigs.

2) Reference-based genome assembly
A comparison of mapping raw sequences and ngsShoRT
processed sequences to the reference genome using the
short-read aligner BWA is shown in Figure S9 [see
Additional file 1] and Tables SA4-1, SA4-2, and SA4-3
[see Additional file 2]. Overall, pre-processed sequences
had more reads mapped to the reference genome with
the exception of data sets generated by TERA and Mott
methods. In addition, ngsShoRT processed sequences
had fewer duplicated reads, clipped reads (reads not
completely aligned to the reference from the beginning
to the end), and InDel containing reads when mapped to
the reference genome. The mapping of pre-processed
reads to the reference ran faster than mapping of raw
reads.
In the comparison of adapter trimming algorithms of

different trimming tools, as shown in Figure S10 [see
Additional file 1] and Tables SA8-1, SA8-2, and SA8-3
[see Additional file 3], NGS QC Toolkit adapter trim-
ming method had the highest number of pre-processed
reads with fewer mismatches and InDels in the mapped
reads, as well as shorter mapping time. For the 3'-end
trimming algorithms, ngsShoRT and NGS QC Toolkit 3'-
end trimming methods achieved a similar percentage of
mapping rate, but ngsShoRT trimmed reads had fewer mis-
matches and InDels, and mapped slower than reads
trimmed with NGS QC Toolkit 3'-end trimming algorithm.

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 9 of 11
http://www.scfbm.org/content/9/1/8
Of the quality score based algorithms, ngsShoRT LQR
method achieved the highest mapping rate. Datasets pre-
processed by ngsShoRT TERA and Mott methods had
fewer mismatches and InDels within the reads mapped to
the reference. Sacchariomyces cerevisiae S288c and Escheri-
chia coli O157 H7 data sets pre-processed by NGS QC
Toolkit’s quality score based trimming method had the
shortest mapping times.

Discussion
Not surprisingly, removing Illumina sequencing artifacts
using 5adpt method improved all assembly measures for
all tested tools and datasets. The amount of improve-
ment varied depending on the artifact removing algo-
rithms used. Therefore, to compare a tool’s performance,
we used a common library containing known Illumina
artifacts for all tested tools to avoid bias against tools
that lack built-in artifact libraries. In general, ngsShoRT’s
5adpt method outperformed other tools’ adapter trim-
ming algorithms in terms of trimmed dataset assembly
contiguity (N50, max contig length, and E-size).
While sequencing artifacts removing algorithms use

similar string matching algorithms, quality score based
trimming can be implemented using algorithms that
emphasize different aspects of a read’s quality scores.
Generally speaking, these can be classified into read fil-
tering methods (RF), such as LQR, which removes the
entire read based on having a higher percentage of low
quality or N bases than a given cutoff and base quality
trimming (BQT) methods, such as qCtuoff, qualWindow,
qseqB, Mott, and TERA, which attempt to trim low qual-
ity bases from one or both ends of a read to produce a
higher quality subsequence. As expected, RF methods suc-
cessfully removed all low quality reads from trimmed
datasets while BQT methods did not. In contrast, the
mean read quality score was generally higher in BQT
trimmed datasets since a “high quality” read filtered out
by RF methods may still have low quality bases that can
be trimmed by BQT methods, thus improving the overall
mean quality score of a read and reducing the number of
low quality and potentially erroneous reads. Consequently,
de novo assembly of BQT trimmed datasets had generally
higher N50, max contig length, and percentage of aligned
contigs when compared to RF trimmed datasets.
The above results are interesting because most of the

assembly projects we examined preferred RF methods,
i.e., filtering out all low quality reads, over using BQT
methods, i.e., attempting to salvage more reads by trim-
ming their low quality bases. As discussed above, this
approach can lead to useful base information being dis-
carded from the “low quality reads” by removing them
altogether instead of retaining their higher quality re-
gions. In addition, reads with high average quality score
that pass low quality filtering can still contain a small
but relevant set of low quality bases that may adversely
affect assembly.
Another popular but questionable trimming approach

[17,32] is the use of 3'-end trimming to improve assem-
bly contiguity by removing an arbitrary number of bases
from the 3'-end of a read. This is based on the assump-
tion that the base quality score, especially in NGS, de-
creases towards 3'-end of a read and that the decrease in
base quality score is uniform for all reads, i.e., that the
majority of low-quality bases fall within the arbitrary
range of bases removed by 3'-end trimming methods. In
our experiments, we compared the trimming of 10 bases
using ngsShoRT and NGS QC Toolkit’s 3'-end trimming
methods to the aforementioned BQT methods, set a low
quality cutoff of 2, which on average trimmed less than
10 bases per read. BQT methods outperformed 3'-end
trimming methods in almost all of our assembly evalu-
ation measures, suggesting that they managed to remove
fewer low quality bases overall relative to simple 3'-end
trimming.
The performance comparison of multiple ngsShoRT

trimming algorithms to their counterparts in three other
tools: CutAdapt, NGS QC Toolkit, and Trimmomatic
showed that ngsShoRT overall outperformed them in
terms of running speed, quality of trimmed reads, DBG-
based de novo assembly, and reference-based assembly.
Finally, we tried to determine the best combination of

ngsShoRT pre-processing algorithms using only methods
that considerably improved our evaluation measures in
earlier stages of the experiments (ncutoff and nsplit were
excluded). Combinations include sequencing artifacts re-
moval using 5adpt in combination with one or more
quality score based trimming methods. The compared
combinations are shown in Figures S3, S5, S6, and S9
[see Additional file 1]. Interestingly, while adding quality
score based trimming to artifacts trimming improved
mean read quality scores of trimmed sequences, it did not
always improve (and sometime even lowered) N50 and
max contig length in de novo assembly when compared
with artifacts removal alone in the three tested datasets.
LQR_5adpt_TERA proved to be the most consistent com-
bination in terms of improving mean read quality, as well
as DBG-based de novo assembly, and reference-based
assembly.

Conclusions
This paper presents ngsShoRT, a flexible and compre-
hensive open-source software package that implements
novel algorithms as well as several short read pre-
processing algorithms/methods adapted from literature
to pre-process Single-Read and Paired-End/Mate-Pair
NGS short reads in FastQ or raw Illumina QSEQ for-
mats. Several combinations of ngsShoRT algorithms/
methods were tested on publicly available Illumina GA

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 10 of 11
http://www.scfbm.org/content/9/1/8
II, HiSeq 2000, MiSeq eukaryotic and bacteria genomic
data. In general, contiguity and correctness of the ex-
perimental de novo assemblies and assembler perform-
ance were improved. ngsShoRT can be incorporated as a
pre-processing step for genome and transcriptome se-
quencing pipelines to clean up NGS data for down-
stream data analyses.
We reviewed several commonly used trimming tools

and compared the performance of ngsShoRT to three of
these tools in trimming and assembly (de novo and
reference-based) of three different genomic datasets gen-
erated by three different sequencing platforms. ngsShoRT
outperformed the compared tools in trimmed read quality
as well as DBG-based de novo assembly and reference-
based assembly.
Finally, based on our trimming evaluation experi-

ments, we recommend combining sequencing artifacts
removal, and quality score based read filtering and base
trimming as the most consistent method for improving
downstream assembly.
Additional files

Additional file 1: Figure S1. Workflow and functional components of
ngsShoRT software. Figure S2. Workflow of DBG-based de novo assembly
and reference-based assembly evaluation experiments. Figure S3. Summary
of trimmed data generated by ngsShoRT algorithms. Figure S4. Summary of
trimmed data generated by ngsShoRT algorithms and other tools. Figure S5.
Summary of de novo genome assemblies of raw and trimmed data
generated by ngsShoRT algorithms. Figure S6. Correctness of de novo
genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms. Figure S7. Summary of de novo genome assemblies of raw and
trimmed data generated by ngsShoRT algorithms and other tools. Figure S8.
Correctness of de novo assemblies of raw and trimmed data generated by
ngsShoRT algorithms and other tools. Figure S9. Summary of reference-based
assemblies of raw and trimmed data generated by ngsShoRT algorithms.
Figure S10. Summary of reference-based assemblies of raw and trimmed data
generated by ngsShoRT algorithms and other tools.

Additional file 2: Table SA1-1. Summary of Caenorhabditis elegans
trimmed data generated by ngsShoRT algorithms. Table SA1-2. Summary of
Saccharomyces cerevisiae S288c trimmed data generated by ngsShoRT
algorithms. Table SA1-3. Summary of Escherichia coli O157 H7 trimmed data
generated by ngsShoRT algorithms. Table SA2-1. Summary of Caenorhabditis
elegans de novo genome assemblies of raw and trimmed data generated by
ngsShoRT algorithms. Table SA2-2. Summary of Saccharomyces cerevisiae
S288c de novo genome assemblies of raw and trimmed data generated by
ngsShoRT algorithms. Table SA2-3. Summary of Escherichia coli O157 H7 de
novo genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms. Table SA3-1. Correctness of Caenorhabditis elegans de novo
genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms. Table SA3-2. Correctness of Saccharomyces cerevisiae S288c de
novo genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms. Table SA3-3. Correctness of Escherichia coli O157 H7 de novo
genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms. Table SA4-1. Summary of Caenorhabditis elegans reference-based
assemblies of raw and trimmed data generated by ngsShoRT algorithms.
Table SA4-2. Summary of Saccharomyces cerevisiae S288c reference-based
assemblies of raw and trimmed data generated by ngsShoRT algorithms.
Table SA4-3. Summary of Escherichia coli O157 H7 reference-based
assemblies of raw and trimmed data generated by ngsShoRT algorithms.

Additional file 3: Table SA5-1. Summary of Caenorhabditis elegans
trimmed data generated by ngsShoRT algorithms and other tools. Table
SA5-2. Summary of Saccharomyces cerevisiae S288c trimmed data
generated by ngsShoRT algorithms and other tools. Table SA5-3.
Summary of Escherichia coli O157 H7 trimmed data generated by
ngsShoRT algorithms and other tools. Table SA6-1. Summary of
Caenorhabditis elegans de novo genome assemblies of raw and trimmed
data generated by ngsShoRT algorithms and other tools. Table SA6-2.
Summary of Saccharomyces cerevisiae S288c de novo genome assemblies
of raw and trimmed data generated by ngsShoRT algorithms and other
tools. Table SA6-3. Summary of Escherichia coli O157 H7 de novo
genome assemblies of raw and trimmed data generated by ngsShoRT
algorithms and other tools. Table SA7-1. Correctness of Caenorhabditis
elegans de novo genome assemblies of raw and trimmed data generated
by ngsShoRT algorithms and other tools. Table SA7-2. Correctness of
Saccharomyces cerevisiae S288c de novo genome assemblies of raw and
trimmed data generated by ngsShoRT algorithms and other tools. Table
SA7-3. Correctness of Escherichia coli O157 H7 de novo genome assemblies
of raw and trimmed data generated by ngsShoRT algorithms and other
tools. Table SA8-1. Summary of Caenorhabditis elegans reference-based
assemblies of raw and trimmed data generated by ngsShoRT algorithms
and other tools. Table SA8-2. Summary of Saccharomyces cerevisiae S288c
reference-based assemblies of raw and trimmed data generated by
ngsShoRT algorithms and other tools. Table SA8-3. Summary of Escherichia
coli O157 H7 reference-based assemblies of raw and trimmed data
generated by ngsShoRT algorithms and other tools.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
CC, SSK and HH designed the study. SSK developed the software. CC and
SSK carried out the evaluation. CHW coordinated the study. CC, SSK, HH and
CHW drafted the manuscript. All authors approved the final manuscript.

Acknowledgments
The Authors thank Jennifer Wyffels for critical review and editing of the
manuscript, Gang Li for testing the software and developing the website,
and Li Liao, Shawn Polson, Eric Wommack and Brewster Kingham for
constructive discussions.
Research reported in this publication was supported by National Institute of
General Medical Sciences of the National Institutes of Health under award
number P20GM103446. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health.

Author details
1Center for Bioinformatics and Computational Biology, University of
Delaware, Newark, DE, USA. 2Geisel School of Medicine, Dartmouth College,
Hanover, NH, USA.

Received: 8 August 2013 Accepted: 22 April 2014
Published: 3 May 2014

References
1. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008,

26:1135–1145.
2. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY,

Schork NJ, Murray SS, Topol EJ, Levy S, Frazer KA: Evaluation of next
generation sequencing platforms for population targeted sequencing
studies. Genome Biol 2009, 10:R32.

3. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF,
Hackermüller J: Fast mapping of short sequences with mismatches,
Insertions and deletions using index structures. PLoS Comput Biol 2009,
5:e1000502.

4. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa
S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, Kanaya S:
Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res
2011, 39:e90.

5. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragments assembly. Proc Natl Acad Sci U S A 2001, 98:9748–9753.

http://www.biomedcentral.com/content/supplementary/1751-0473-9-8-S1.pdf
http://www.biomedcentral.com/content/supplementary/1751-0473-9-8-S2.pdf
http://www.biomedcentral.com/content/supplementary/1751-0473-9-8-S3.pdf

Chen et al. Source Code for Biology and Medicine 2014, 9:8 Page 11 of 11
http://www.scfbm.org/content/9/1/8
6. Flicek P, Birney E: Sense from sequence reads: methods for alignment
and assembly. Nat Methods 2009, 6(Suppl 11):S6–S12.

7. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation
sequencing data. Genomics 2010, 95:315–327.

8. Cox MP, Peterson DA, Biggs PJ: Solexa QA: At-a-glance quality assessment
of Illumina second-generation sequencing data. BMC Bioinforma 2010,
11:485.

9. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-seq. Nat Methods 2008,
5:621–628.

10. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev
I, Zhao K: High-resolution profiling of histone methylations in the human
genome. Cell 2007, 129:823–837.

11. Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and
genotyping. Nat Rev Genet 2011, 12:363–376.

12. Li H: Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. http://arxiv.org/abs/1303.3997.

13. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24:713–714.

14. Martin M: Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnetjournal, North America 2011, 17. http://journal.
embnet.org/index.php/embnetjournal/article/view/200/479.

15. Patel RK, Jain M: NGS QC toolkit: a toolkit for quality control of next
generation sequencing data. PLoS One 2012, 7:e30619.

16. Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 2014. doi:10.1093/bioinformatics/
btu170.

17. Atherton RA, McComish BJ, Shepherd LD, Berry LA, Albert NW, Lockhart PJ:
Whole genome sequencing of enriched chloroplast DNA using the
Illumina GAII platform. Plant Methods 2010, 6:22.

18. Diguistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, Docking TR,
Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil
C, Jones SJ: De novo genome sequence assembly of a filamentous
fungus using Sanger, 454 and Illumina sequence data. Genome Biol 2009,
10:R94.

19. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V,
Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z,
Haimel M, Simpson JT, Fonseca NA, Birol İ, Docking TR, Ho IY, Rokhsar DS,
Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR,
Phillippy AM, Koren S, et al. Assemblathon 1: a competitive assessment of
de novo short read assembly methods. Genome Res 2011, 21:2224–2241.

20. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC,
Rigoutsos I, Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I,
Richardson P, Hugenholtz P, Kyrpides NC: Use of simulated data sets to
evaluate the fidelity of metagenomic processing methods. Nat Methods
2007, 4:495–500.

21. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne
JK, Willis BL, Matz MV: Sequencing and de novo analysis of a coral larval
transcriptome using 454 GSFlx. BMC Genomics 2009, 10:219.

22. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18:821–829.

23. Illumina, Inc: Casava 1.8 changes. http://supportres.illumina.com/documents/
myillumina/354c68ce-32f3-4ea4-9fe5-8cb2d968616c/casava1_8_changes.pdf.

24. Buffalo V: Scythe - a Bayesian adapter trimmer. https://github.com/
vsbuffalo/scythe.

25. Falgueras J, Lara AJ, Fernández-Pozo N, Cantón FR, Pérez-Trabado G, Claros
MG: SeqTrim: a high-throughput pipeline for pre-processing any type of
sequence read. BMC Bioinforma 2010, 11:38.

26. Hannon Lab: FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit/.
27. Kong Y: Btrim: a fast, lightweight adapter and quality trimming program

for next-generation sequencing technologies. Genomics 2011, 98:152–153.
28. Nikhil J: Sickle - a windowed adaptive trimming tool for FASTQ files using

quality. https://github.com/najoshi/sickle.
29. Hietaniemi J: String::Approx, version 3.26. http://search.cpan.org/~jhi/

String-Approx-3.26/Approx.pm.
30. Haridas S, Breuill C, Bohlmann J, Hsiang T: A biologist's guide to de novo

genome assembly using next-generation sequence data: a test with
fungal genomes. J Microbiol Methods 2011, 86:368–375.

31. Illumina, Inc: De Novo Genome Assembly Using Illumina Reads. http://
www.illumina.com/Documents/products/technotes/technote_denovo_
assembly_ecoli.pdf.
32. Garcia TI, Shen Y, Catchen J, Amores A, Schartl M, Postlethwait J, Walter RB:
Effects of short read quality and quantity on a de novo vertebrate
transcriptome assembly. Comp Biochem Physiol C Toxicol Pharmacol 2012,
155:95–101.

33. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19:1117–1123.

34. CLC Bio. CLC Bio Genomics Workbench User Manual. http://www.clcbio.
com/files/usermanuals/CLC_Genomics_Workbench_User_Manual.pdf.

35. Pandey RV, Nolte V, Schlötterer C: CANGS: a user-friendly utility for
processing and analyzing 454 GS-FLX data in biodiversity studies.
BMC Res Notes 2010, 3:3.

36. Gladman S, Seemann T: VelvetOptimser. http://www.vicbioinformatics.com/
software.velvetoptimiser.shtml.

37. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,
Schatz MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA: GAGE: a
critical evaluation of genome assemblies and assembly algorithms.
Genome Res 2012, 3:557–567.

38. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL: Versatile and open software for comparing large genomes.
Genome Biol 2004, 5:R12.

39. Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the
elusive mis-assembly. Genome Biol 2008, 9:R55.

40. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S,
Dopazo J, Meyer TF, Conesa A: Qualimap: evaluating next-generation
sequencing alignment data. Bioinformatics 2012, 28:2678–2679.

doi:10.1186/1751-0473-9-8
Cite this article as: Chen et al.: Software for pre-processing Illumina next-
generation sequencing short read sequences. Source Code for Biology and
Medicine 2014 9:8.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://arxiv.org/abs/1303.3997
http://journal.embnet.org/index.php/embnetjournal/article/view/200/479
http://journal.embnet.org/index.php/embnetjournal/article/view/200/479
http://supportres.illumina.com/documents/myillumina/354c68ce-32f3-4ea4-9fe5-8cb2d968616c/casava1_8_changes.pdf
http://supportres.illumina.com/documents/myillumina/354c68ce-32f3-4ea4-9fe5-8cb2d968616c/casava1_8_changes.pdf
https://github.com/vsbuffalo/scythe
https://github.com/vsbuffalo/scythe
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/najoshi/sickle
http://search.cpan.org/~jhi/String-Approx-3.26/Approx.pm
http://search.cpan.org/~jhi/String-Approx-3.26/Approx.pm
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_User_Manual.pdf
http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_User_Manual.pdf
http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
http://www.vicbioinformatics.com/software.velvetoptimiser.shtml

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Overview
	Design principles
	Common pre-processing issues
	Review of currently available trimming tools

	Algorithms and implementation
	Sequencing artifacts removal
	QSEQ specific methods
	Reads with “N” bases removal/splitting
	Quality score based trimming
	5'/3'-end bases trimming
	Adjustment for DBG assembly
	Implementation

	Evaluation
	Data source and experimental settings
	Comparison of ngsShoRT algorithms
	Comparison with other tools
	De novo assembly
	Reference-based assembly

	Results
	Performance of different ngsShoRT algorithms
	Effects on de novo and reference-based genome assembly
	1) de novo genome assembly
	2) Reference-based genome assembly

	Discussion
	Conclusions
	Additional files
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

